Hardware Locality (hwloc)
master-20200526.0300.git4836002

Generated by Doxygen 1.6.1

Tue May 26 03:01:08 2020

Contents

1 Hardware Locality

1.1 Introduction
1.2 Installation
1.2.1 BasicInstallation
1.2.2 Installing froma Gitclone
1.3 QuestionsandBugs Lo

2 Hardware Locality (hwloc) Introduction

2.1 hwlocSummary o
2.2 hwloc Installation
2.3 Command-line Examples
2.4 Programming Interface oL oo

24.1 Portability

242 APIExample
2.5 History/Credits. e
2.6 FurtherReading,

3 Terms and Definitions

3.1 Objects . . . e
32 Indexesand Sets.
3.3 Hierarchy, Treeand Levels

4 Command-Line Tools

4.1 Istopo and Istopo-no-graphics

[S=

W N NN =

[N e Y ||

11
12
13
14
14

17
18
18
19

23

ii CONTENTS
42 hwloc-bind 24
43 hwloc-calc. L 24
44 hwloc-info. L 25
45 hwloc-distrib oL 25
4.6 hwlocps. e 25
477 hwloc-annotate 26
4.8 hwloc-diff, hwloc-patch and hwloc-compress-dir 26
4.9 hwloc-dump-hwdata 26
4.10 hwloc-gather-topology and hwloc-gather-cpuid 26

5 Environment Variables 27

6 CPU and Memory Binding Overview 33

7 T/O Devices 35
7.1 Enabling and requirements 36
7.2 T/Oobjects. oo e 36
7.3 OSdevices 37
74 PCldevicesandbridges 38
7.5 Consulting I/O devices and binding 38
7.6 Examples e 39

8 Miscellaneous objects 43
8.1 Miscobjectsaddedby hwloc 44
8.2 Annotating topologies with Misc objects 44

9 Object attributes 45
9.1 Normal attributes 46
9.2 Customstringinfos Lo oL 46

9.2.1 Hardware Platform Information 46
9.2.2 Operating System Information 47
9.2.3 hwloc Information L. 47
9.24 CPUlInformation 48

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS iii

9.2.5 OS Device Information 48

9.2.6 Other Object-specific Information 49

9.2.7 User-Given Information 49

10 Importing and exporting topologies from/to XML files 51
10.1 libxml2 and minimalistic XML backends 52
10.2 XML import error management 53

11 Synthetic topologies 55
11.1 Synthetic description string 56
11.2 Loading a synthetic topology 57
11.3 Exporting a topology as a synthetic string 58

12 Interoperability With Other Software 59
13 Thread Safety 63
14 Components and plugins 67
14.1 Components enabled by default. 68
14.2 Selecting which componentstouse 69
14.3 Loading components from plugins 69
14.4 Existing components and plugins 70

15 Embedding hwloc in Other Software 73
15.1 Using hwloc’s M4 Embedding Capabilities 74
15.2 Example Embedding hwloc 76

16 Frequently Asked Questions 79
16.1 Concepts . . . o v v 80
16.1.1 Tonly need binding, why should Tuse hwloc ?. 80

16.1.2 Should I use logical or physical/OS indexes? and how? 80

16.1.3 hwloc is only a structural model, it ignores performance mod-
els, memory bandwidth, etc.? 81

16.1.4 hwloc only has a one-dimensional view of the architecture, it
ignores distances? 82

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

iv

CONTENTS

16.1.5
16.1.6
16.1.7

16.1.8

What are these Group objects in my topology?
What happens if my topology is asymmetric?

What happens to my topology if I disable symmetric multi-
threading, hyper-threading, etc. in the system?

How may I ignore symmetric multithreading, hyper-threading,

16.2 Advanced

16.2.1

16.2.2
16.2.3

16.2.4

16.3 Caveats

16.3.1
16.3.2
16.3.3

16.3.4

I do not want hwloc to rediscover my enormous machine topol-
ogy every time I rerunaprocess

How many topologies may I use in my program?

How to avoid memory waste when manipulating multiple sim-
ilar topologies? Lo

How do I annotate the topology with private notes?

Why does Valgrind complain about hwloc memory leaks?

16.4 Platform-specific

16.4.1

16.4.2

16.4.3
16.4.4
16.4.5
16.4.6

How do I find the local MCDRAM NUMA node on Intel Xeon
Phi processor?

Why do I need hwloc-dump-hwdata for memory on Intel Xeon
Phiprocessor?

How do I build hwloc for BlueGene/Q?

How to get useful topology information on NetBSD?
Why does binding fail on AIX?

16.5 Compatibility between hwloc versions

83

84

84
85

85
86

86
86
87
87
88

88
89
90

92

92

16.5.2 What is the difference between API and library version numbers? 93

16.5.3
16.5.4

How do I handle ABI breaks?

Are XML topology files compatible between hwloc releases?

93
94

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS v

16.5.5 Are synthetic strings compatible between hwloc releases? . . 94

16.5.6 Is it possible to share a shared-memory topology between dif-

ferent hwloc releases? 94

17 Upgrading to the hwloc 2.0 API 97
17.1 New Organization of NUMA nodes and Memory 98
17.1.1 Memorychildren 98
17.1.2 Examples e 98
17.1.3 NUMA levelanddepth 99
17.1.4 Finding Local NUMA nodes and looking at Children and Parents 100

17.2 4 Kinds of Objects and Children 101
17.2.1 I/OandMiscchildren 101
17.2.2 Kindsofobjects 101

17.3 HWLOC_OBJ_CACHEreplaced 101
17.4 allowed_cpuset and allowed_nodeset only in the main topology 102
17.5 Object depths are now signedint 102
17.6 Memory attributes become NUMANode-specific 102
17.7 Topology configuration changes 103
17.8 XML changes e 103
17.9 Distances API totally rewritten 104
17.10Return values of functions 104
17.11Misc APIchanges 105
17.12API removals and deprecations 105
18 Network Locality (netloc) 107
18.1 Netloc Summary 108
18.1.1 Supported Networks 108

18.2 Netloc Installation 109
183 Setup e 109
18.4 Topology display 110
18.4.1 Generatethe JSONfile 111
18.4.2 Usingnetloc_draw 111

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

vi CONTENTS
19 Netloc with Scotch 113
19.1 Introduction L 114
19.2 Setup e 114
193 Toolsand APT 114
19.3.1 Build Scotch architectures, 114

19.3.2 Build Scotch sub-architectures 115

19.3.3 Mapping of processes 115

20 Module Index 117
20.1 Modules L e 117

21 Data Structure Index 119
21.1 Data Structures o .o i e 119

22 Module Documentation 121
22.1 APLversiono 121
22.1.1 Define Documentation 121

22.1.1.1 HWLOC_APIL_VERSION. 121

22.1.1.2 HWLOC_COMPONENT_ABI 122

22.1.2 Function Documentation 122

22.1.2.1 hwloc_get_api_version 122

22.2 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) 123
22.2.1 Detailed Description 123

22.2.2 Typedef Documentation 123

22.2.2.1 hwloc_const_cpuset_t 123

22222 hwloc_const_ nodeset t 123

22223 hwloc_cpuset_ t 123

22224 hwloc_nodeset_t. 124

223 Object Types o v v i i e e e 125
22.3.1 Define Documentation 126

22.3.1.1 HWLOC_TYPE_UNORDERED 126

22.3.2 Typedef Documentation 126

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS vii

22.4

225

22.6

22.3.2.1 hwloc_obj_bridge_type_t 126
22.3.2.2 hwloc_obj_cache_type_t 126
22.3.2.3 hwloc_obj_osdev_type t 126
22.3.3 Enumeration Type Documentation 126
22.3.3.1 hwloc_obj_bridge_type_e 126
22.3.3.2 hwloc_obj_cache_type_e 126
22.3.3.3 hwloc_obj_osdev_type_.e 127
22334 hwloc_obj_type_t 127
22.3.4 Function Documentation 129
22.3.4.1 hwloc_compare_types 129
Object Structure and Attributes 131
22.4.1 Typedef Documentation 131
22.4.1.1 hwloc_obj_t, . 131
Topology Creation and Destruction 132
22.5.1 Typedef Documentation 132
22.5.1.1 hwloc_topology_t 132
22.5.2 Function Documentation 132
22.5.2.1 hwloc_topology_abi_check 132
22.5.2.2 hwloc_topology_check 133
22.5.2.3 hwloc_topology_destroy 133
22524 hwloc_topology_ dup 133
22.5.2.5 hwloc_topology_init. 133
22.5.2.6 hwloc_topology_load 134
Object levels, depths and types 135
22.6.1 Detailed Description 135
22.6.2 Enumeration Type Documentation 136
22.6.2.1 hwloc_get_type_depth_.e 136
22.6.3 Function Documentation 136
22.6.3.1 hwloc_get_depth_type 136
22.6.3.2 hwloc_get_memory_parents_depth 136
22.6.3.3 hwloc_get_nbobjs_by_depth 137

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

viii CONTENTS
22.6.3.4 hwloc_get_nbobjs_by_type 137

22.6.3.5 hwloc_get_next_obj_by_ depth 137

22.6.3.6 hwloc_get_next_obj_by_type 137

22.6.3.7 hwloc_get_obj_by depth 137

22.6.3.8 hwloc_get_obj_by type 138

22.6.3.9 hwloc_get_root_obj 138

22.6.3.10 hwloc_get_type depth 138

22.6.3.11 hwloc_get_type_or_above_depth 138

22.6.3.12 hwloc_get_type_or_below_depth 139

22.6.3.13 hwloc_topology_get_depth 139

22.7 Converting between Object Types and Attributes, and Strings 140
22.7.1 Function Documentation 140
22.7.1.1 hwloc_obj_attr_snprintf 140

22.7.1.2 hwloc_obj_type_snprintf 140

22.7.1.3 hwloc_obj_type_string 141

22.7.1.4 hwloc_type_sscanf 141

22.7.1.5 hwloc_type_sscanf_as_depth 142

22.8 Consulting and Adding Key-Value Info Attributes 143
22.8.1 Function Documentation 143
22.8.1.1 hwloc_obj_add_info 143

22.8.1.2 hwloc_obj_get_info_ by name 143

229 CPUbInding 144
22.9.1 Detailed Description 144
22.9.2 Enumeration Type Documentation 145
22.9.2.1 hwloc_cpubind_flags_t 145

22.9.3 Function Documentation 146
22.9.3.1 hwloc_get_cpubind 146

22.9.3.2 hwloc_get_last_cpu_location 146

22.9.3.3 hwloc_get_proc_cpubind 147

22.9.3.4 hwloc_get_proc_last_cpu_location 147

22.9.3.5 hwloc_get_thread_cpubind 147

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS ix

22.9.3.6 hwloc_set_cpubind 148
22.9.3.7 hwloc_set_proc_cpubind 148
22.9.3.8 hwloc_set_thread_cpubind 148
22.10Memory binding 149
22.10.1 Detailed Description 149
22.10.2 Enumeration Type Documentation 151
22.10.2.1 hwloc_membind_flags_t. 151
22.10.2.2 hwloc_membind_policy_t 152
22.10.3 Function Documentation 153
22.10.3.1 hwloc_alloc 153
22.10.3.2 hwloc_alloc._ membind 153
22.10.3.3 hwloc_alloc_membind_policy 153
221034 hwloc_free 154
22.10.3.5 hwloc_get_area_membind 154
22.10.3.6 hwloc_get_area_memlocation 154
22.10.3.7 hwloc_get_membind 155
22.10.3.8 hwloc_get_proc_membind 155
22.10.3.9 hwloc_set_area_membind 156
22.10.3.1Chwloc_set membind 156
22.10.3.1lhwloc_set_proc_membind 157
22.11Changing the Source of Topology Discovery 158
22.11.1 Detailed Description 158
22.11.2 Enumeration Type Documentation 158
22.11.2.1 hwloc_topology_components_flag e 158

22.11.3 Function Documentation 159
22.11.3.1 hwloc_topology_set_components 159
22.11.3.2 hwloc_topology_set_pid. 159
22.11.3.3 hwloc_topology_set_synthetic 159
22.11.3.4 hwloc_topology_set_xml 160
22.11.3.5 hwloc_topology_set_xmlbuffer 160
22.12Topology Detection Configuration and Query 162

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS

22.12.1 Detailed Description 163
22.12.2 Enumeration Type Documentation 163
22.12.2.1 hwloc_topology_flags e 163
22.12.2.2 hwloc_type_filter_ e 164
22.12.3 Function Documentation 165
22.12.3.1 hwloc_topology_get_flags 165
22.12.3.2 hwloc_topology_get_support 165
22.12.3.3 hwloc_topology_get_type_filter 165
22.12.3.4 hwloc_topology_get_userdata 166
22.12.3.5 hwloc_topology_is_thissystem 166
22.12.3.6 hwloc_topology_set_all_types_filter 166
22.12.3.7 hwloc_topology_set_cache_types_filter 166
22.12.3.8 hwloc_topology_set_flags 166
22.12.3.9 hwloc_topology_set_icache_types_filter 166
22.12.3.1Chwloc_topology_set_io_types_filter 167
22.12.3.1lhwloc_topology_set_type_filter 167
22.12.3.12hwloc_topology_set_userdata 167
22.13Modifying a loaded Topology 168
22.13.1 Enumeration Type Documentation 168
22.13.1.1 hwloc_allow_flags_e 168
22.13.1.2 hwloc_restrict_flags_ e 169
22.13.2 Function Documentation 169
22.13.2.1 hwloc_obj_add_other_obj_sets 169
22.13.2.2 hwloc_topology_alloc_group_object 170
22.13.2.3 hwloc_topology_allow 170
22.13.2.4 hwloc_topology_insert_group_object 170
22.13.2.5 hwloc_topology_insert_misc_object 171
22.13.2.6 hwloc_topology_restrict 172
22.14Finding Objects insideaCPUset 173
22.14.1 Function Documentation 173
22.14.1.1 hwloc_get_first_largest_obj_inside_cpuset 173

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS xi
22.14.1.2 hwloc_get_largest_objs_inside_cpuset 173

22.14.1.3 hwloc_get_nbobjs_inside_cpuset_by_depth 174

22.14.1.4 hwloc_get_nbobjs_inside_cpuset_by_type 174

22.14.1.5 hwloc_get_next_obj_inside_cpuset_by_depth 174

22.14.1.6 hwloc_get_next_obj_inside_cpuset_by_type 175

22.14.1.7 hwloc_get_obj_index_inside_cpuset 175

22.14.1.8 hwloc_get_obj_inside_cpuset_by_depth 175

22.14.1.9 hwloc_get_obj_inside_cpuset_by_type 176
22.15Finding Objects covering atleast CPUset 177
22.15.1 Function Documentation 177
22.15.1.1 hwloc_get_child_covering_cpuset 177

22.15.1.2 hwloc_get_next_obj_covering_cpuset_by_depth . . 177

22.15.1.3 hwloc_get_next_obj_covering_cpuset_by_type. . . 178

22.15.1.4 hwloc_get_obj_covering_cpuset 178
22.16Looking at Ancestor and Child Objects 179
22.16.1 Detailed Description 179
22.16.2 Function Documentation 179
22.16.2.1 hwloc_get_ancestor_obj_by_depth 179

22.16.2.2 hwloc_get_ancestor_obj_by_type 179

22.16.2.3 hwloc_get_common_ancestor_obj 180

22.16.2.4 hwloc_get_next_child 180

22.16.2.5 hwloc_obj_is_in_subtree 180

22.17Kinds of object Type 181
22.17.1 Detailed Description 181
22.17.2 Function Documentation 181
22.17.2.1 hwloc_obj_type_is_cache 181

22.17.2.2 hwloc_obj_type_is_dcache 181

22.17.2.3 hwloc_obj_type_is_icache 182

22.17.2.4 hwloc_obj_type_is_io 182

22.17.2.5 hwloc_obj_type_is_memory 182

22.17.2.6 hwloc_obj_type_is_normal 182

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

xii CONTENTS

22.18Looking at Cache Objects 183
22.18.1 Function Documentation 183
22.18.1.1 hwloc_get_cache_covering_cpuset 183

22.18.1.2 hwloc_get_cache_type_depth 183

22.18.1.3 hwloc_get_shared_cache_covering_obj 184
22.19Finding objects, miscellaneous helpers 185
22.19.1 Detailed Description 185
22.19.2 Function Documentation 185
22.19.2.1 hwloc_bitmap_singlify_per_core 185

22.19.2.2 hwloc_get_closest_objs 186

22.19.2.3 hwloc_get_numanode_obj_by_os_index 186

22.19.2.4 hwloc_get_obj_below_array_by_type. 186

22.19.2.5 hwloc_get_obj_below_by_type 187

22.19.2.6 hwloc_get_pu_obj_by_os_index 187
22.20Distributing items over a topology L. 188
22.20.1 Enumeration Type Documentation 188
22.20.1.1 hwloc_distrib_flags_e 188

22.20.2 Function Documentation 188
22.20.2.1 hwloc_distrib 188

22.21CPU and node sets of entire topologies 190
22.21.1 Function Documentation 190
22.21.1.1 hwloc_topology_get_allowed_cpuset 190

22.21.1.2 hwloc_topology_get_allowed_nodeset 190

22.21.1.3 hwloc_topology_get_complete_cpuset 191

22.21.1.4 hwloc_topology_get_complete_nodeset 191

22.21.1.5 hwloc_topology_get_topology_cpuset 192

22.21.1.6 hwloc_topology_get_topology_nodeset 192
22.22Converting between CPU sets andnode sets 193
22.22.1 Function Documentation 193
22.22.1.1 hwloc_cpuset_from_nodeset 193

22.22.1.2 hwloc_cpuset_to_nodeset 193

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS xiii

22.23Finding /O objects 194
22.23.1 Function Documentation 194
22.23.1.1 hwloc_bridge_covers_pcibus 194
22.23.1.2 hwloc_get_next_bridge 194
22.23.1.3 hwloc_get_next_osdev 194
22.23.1.4 hwloc_get_next_pcidev 195
22.23.1.5 hwloc_get_non_io_ancestor_obj 195
22.23.1.6 hwloc_get_pcidev_by_busid 195
22.23.1.7 hwloc_get_pcidev_by_busidstring 195
2224Thebitmap API o 196
22.24.1 Detailed Description 198
22.24.2 Define Documentation 198
22.24.2.1 hwloc_bitmap_foreach_begin 198
22.24.2.2 hwloc_bitmap_foreach_end 199
22.24.3 Typedef Documentation 199
22.24.3.1 hwloc_bitmap_t 199
22.24.3.2 hwloc_const_bitmap_t. 199
22.24.4 Function Documentation 199
22.24.4.1 hwloc_bitmap_allbut 199
22.24.4.2 hwloc_bitmap_alloc 199
22.24.4.3 hwloc_bitmap_alloc_full 199
222444 hwloc_bitmap_and 199
22.24.4.5 hwloc_bitmap_andnot 200
22.24.4.6 hwloc_bitmap_asprintf 200
222447 hwloc_bitmap_clr 200
22.24.4.8 hwloc_bitmap_clr_range 200
22.24.4.9 hwloc_bitmap_compare 200
22.24.4.1Chwloc_bitmap_compare_first 201
22.24.4.1lhwloc_bitmap_copy 201
22.244.1%hwloc_bitmap_dup 201
22.24.4.1%hwloc_bitmap_fill 201

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

xiv CONTENTS
22.24.4.14hwloc_bitmap_first 201
22.24.4.15hwloc_bitmap_first_unset 202
22.24.4.16hwloc_bitmap_free 202
22.24.4.1"hwloc_bitmap_from_ith_ulong 202
22.24.4.1&wloc_bitmap_from_ulong 202
22.24.4.1%wloc_bitmap_from_ulongs 202
22.24.4.2(hwloc_bitmap_intersects 202
22.24.42lhwloc_bitmap_isequal 202
22.24.4 2 hwloc_bitmap_isfull 203
22.24.4.2%hwloc_bitmap_isincluded 203
22.24.4 24hwloc_bitmap_isset 203
22.24.4.2%wloc_bitmap_iszero 203
22.24.42¢hwloc_bitmap_last. 204
22.24.4.2hwloc_bitmap_last_unset 204
22.24.4 2&wloc_bitmap_list_asprintf 204
22.24.4 2% wloc_bitmap_list_snprintf L. 204
22.24.4.3Chwloc_bitmap_list_sscanf 204
22244 3lhwloc_bitmap_next 205
22.24.4.3%hwloc_bitmap_next_unset 205
22.24.433%hwloc_bitmap_not 205
22.24.4.34hwloc_bitmap_nr_ulongs 205
22.24.4.3%wloc_bitmap_only 205
22.24436hwloc_bitmap_or 206
22.24.4.3hwloc_bitmap_set 206
22.24.4.3&wloc_bitmap_set_ith_ulong 206
22.24.4.3%wloc_bitmap_set_range 206
22.24.4 4thwloc_bitmap_singlify 206
22.24.4 4lhwloc_bitmap_snprintf 206
22.24.4 4hwloc_bitmap_sscanf L. 207
22.24.4.4%hwloc_bitmap_taskset_asprintf 207
22.24.4.44hwloc_bitmap_taskset_snprintf 207

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS XV
22.24.4 45%hwloc_bitmap_taskset_sscanf 207
22.24.4.46hwloc_bitmap_to_ith_ulong 208
22244 4hwloc_bitmap_to_ulong 208
22.24.4 4&wloc_bitmap_to_ulongs 208
22.24.4 4% wloc_bitmap_weight 208
22.24.4.5Chwloc_bitmap_xor 208
22.24.4.5lhwloc_bitmap_zero 208

22.25Exporting Topologiesto XML 209
22.25.1 Enumeration Type Documentation 209
22.25.1.1 hwloc_topology_export_xml_flags_e 209

22.25.2 Function Documentation 210
22.25.2.1 hwloc_export_obj_userdata 210

22.25.2.2 hwloc_export_obj_userdata_base64 210

22.25.2.3 hwloc_free_xmlbuffer 210

22.25.2.4 hwloc_topology_export_xml 211

22.25.2.5 hwloc_topology_export_xmlbuffer 211

22.25.2.6 hwloc_topology_set_userdata_export_callback . . . 212

22.25.2.7 hwloc_topology_set_userdata_import_callback 212
22.26Exporting Topologies to Synthetic 214
22.26.1 Enumeration Type Documentation 214
22.26.1.1 hwloc_topology_export_synthetic_flags e 214

22.26.2 Function Documentation 215
22.26.2.1 hwloc_topology_export_synthetic 215
22.27Retrieve distances between objects 216
22.27.1 Enumeration Type Documentation 216
22.27.1.1 hwloc_distances_kind_e 216

22.27.2 Function Documentation 217
22.27.2.1 hwloc_distances_get 217

22.27.2.2 hwloc_distances_get_by_depth 218

22.27.2.3 hwloc_distances_get_by_name 218

22.27.2.4 hwloc_distances_get_by_type 218

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

xvi CONTENTS

22.27.2.5 hwloc_distances_get_name 218

22.27.2.6 hwloc_distances_release 218
22.28Helpers for consulting distance matrices 219
22.28.1 Function Documentation 219
22.28.1.1 hwloc_distances_obj_index 219

22.28.1.2 hwloc_distances_obj_pair_values 219

22.29Add or remove distances between objects L. 220
22.29.1 Enumeration Type Documentation 220
22.29.1.1 hwloc_distances_add_flag. e 220

22.29.2 Function Documentation 220
22.29.2.1 hwloc_distances_add 220

22.29.2.2 hwloc_distances_release_remove 221

22.29.2.3 hwloc_distances_remove 221

22.29.2.4 hwloc_distances_remove_by_depth 221

22.29.2.5 hwloc_distances_remove_by_type 221
22.30Linux-specifichelpers L oL, 222
22.30.1 Detailed Description 222
22.30.2 Function Documentation 222
22.30.2.1 hwloc_linux_get_tid_cpubind 222

22.30.2.2 hwloc_linux_get_tid_last_cpu_location 222

22.30.2.3 hwloc_linux_read_path_as_cpumask 223

22.30.2.4 hwloc_linux_set_tid_cpubind 223

22 .31Interoperability with Linux libnuma unsigned long masks 224
22.31.1 Detailed Description 224
22.31.2 Function Documentation 224
22.31.2.1 hwloc_cpuset_from_linux_libnuma_ulongs 224

22.31.2.2 hwloc_cpuset_to_linux_libnuma_ulongs 225

22.31.2.3 hwloc_nodeset_from_linux_libnuma_ulongs 225

22.31.2.4 hwloc_nodeset_to_linux_libnuma_ulongs 225
22.32Interoperability with Linux libnuma bitmask 226
22.32.1 Detailed Description 226

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS

22.32.2 Function Documentation

22.32.2.1 hwloc_cpuset_from_linux_libnuma_bitmask

22.32.2.2 hwloc_cpuset_to_linux_libnuma_bitmask

22.32.2.3 hwloc_nodeset_from_linux_libnuma_bitmask . . .

22.32.2.4 hwloc_nodeset_to_linux_libnuma_bitmask
22.33Interoperability with glibc sched affinity
22.33.1 Detailed Description
22.33.2 Function Documentation
22.33.2.1 hwloc_cpuset_from_glibc_sched_affinity .
22.33.2.2 hwloc_cpuset_to_glibc_sched_affinity . .
22.34Interoperability with OpenCL
22.34.1 Detailed Description
22.34.2 Function Documentation
22.34.2.1 hwloc_opencl_get_device_cpuset
22.34.2.2 hwloc_opencl_get_device_osdev
22.34.2.3 hwloc_opencl_get_device_osdev_by_index
22.34.2.4 hwloc_opencl_get_device_pci_busid . . .
22 .35Interoperability with the CUDA Driver API
22.35.1 Detailed Description
22.35.2 Function Documentation
22.35.2.1 hwloc_cuda_get_device_cpuset
22.35.2.2 hwloc_cuda_get_device_osdev

22.35.2.3 hwloc_cuda_get_device_osdev_by_index
22.35.2.4 hwloc_cuda_get_device_pci_ids
22.35.2.5 hwloc_cuda_get_device_pcidev
22 .36Interoperability with the CUDA Runtime API
22.36.1 Detailed Description
22.36.2 Function Documentation
22.36.2.1 hwloc_cudart_get_device_cpuset
22.36.2.2 hwloc_cudart_get_device_osdev_by_index
22.36.2.3 hwloc_cudart_get_device_pci_ids

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

xviii CONTENTS

22.36.2.4 hwloc_cudart_get_device_pcidev 234
22.37Interoperability with the NVIDIA Management Library 235
22.37.1 Detailed Description 235
22.37.2 Function Documentation 235
22.37.2.1 hwloc_nvml_get_device_cpuset 235

22.37.2.2 hwloc_nvml_get_device_osdev 235

22.37.2.3 hwloc_nvml_get_device_osdev_by_index 236

22 .38Interoperability with OpenGL displays 237
22.38.1 Detailed Description 237
22.38.2 Function Documentation 237
22.38.2.1 hwloc_gl_get_display_by_osdev 237

22.38.2.2 hwloc_gl_get_display_osdev_by_name 237

22.38.2.3 hwloc_gl_get_display_osdev_by_port_device . . . 238

22 39Interoperability with OpenFabrics 239
22.39.1 Detailed Description 239
22.39.2 Function Documentation 239
22.39.2.1 hwloc_ibv_get_device_cpuset 239

22.39.2.2 hwloc_ibv_get_device_osdev 239

22.39.2.3 hwloc_ibv_get_device_osdev_by_name 240
22.40Topology differences, 241
22.40.1 Detailed Description 242
22.40.2 Typedef Documentation 242
22.40.2.1 hwloc_topology_diff_obj_attr_type t. 242

22.40.2.2 hwloc_topology_diff t 242

22.40.2.3 hwloc_topology_diff type t 242

22.40.3 Enumeration Type Documentation 243
22.40.3.1 hwloc_topology_diff_apply_flags e 243

22.40.3.2 hwloc_topology_diff_obj_attr_type_e 243

22.40.3.3 hwloc_topology_diff_type_.e 243

22.40.4 Function Documentation 244
22.40.4.1 hwloc_topology_diff apply 244

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS Xix
22.40.4.2 hwloc_topology_diff_build 244

22.40.4.3 hwloc_topology_diff_destroy 245

22.40.4.4 hwloc_topology_diff_export_xml 245

22.40.4.5 hwloc_topology_diff_export_xmlbuffer 245

22.40.4.6 hwloc_topology_diff_load_xml 245

22.40.4.7 hwloc_topology_diff _load_xmlbuffer. 246
22.41Sharing topologies between processes 247
22.41.1 Detailed Description 247
22.41.2 Function Documentation 247
22.41.2.1 hwloc_shmem_topology_adopt 247

22.41.2.2 hwloc_shmem_topology_get length 248

22.41.2.3 hwloc_shmem_topology_write 248
22.42Components and Plugins: Discovery components 250
22.43Components and Plugins: Discovery backends 251
22.43.1 Typedef Documentation 251
22.43.1.1 hwloc_disc_phase_t 251

22.43.2 Enumeration Type Documentation 252
22.43.2.1 hwloc_disc_phase_e 252

22.43.2.2 hwloc_disc_status_flag e 252

22.43.3 Function Documentation 252
22.43.3.1 hwloc_backend_alloc 252

22.43.3.2 hwloc_backend _enable 253
22.44Components and Plugins: Generic components 254
22.44.1 Typedef Documentation 254
22.44.1.1 hwloc_component_type_t 254

22.44.2 Enumeration Type Documentation 254
22.44.2.1 hwloc_component_type_€ 254
22.45Components and Plugins: Core functions to be used by components 255
22.45.1 Typedef Documentation 255
22.45.1.1 hwloc_report_error_t 255

22.45.2 Function Documentation 255

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

XX CONTENTS

22.45.2.1 hwloc__insert_object_by_cpuset

22.45.2.2 hwloc_alloc_setup_object

22.45.2.3 hwloc_hide errors

22.45.2.4 hwloc_insert_object_by_cpuset

22.45.2.5 hwloc_insert_object_by_parent

22.45.2.6 hwloc_obj_add_children_sets

22.45.2.7 hwloc_plugin_check_namespace

22.45.2.8 hwloc_report_os_error

22.45.2.9 hwloc_topology_reconnect
22.46Components and Plugins: Filtering objects
22.46.1 Function Documentation
22.46.1.1 hwloc_filter_check_keep_object

22.46.1.2 hwloc_filter_check_keep_object_type

22.46.1.3 hwloc_filter_check_osdev_subtype_important . . .

22.46.1.4 hwloc_filter_check_pcidev_subtype_important . . .
22.47Components and Plugins: helpers for PCI discovery
22.47.1 Function Documentation
22.47.1.1 hwloc_pcidisc_check_bridge_type

22.47.1.2 hwloc_pcidisc_find_bridge_buses

22.47.1.3 hwloc_pcidisc_find_cap

22.47.1.4 hwloc_pcidisc_find_linkspeed

22.47.1.5 hwloc_pcidisc_tree_attach

22.47.1.6 hwloc_pcidisc_tree_insert_by_busid
22.48Components and Plugins: finding PCI objects during other discoveries
22.48.1 Function Documentation
22.48.1.1 hwloc_pci_find_parent_by_busid

22.49Netloc APT
22.49.1 Enumeration Type Documentation

2249.1.1 "@5 ...

23 Data Structure Documentation

265

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS xxi
23.1 hwloc_backend Struct Reference 265
23.1.1 Detailed Description 265
23.1.2 Field Documentation 266
23.1.2.1 disable 266

23.1.2.2 discover 266

23.1.23 flags oo 266

23.1.2.4 get_pci_busid_cpuset 266

23.1.2.5 is_thissystem. 266

23.1.2.6 phases 266

23.1.2.77 private_data 267

23.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 268
23.2.1 Detailed Description 268
23.2.2 Field Documentation 269
23221 depth 269

23222 domain 269

23.2.2.3 downstream 269

23.2.2.4 downstream_type 269

23225 POl v oo 269

23226 PCl ..o o 269

23.2.277 secondary_bus 269

23.2.2.8 subordinate_ bus 269

23229 wpstreaml 269

23.2.2.10 upstream_typeo et e 269

23.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference 270
23.3.1 Detailed Description 270
23.3.2 Field Documentation 270
23.3.2.1 associativityo 270

23322 depth o 270

23323 linesize 270

23324 size 270

23325 type . oo e e 271

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

xxii CONTENTS
23.4 hwloc_cl_device_topology_amd Union Reference 272
23.4.1 Field Documentation 272
234101 bus ... 272

23412 data 272

23413 device 272

234.14 function 272

23415 pcie 272

23416 raw 272

23.4.1.7 type ..o e e 272

234.1.8 uwnusedo 272

23.5 hwloc_component Struct Reference 273
23.5.1 Detailed Description 273
23.5.2 Field Documentation 273
23521 abi 273

23522 data 273

23523 finalize L oo 273

23524 flags 274

23525 dnit ..o 274

23526 tYpe . ..o 274

23.6 hwloc_disc_component Struct Reference 275
23.6.1 Detailed Description 275
23.6.2 Field Documentation 275
23.6.2.1 enabled_by_default 275

23.6.2.2 excluded_phases 275

23.6.2.3 instantiate 276

23.624 nameol 276

23.6.2.5 phases 276

23.62.6 priority 276

23.7 hwloc_disc_status Struct Reference 277
23.7.1 Detailed Description 277
23.7.2 Field Documentation 277

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS xxiii

23.7.2.1 excluded_phases 277

23722 flagso 277

23723 phase 277

23.8 hwloc_distances_s Struct Reference 278

23.8.1 Detailed Description 278

23.8.2 Field Documentation 278

23.8.2.1 kind 278

23.822 mnbobjs 278

23823 objs ... 278

23.824 wvalues 279

23.9 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference 280

23.9.1 Detailed Description 280

23.9.2 Field Documentation 280

23.9.2.1 depth 280

23.9.2.2 dont_merge 280

23.9.23 kind oo 280

23924 subkind 280

23.10hwloc_info_s Struct Reference 281

23.10.1 Detailed Description 281

23.10.2 Field Documentation 281

23.102.1name 281

23.1022value 281
23.11hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_-

type_s Struct Reference L. 282

23.11.1 Detailed Description 282

23.11.2 Field Documentation 282

231121 countl 282

23112281z . o o oL 282

23.12hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference 283

23.12.1 Detailed Description 283

23.12.2 Field Documentation 283

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

XXiv CONTENTS

23.12.2.1 local_memory 283
23.12.2.2 page_types . . v v v e e e e e e e 283
23.12.2.3 page_types_len 284
23.13hwloc_obj Struct Reference 285
23.13.1 Detailed Description 286
23.13.2 Field Documentation 286
231321 arity 286
231322 attr ... 286
231323 children oo 286
23.13.2.4 complete_cpuset 286
23.13.2.5 complete_nodeset 287
23.13.2.6 cpuset 287
231327 depth 287
23.13.28 first_child oo 288
231329 gp_index 288
23.13.2.10nfos 288
23.13.2.1Linfos_count 288
231321200 arity oo 288
23.13.2.13i0_first_ child oo L 288
23132 14ast child. oo 288
23.13.2.15logical_index 288
23.13.2.16memory_arity 289
23.13.2.17Tmemory_first_child 289
23.132.18misc_arity 289
23.13.2.19misc_first_child 289
23.13.220name 289
23.13.2.2Inext_cousin e e e e e e 289
23.13.222ext_siblingo 289
23.13.22%n0deseto oo oo 289
23.13.224os_index 290
23.13.2285arent e 290

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS XXV
23.1322€prev_cousin 290
23.13.2.27prev_sibling oL 290
23.13.2.2&ibling_rank Lo 290
23.13.22%ubtypeo 290
23.13.2.30symmetric_subtree 291
23.13.23Itotal_memory 291
23.13.2.32ype . ..o 291
23.13.233userdata 291

23.14hwloc_obj_attr_u Union Reference 292
23.14.1 Detailed Description 292
23.14.2 Field Documentation 293

23.142.1 bridge oo 293
231422 cache oo oo 293
231423 group 293
23.1424 numanode 293
231425 0sdev. oo 293
231426 pcidev 293

23.15hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference 294
23.15.1 Detailed Description 294
23.15.2 Field Documentation 294

231521 type 294

23.16hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 295
23.16.1 Detailed Description 295
23.16.2 Field Documentation 296

23.16.2.1bus 296
23.1622 class_id 296
231623 dev 296
231624 device_id 296
23.1625domain oo 296
23.162.6func oo 296
23.16.2.7 linkspeed 296

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

XXVi CONTENTS

23.16.2.8 reviSion oo 296
23.16.29 subdevice_id 296
23.16.2.10ubvendor_id L 296
23.162.11vendor_id 296
23.17hwloc_topology_cpubind_support Struct Reference 297
23.17.1 Detailed Description 297
23.17.2 Field Documentation 297
23.17.2.1 get_proc_cpubind 297
23.17.2.2 get_proc_last_cpu_location 297
23.17.2.3 get_thisproc_cpubind 297
23.17.2.4 get_thisproc_last_cpu_location 298
23.17.2.5 get_thisthread_cpubind 298
23.17.2.6 get_thisthread_last_cpu_location 298
23.17.2.7 get_thread_cpubind 298
23.17.2.8 set_proc_cpubind 298
23.17.2.9 set_thisproc_cpubind 298
23.17.2.10set_thisthread_cpubind 298
23.17.2.11set_thread_cpubind 298
23.18hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Refer-
BNCE . v v v v it e e e e e e e e e e 300
23.18.1 Field Documentation 300
2318 1.1 mext ... 300
23.18.1.2type . .o 300
23.19hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_-
generic_s Struct Reference L. 301
23.19.1 Field Documentation 301
23.19.1.1 type ..o 301
23.20hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Ref-
EIEMCE . . . v v v v it e e e e e e e e e 302
23.20.1 Field Documentation 302
232011 diff . LoL L 302
2320.1.2mXE 302

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS Xxvii

23.20.13 obj_depth L 302
2320.14 obj_index 302
232015 ¢type ... 302
23.21hwloc_topology_diff _obj_attr_u::hwloc_topology_diff obj_attr_-
string_s Struct Reference L. 303
23.21.1 Detailed Description 303
23.21.2 Field Documentation 303
232120 name 303
232122mewvalueo oL 303
232123 oldvalue L 303
232124 type . . .o 303
23.22hwloc_topology_diff_obj_attr_u Union Reference 304
23.22.1 Detailed Description 304
23.22.2 Field Documentation 304
232221 generic 304
232222 String 304
232223 uint64 . ..o 305
23.23hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_-
uint64_s Struct Reference 306
23.23.1 Detailed Description 306
23.23.2 Field Documentation 306
232321 dndex oo 306
23.2322mewvalue oo 306
232323 oldvalue L 306
232324 type ... 306
23.24hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct
Reference 307
23.24.1 Field Documentation 307
2324 1.1 mext 307
232412 0bj depth L. 307
232413 obj_index 307
232414 type ... 307

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

XXVviii CONTENTS

23.25hwloc_topology_diff_u Union Reference 308
23.25.1 Detailed Description 308
23.25.2 Field Documentation 308

232520 genericol 308
23.25220bjattr. 308
232523 too_complexl o e 308

23.26hwloc_topology_discovery_support Struct Reference 309
23.26.1 Detailed Description 309
23.26.2 Field Documentation 309

23.26.2.1 disallowed_numa 309
23.26.2.2 disallowed_pu 309
232623 nUuma 309
23.26.2.4 numa_memoryo u e e e e . 309
232025 pu ..o 310

23.27hwloc_topology_membind_support Struct Reference 311
23.27.1 Detailed Description 311
23.27.2 Field Documentation 311

23.27.2.1 alloc_membind 311
23.27.22 bind_membind 311
23.27.2.3 firsttouch_membind 312
23.27.2.4 get_area_membind 312
23.27.2.5 get_area_memlocation 312
23.27.2.6 get_proc_membind 312
23.27.2.7 get_thisproc_membind 312
23.27.2.8 get_thisthread_membind 312
23.27.2.9 interleave_membind 312
23.27.2.10migrate_membind 312
23.27.2.1lnexttouch_membind 313
23.27.2.1%et_area_membind 313
23.27.2.13et_proc_membind L. 313
23.27.2.14set_thisproc_membind 313

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

CONTENTS XXiX

23.27.2.15et_thisthread_ membind 313
23.28hwloc_topology_support Struct Reference 314
23.28.1 Detailed Description 314
23.28.2 Field Documentation 314
23.282.1 cpubind 314

232822 discovery oL 314

232823 membind oL 314

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 1

Hardware Locality

Portable abstraction of parallel architectures for high-
performance computing

1.1 Introduction

The Hardware Locality (hwloc) software project aims at easing the process of discov-
ering hardware resources in parallel architectures. It offers command-line tools and
a C API for consulting these resources, their locality, attributes, and interconnection.
hwloc primarily aims at helping high-performance computing (HPC) applications, but
is also applicable to any project seeking to exploit code and/or data locality on modern
computing platforms.

hwloc is actually made of two subprojects distributed together:

¢ The original hwloc project for describing the internals of computing nodes.
It is described in details starting at section Hardware Locality (hwloc) Introduc-
tion.

¢ The network-oriented companion called netloc (Network Locality), de-
scribed in details starting with section Network Locality (netloc).

Netloc may be disabled, but the original hwloc cannot. Both hwloc and netloc APIs
are documented after these sections.

2 Hardware Locality

1.2 Installation

hwloc (https://www.open-mpi.org/projects/hwloc/) is available un-
der the BSD license. It is hosted as a sub-project of the overall Open MPI project
(https://www.open-mpi.org/). Note that hwloc does not require any func-
tionality from Open MPI -- it is a wholly separate (and much smaller!) project and
code base. It just happens to be hosted as part of the overall Open MPI project.

1.2.1 Basic Installation

Installation is the fairly common GNU-based process:

shell$./configure —--prefix=...
shell$ make
shell$ make install

hwloc- and netloc-specific configure options and requirements are documented in sec-
tions hwloc Installation and Netloc Installation respectively.

Also note that if you install supplemental libraries in non-standard locations, hwloc’s
configure script may not be able to find them without some help. You may need to
specify additional CPPFLAGS, LDFLAGS, or PKG_CONFIG_PATH values on the
configure command line.

For example, if libpciaccess was installed into /opt/pciaccess, hwloc’s configure script
may not find it be default. Try adding PKG_CONFIG_PATH to the ./configure com-
mand line, like this:

./configure PKG_CONFIG_PATH=/opt/pciaccess/lib/pkgconfig ...

Running the "Istopo" tool is a good way to check as a graphical output whether hwloc
properly detected the architecture of your node. Netloc command-line tools can be
used to display the network topology interconnecting your nodes.

1.2.2 Installing from a Git clone

Additionally, the code can be directly cloned from Git:

shell$ git clone https://github.com/open-mpi/hwloc.git
shell$ cd hwloc
shell$./autogen.sh

Note that GNU Autoconf >=2.63, Automake >=1.11 and Libtool >=2.2.6 are required
when building from a Git clone.

Nightly development snapshots are available on the web site, they can be configured
and built without any need for Git or GNU Autotools.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/

1.3 Questions and Bugs 3

1.3 Questions and Bugs

Bugs should be reported in the tracker (ht tps://github.com/open-mpi/hwloc/issues).
Opening a new issue automatically displays lots of hints about how to debug and
report issues.

Questions may be sent to the wusers or developers mailing lists
(https://www.open—-mpi.org/community/lists/hwloc.php).

There is also a #hwloc IRC channel on Freenode (irc. freenode.net).

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

https://github.com/open-mpi/hwloc/issues
https://www.open-mpi.org/community/lists/hwloc.php

Hardware Locality

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 2

Hardware Locality (hwloc)
Introduction

6 Hardware Locality (hwloc) Introduction

Portable abstraction of hierarchical architectures for
high-performance computing

See also Further Reading for links to more sections about hwloc concepts.

2.1 hwloc Summary

hwloc provides command line tools and a C API to obtain the hierarchical map of key
computing elements within a node, such as: NUMA memory nodes, shared caches,
processor packages, dies and cores, processing units (logical processors or "threads")
and even I/O devices. hwloc also gathers various attributes such as cache and mem-
ory information, and is portable across a variety of different operating systems and
platforms.

hwloc primarily aims at helping high-performance computing (HPC) applications, but
is also applicable to any project seeking to exploit code and/or data locality on modern
computing platforms.

hwloc supports the following operating systems:

* Linux (including old kernels not having sysfs topology information, with knowl-
edge of cpusets, ScaleMP vSMP support, etc.) on all supported hardware, in-
cluding Intel Xeon Phi and NumaScale NumaConnect.

* Solaris (with support for processor sets and logical domains)

o AIX

* Darwin/ OS X

¢ FreeBSD and its variants (such as kFreeBSD/GNU)

* NetBSD

* HP-UX

* Microsoft Windows

* IBM BlueGene/Q Compute Node Kernel (CNK)
Since it uses standard Operating System information, hwloc’s support is mostly inde-
pendant from the processor type (x86, powerpc, ...) and just relies on the Operating
System support. The main exception is BSD operating systems (NetBSD, FreeBSD,
etc.) because they do not provide support topology information, hence hwloc uses an

x86-only CPUID-based backend (which can be used for other OSes too, see the Com-
ponents and plugins section).

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

2.2 hwloc Installation 7

To check whether hwloc works on a particular machine, just try to build it and run
lstopo or 1stopo—no-graphics. If some things do not look right (e.g. bogus
or missing cache information), see Questions and Bugs.

hwloc only reports the number of processors on unsupported operating systems; no
topology information is available.

For development and debugging purposes, hwloc also offers the ability to work on
"fake" topologies:

* Symmetrical tree of resources generated from a list of level arities, see Synthetic
topologies.

* Remote machine simulation through the gathering of topology as XML files, see
Importing and exporting topologies from/to XML files.

hwloc can display the topology in a human-readable format, either in graphical mode
(X11), or by exporting in one of several different formats, including: plain text, PDF,
PNG, and FIG (see Command-line Examples below). Note that some of the export
formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also
brings a powerful CPU bitmap API that is used to describe topology objects location on
physical/logical processors. See the Programming Interface below. It may also be used
to binding applications onto certain cores or memory nodes. Several utility programs
are also provided to ease command-line manipulation of topology objects, binding of
processes, and so on.

Perl bindings are available from Bernd Kallies on CPAN.

Python bindings are available from Guy Streeter:

* Fedora RPM and tarball.

e git tree (html).

2.2 hwloc Installation

The generic installation procedure for both hwloc and netloc is described in Installa-
tion.

The hwloc command-line tool "Istopo" produces human-readable topology maps, as
mentioned above. It can also export maps to the "fig" file format. Support for PDF,
Postscript, and PNG exporting is provided if the "Cairo" development package (usu-
ally cairo-devel or libcairo2-dev) can be found in "Istopo" when hwloc is
configured and build.

The hwloc core may also benefit from the following development packages:

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

http://search.cpan.org/~bka/Sys-Hwloc-0.10/
http://people.redhat.com/streeter/
git://git.fedorahosted.org/python-hwloc.git
http://git.fedorahosted.org/git/python-hwloc.git

Hardware Locality (hwloc) Introduction

libpciaccess for full I/O device discovery (libpciaccess-devel or
libpciaccess—dev package). On Linux, PCI discovery may still be per-
formed (without vendor/device names) even if libpciaccess cannot be used.

AMD or NVIDIA OpenCL implementations for OpenCL device discovery.
the NVIDIA CUDA Toolkit for CUDA device discovery.

the NVIDIA Management Library (NVML) for NVML device discov-
ery. It is included in CUDA since version 8.0. Older NVML re-
leases were available within the NVIDIA GPU Deployment Kit from
https://developer.nvidia.com/gpu-deployment—-kit.

the NV-CONTROL X extension library (NVCtrl) for NVIDIA display dis-
covery. The relevant development package is usually 1ibXNvVCtrl-devel
or libxnvctrl-dev. It is also available within nvidia-settings from
ftp://download.nvidia.com/XFree86/nvidia-settings/ and
https://github.com/NVIDIA/nvidia-settings/ .

libxml2 for full XML import/export support (otherwise, the internal minimal-
istic parser will only be able to import XML files that were exported by the
same hwloc release). See Importing and exporting topologies from/to XML files
for details. The relevant development package is usually 1ibxml2-devel or
libxml2-dev.

libudev on Linux for easier discovery of OS device information (otherwise hwloc
will try to manually parse udev raw files). The relevant development package is
usually 1ibudev—-devel or 1ibudev-dev.

libtool’s Itdl library for dynamic plugin loading if the native dlopen cannot be
used. The relevant development package is usually 1ibtool-1tdl-devel
orlibltdl-dev.

PCI and XML support may be statically built inside the main hwloc library, or as
separate dynamically-loaded plugins (see the Components and plugins section).

Note that because of the possibility of GPL taint, the pciutils library 1ibpci will
not be used (remember that hwloc is BSD-licensed).

2.3 Command-line Examples

On a 4-package 2-core machine with hyper-threading, the 1 st opo tool may show the
following graphical output:

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

https://developer.nvidia.com/gpu-deployment-kit
ftp://download.nvidia.com/XFree86/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/

2.3 Command-line Examples

Machine

| NUMANode P#0
Package P#0 Package P#1 Package P#2 Package P#3
L3 (4D96KB)		L3 (4096KE)		L3 {4096KE)		L3 (4D96KE)								
L2 (1024KB)		L2 (1024KE)		L2 (1024KE)		L2 (1024KE)		L2 (1024KEB)		L2 (1024KB)		L2 (1024KB)		L2 (1024KE)
L1 (16KE)		L1 (16KE)		L1 (16KB)		L1(16KE)		L1(16KE)		L1{16KB)		L1 (16KE)		L1 (16KE)
Core P#D Core P#1 Core PED Core P#1 Core P#0 Core P#1 Core PED Core P#1
PU P#0 PU P#4 PU P#1 PU P#5 PU P#2 PUP#6 PUP#3 PU P£T
PU P#8 PU P#12 PU P#3 PUP#13 PUP#1D PU P#14 PUP#11 PU P#15
Here’s the equivalent output in textual form:
Machine
NUMANode L#0 (P#0)
Package L#0 + L3 L#0 (4096KB)
L2 L#0 (1024KB) + L1 L#0 (16KB) Core L#0
PU L#0 (P#0)
PU L#1 (P#8)
L2 L#1 (1024KB) + L1 L#1 (16KB) Core Li#1
PU L#2 (P#4)
PU L#3 (P#12)
Package L#1 + L3 L#1 (4096KB)
L2 L#2 (1024KB) + L1 L#2 (16KB) Core L#2
PU L#4 (P#1)
PU L#5 (P#9)
L2 L#3 (1024KB) + L1 L#3 (16KB) Core L#3
PU L#6 (P#5)
PU L#7 (P#13)
Package L#2 + L3 L#2 (4096KB)
L2 L#4 (1024KB) + L1 L#4 (16KB) Core L#4
PU L#8 (P#2)
PU L#9 (P#10)
L2 L#5 (1024KB) + L1 L#5 (16KB) Core L#5
PU L#10 (P#6)
PU L#11 (P#14)
Package L#3 + L3 L#3 (4096KB)
L2 L#6 (1024KB) + L1 L#6 (16KB) Core L#6
PU L#12 (P#3)
PU L#13 (P#11)
L2 L#7 (1024KB) + L1 L#7 (16KB) Core L#7
PU L#14 (P#7)
PU L#15 (P#15)

Note that there is also an equivalent output in XML that is meant for exporting/import-
ing topologies but it is hardly readable to human-beings (see Importing and exporting

topologies from/to XML files for details).

On a 4-package 2-core Opteron NUMA machine (with two core cores disallowed by
the administrator), the 1stopo tool may show the following graphical output (with

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

10 Hardware Locality (hwloc) Introduction

\-—disallowed for displaying disallowed objects):

Machine (32GB total)

Package P#0 Package P#1 Package P#2 Package P#3
NUMANode P#0 (8190MEB)		NUMANcde P#1 (B192ME)		NUMAMNede P2 (8192MEB)		NUMANode P#3 (B192MEB)								
L2 (1024KE)		L2 (1024KE)		L2 (1024KE)		L2 (1024KE)		L2 (1024KE)		L2 (1024KE)		L2 (1024KE)		L2 (1024KE)
L1 (B4KEB)		L1 (B4KEB)		L1 (B4KE)		L1 (B4KEB)		L1 (B4KEB)		L1 (B4KE)		L1 (B4KEB)		L1 (B4KEB)
Core PO Core P#1 Core P#0D Core P¥1 Core P#0 Core P#1 Core P#0 Core P#F1														
PU P#0		PU P#1		PU P#2		PU P#3	- - PU P#6 PU P#T							

Here’s the equivalent output in textual form:

Machine (32GB total)
Package L#0
NUMANode L#0 (P#0 8190MB)
L2 L#0 (1024KB) + L1 L#0 (64KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (1024KB) + L1 L#1 (64KB) + Core L#l1 + PU L#1 (P#1)
Package L#1
NUMANode L#1 (P#1 8192MB)
L2 L#2 (1024KB) + L1 L#2 (64KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (1024KB) + L1 L#3 (64KB) + Core L#3 + PU L#3 (P#3)
Package L#2
NUMANode L#2 (P#2 8192MB)
L2 L#4 (1024KB) + L1 L#4 (64KB) + Core L#4 + PU L#4 (P#4)
L2 L#5 (1024KB) + L1 L#5 (64KB) + Core L#5 + PU L#5 (P#5)
Package L#3
NUMANode L#3 (P#3 8192MB)
L2 L#6 (1024KB) + L1 L#6 (64KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (1024KB) + L1 L#7 (64KB) + Core L#7 + PU L#7 (P#7)

On a 2-package quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each pack-
age):

Machine (16GE total)

| NUMANcde P#0 (16GE) |

Package P#0 Package P#1
| L2 (4096KE) | | L2 (4096KB) | | L2 (4096KEB) | | L2 (4D96KE) |
| L1 (32KB) | | L1{32KB) | | L1(32KB) | | L1(32KE) | | L1 (32KB) | | L1 (32KEB) | | L1 (32KB) | | L1 (32KB) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#D Core P#1 Core P#2 Core P#3
| PU P#0 | | PU P#4 | | PU P#2 | | PU P#E | | PU P#1 | | PU P#5 | | PU P#3 | | PU P#T |

Here’s the same output in textual form:

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

2.4 Programming Interface 11

Machine (total 16GB)
NUMANode L#0 (P#0 16GB)
Package L#0

L2 L#0 (4096KB
L1l L#0 (32KB
L1 L#1 (32KB

L2 L#1 (4096KB
L1 L#2 (32KB
L1 L#3 (32KB

Package L#l

L2 L#2 (4096KB)
L1l L#4 (32KB) + Core L#4 + PU L#4 (P#1)
L1 L#5 (32KB) + Core L#5 + PU L#5 (P#5)

)
)
)

+ Core L#0 + PU L#0 (P#0)
+ Core L#1 + PU L#1 (P#4)

+ Core L#2 + PU L#2 (P#2)

)
)
)
)
)
) + Core L#3 + PU L#3 (P#6)

L2 L#3 (4096KB
L1 L#6 (32KB
L1 L#7 (32KB

+ Core L#6 + PU L#6 (P#3)
+ Core L#7 + PU L#7 (P#7)

2.4 Programming Interface

The basic interface is available in hwloc.h. Some higher-level functions are available
in hwloc/helper.h to reduce the need to manually manipulate objects and follow links
between them. Documentation for all these is provided later in this document. Devel-
opers may also want to look at hwloc/inlines.h which contains the actual inline code of
some hwloc.h routines, and at this document, which provides good higher-level topol-
ogy traversal examples.

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is
available and should probably be read first.

Each hwloc object contains a cpuset describing the list of processing units that it con-
tains. These bitmaps may be used for CPU binding and Memory binding. hwloc offers
an extensive bitmap manipulation interface in hwloc/bitmap.h.

Moreover, hwloc also comes with additional helpers for interoperability with several
commonly used environments. See the Interoperability With Other Software section
for details.

The complete API documentation is available in a full set of HTML pages, man pages,
and self-contained PDF files (formatted for both both US letter and A4 formats) in the
source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Git clone, you will need to have
Doxygen and pdflatex installed -- the documentation will be built during the normal
"make" process. The documentation is installed during "make install" to $prefix/share/-
doc/hwloc/ and your systems default man page tree (under $prefix, of course).

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

12 Hardware Locality (hwloc) Introduction

2.4.1 Portability

Operating System have varying support for CPU and memory binding, e.g. while some
Operating Systems provide interfaces for all kinds of CPU and memory bindings, some
others provide only interfaces for a limited number of kinds of CPU and memory bind-
ing, and some do not provide any binding interface at all. Hwloc’s binding functions
would then simply return the ENOSYS error (Function not implemented), meaning that
the underlying Operating System does not provide any interface for them. CPU bind-
ing and Memory binding provide more information on which hwloc binding functions
should be preferred because interfaces for them are usually available on the supported
Operating Systems.

Similarly, the ability of reporting topology information varies from one platform to an-
other. As shown in Command-line Examples, hwloc can obtain information on a wide
variety of hardware topologies. However, some platforms and/or operating system ver-
sions will only report a subset of this information. For example, on an PPC64-based
system with 8 cores (each with 2 hardware threads) running a default 2.6.18-based ker-
nel from RHEL 5.4, hwloc is only able to glean information about NUMA nodes and
processor units (PUs). No information about caches, packages, or cores is available.

Here’s the graphical output from Istopo on this platform when Simultaneous Multi-
Threading (SMT) is enabled:

Machine (61GB total)

Groupd Groupo

(e W |

| PUL#D || PUL# || PUL#2 || PULES ” PUL#A || PUL#S || PUL#E || PULET | | PUL#E || PUL#D || PUL#LD | | PUL#1L ” PUL#12 ” PUL#L3 | | PUL#1A | | PUL#LS |

And here’s the graphical output from Istopo on this platform when SMT is disabled:

Machine (61GB total)

Groupd Groupd

| NUMANode L#0 (30GB) | | NUMANode L#1 (31GB) |

PULE0 | | PULHL || PUL#2 || PUL#3 PULEa | | PUL#S | | PUL#S | | PULET

Notice that hwloc only sees half the PUs when SMT is disabled. PU L#6, for example,
seems to change location from NUMA node #0 to #1. In reality, no PUs "moved" --
they were simply re-numbered when hwloc only saw half as many (see also Logical
index in Indexes and Sets). Hence, PU L#6 in the SMT-disabled picture probably
corresponds to PU L#12 in the SMT-enabled picture.

This same "PUs have disappeared” effect can be seen on other platforms -- even plat-
forms / OSs that provide much more information than the above PPC64 system. This
is an unfortunate side-effect of how operating systems report information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to
2.6.34, hwloc is able to discover all the topology information. The following picture
shows the entire topology layout when SMT is enabled:

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

2.4 Programming Interface 13

Machine (6168 total)

Groupd Groupd

== || |

Package L#0 Package L1 Package Lie2 Package L#3

[Cowa ||| [oomm

[0]

[]

[| [ow [Cove | [11| [| [

[| [comm |

Core L#0 Core L#1 Core L#2 Core L#3 Core L. CoreL#s. CoreL#6 CoreL#7

(o [o)| [[oure Lrowes || [\ [rores J| | [roree T rorer ||| ||| [roree T rores)| | [rocmo [rorems)| | | [ocee [rowes)| | [rovms L oces]

Developers using the hwloc API or XML output for portable applications should there-
fore be extremely careful to not make any assumptions about the structure of data that
is returned. For example, per the above reported PPC topology, it is not safe to assume
that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available
in this version of hwloc. Long-lived applications that are meant to span multiple dif-
ferent hardware platforms should also be careful about making structure assumptions.
For example, a new element may someday exist between a core and a PU.

2.4.2 API Example

The following small C example (available in the source tree as “doc/examples/hwloc-
hello.c”) prints the topology of the machine and performs some thread and memory
binding. More examples are available in the doc/examples/ directory of the source
tree.

hwloc provides a pkg—config executable to obtain relevant compiler and linker
flags. For example, it can be used thusly to compile applications that utilize the hwloc
library (assuming GNU Make):

CFLAGS += $(shell pkg-config --cflags hwloc)
LDLIBS += $(shell pkg-config --libs hwloc)

hwloc-hello: hwloc-hello.c
$(CC) hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)

On a machine 2 processor packages -- each package of which has two processing cores
-- the output from running hwloc-hello could be something like the following:

shell$./hwloc-hello
x*x Objects at level 0
Index 0: Machine

*x*x Objects at level 1
Index 0: Package#0
Index 1: Package#l

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

14 Hardware Locality (hwloc) Introduction

*x% ObJjects at level 2
Index 0: Core#0
Index 1: Core#l
Index 2: Core#3
Index 3: Core#2
*x% ObJjects at level 3
Index 0: PU#0
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3
*x% Printing overall tree
Machine
Package#0
Core#0
PU#0
Core#l
PU#1
Package#l
Core#3
PU#2
Core#2
PU#3
«** 2 package (s)
*+% Logical processor 0 has 0 caches totaling OKB
shell$

2.5 History / Credits

hwloc is the evolution and merger of the libtopology
project and the Portable Linux Processor Affinity (PLPA)
(https://www.open-mpi.org/projects/plpa/) project. Because of
functional and ideological overlap, these two code bases and ideas were merged and
released under the name "hwloc" as an Open MPI sub-project.

libtopology was initially developed by the Inria Runtime Team-Project. PLPA was
initially developed by the Open MPI development team as a sub-project. Both are now
deprecated in favor of hwloc, which is distributed as an Open MPI sub-project.

2.6 Further Reading

The documentation chapters include

» Terms and Definitions
¢ Command-Line Tools
¢ Environment Variables

* CPU and Memory Binding Overview

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

https://www.open-mpi.org/projects/plpa/

2.6 Further Reading

15

* 1/O Devices

» Miscellaneous objects

* Object attributes

* Importing and exporting topologies from/to XML files
» Synthetic topologies

¢ Interoperability With Other Software

* Thread Safety

* Components and plugins

¢ Embedding hwloc in Other Software

* Frequently Asked Questions

» Upgrading to the hwloc 2.0 API

Make sure to have had a look at those too!

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

16

Hardware Locality (hwloc) Introduction

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 3

Terms and Definitions

18 Terms and Definitions

3.1 Objects

Object Interesting kind of part of the system, such as a Core, a L2Cache, a NUMA
memory node, etc. The different types detected by hwloc are detailed in the
hwloc_obj_type_t enumeration.

There are four kinds of Objects: Memory (NUMA nodes and Memory-side
caches), I/O (Bridges, PCI and OS devices), Misc, and Normal (everything else,
including Machine, Package, Die, Core, PU, CPU Caches, etc.). Normal and
Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc
don’t.

Objects are topologically sorted by locality (CPU and node sets) into a tree (see
Hierarchy, Tree and Levels).

Processing Unit (PU) The smallest processing element that can be represented by
a hwloc object. It may be a single-core processor, a core of a multicore pro-
cessor, or a single thread in a SMT processor (also sometimes called "Logical
processor", not to be confused with "Logical index of a processor"). hwloc’s PU
acronym stands for Processing Unit.

Package A processor Package is the physical package that usually gets inserted into a
socket on the motherboard. It is also often called a physical processor or a CPU
even if these names bring confusion with respect to cores and processing units.
A processor package usually contains multiple cores (and may also be composed
of multiple dies). hwloc Package objects were called Sockets up to hwloc 1.10.

NUMA Node An object that contains memory that is directly and byte-accessible to
the host processors. It is usually close to some cores as specified by its CPU
set. Hence it is attached as a memory child of the object that groups those cores
together, for instance a Package objects with 4 Core children (see Hierarchy,
Tree and Levels).

Memory-side Cache A cache in front of a specific memory region (e.g. a range of
physical addresses). It caches all accesses to that region without caring about
which core issued the request. This is the opposite of usual CPU caches where
only accesses from the local cores are cached, without caring about the target
memory.

In hwloc, memory-side caches are memory objects placed between their local
CPU objects (parent) and the target NUMA node memory (child).

3.2 Indexes and Sets

OS or physical index The index that the operating system (OS) uses to identify the
object. This may be completely arbitrary, non-unique, non-contiguous, not rep-
resentative of logical proximity, and may depend on the BIOS configuration.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

3.3 Hierarchy, Tree and Levels 19

That is why hwloc almost never uses them, only in the default Istopo output
(P#x) and cpuset masks. See also Should I use logical or physical/OS indexes?
and how?.

Logical index Index to uniquely identify objects of the same type and depth, auto-
matically computed by hwloc according to the topology. It expresses logical
proximity in a generic way, i.e. objects which have adjacent logical indexes are
adjacent in the topology. That is why hwloc almost always uses it in its API,
since it expresses logical proximity. They can be shown (as L#x) by lstopo
thanks to the —1 option. This index is always linear and in the range [0, num_-
objs_same_type_same_level-1]. Think of it as “cousin rank.” The ordering is
based on topology first, and then on OS CPU numbers, so it is stable across
everything except firmware CPU renumbering. "Logical index" should not be
confused with "Logical processor". A "Logical processor" (which in hwloc we
rather call "processing unit" to avoid the confusion) has both a physical index
(as chosen arbitrarily by BIOS/OS) and a logical index (as computed according
to logical proximity by hwloc). See also Should I use logical or physical/OS
indexes? and how?.

CPU set The set of processing units (PU) logically included in an object (if it makes
sense). They are always expressed using physical processor numbers (as an-
nounced by the OS). They are implemented as the hwloc_bitmap_t opaque struc-
ture. hwloc CPU sets are just masks, they do not have any relation with an oper-
ating system actual binding notion like Linux’ cpusets. I/O and Misc objects do
not have CPU sets while all Normal and Memory objects have non-NULL CPU
sets.

Node set The set of NUMA memory nodes logically included in an object (if it makes
sense). They are always expressed using physical node numbers (as announced
by the OS). They are implemented with the hwloc_bitmap_t opaque structure.
as bitmaps. I/O and Misc objects do not have Node sets while all Normal and
Memory objects have non-NULL nodesets.

Bitmap A possibly-infinite set of bits used for describing sets of objects such as

CPUs (CPU sets) or memory nodes (Node sets). They are implemented with
the hwloc_bitmap_t opaque structure.

3.3 Hierarchy, Tree and Levels

Parent object The object logically containing the current object, for example because
its CPU set includes the CPU set of the current object. All objects have a non-
NULL parent, except the root of the topology (Machine object).

Ancestor object The parent object, or its own parent, and so on.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

20 Terms and Definitions

Children object(s) The object (or objects) contained in the current object because
their CPU set is included in the CPU set of the current object. Each object may
also contain separated lists for Memory, I/O and Misc object children.

Arity The number of normal children of an object. There are also specific arities for
Memory, I/O and Misc children.

Sibling objects Objects in the same children list, which all of them are normal chil-
dren of the same parent, or all of them are Memory children of the same parent,
or I/O children, or Misc. They usually have the same type (and hence are cousins,
as well). But they may not if the topology is asymmetric.

Sibling rank Index to uniquely identify objects which have the same parent, and is
always in the range [0, arity-1] (respectively memory_arity, io_arity or misc_-
arity for Memory, I/O and Misc children of a parent).

Cousin objects Objects of the same type (and depth) as the current object, even if
they do not have the same parent.

Level Set of objects of the same type and depth. All these objects are cousins.

Memory, I/0 and Misc objects also have their own specific levels and (virtual)
depth.

Depth Nesting level in the object tree, starting from the root object. If the topology
is symmetric, the depth of a child is equal to the parent depth plus one, and an
object depth is also equal to the number of parent/child links between the root
object and the given object. If the topology is asymmetric, the difference between
some parent and child depths may be larger than one when some intermediate
levels (for instance groups) are missing in only some parts of the machine.

The depth of the Machine object is always O since it is always the root of the
topology. The depth of PU objects is equal to the number of levels in the topology
minus one.

Memory, I/O and Misc objects also have their own specific levels and depth.

The following diagram can help to understand the vocabulary of the relationships by
showing the example of a machine with two dual core packages (with no hardware
threads); thus, a topology with 5 levels. Each box with rounded corner corresponds to
one hwloc_obj_t, containing the values of the different integer fields (depth, logical_-
index, etc.), and arrows show to which other hwloc_obj_t pointers point to (first_child,
parent, etc.).

The topology always starts with a Machine object as root (depth 0) and ends with PU
objects at the bottom (depth 4 here).

Objects of the same level (cousins) are listed in red boxes and linked with red arrows.
Children of the same parent (siblings) are linked with blue arrows.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

3.3 Hierarchy, Tree and Levels

21

The L2 cache of the last core is intentionally missing to show how asymmetric topolo-
gies are handled. See What happens if my topology is asymmetric? for more informa-
tion about such strange topologies.

Machine| | -depth =0
level .logical_index = 0
depth=0 .0s_index = -1
.sibling_rank=0
amy:gz- NUMA Node
.memory_arity=1 me -depth = -3
»»»»»»»»»» »| .logical_index =0
children[Q children[1] parent .0s_index = 0
first_chil last_child .sibling_rank = 0
parent parent
Package| | Package Package
level .depth=1 next_sibling .depth=1
depth=1 .logical_index = i .logical_index =
.0s_index=0 |next_cousin prev_sibling .0s_index = 1
.sibling_rank=0 .sibling_rank=1
.arity=2 prev_cousi .arity=2

children[0] children[1]
first_child last_child
parent paren

children[0]
first_child
parent

hildren[1]
ast_child

Cache Cache . Cache Cache
level depth=2 next_sibling ™ genth =2 depth =2
depth=2 Alogi‘caliindex = prev_siblind .Iog.icaliindex =1 .Iogi.caliindex = \ next_sibling
ooider=0 oo aousn | sindex -1 lno con | o%den =0
.arity:l_ prev_cousin .arity:l_ prev_cousin .arity:l_
children[O children[0 children([0;
first_child first_child first_child
last_child last_child last_child
parent parent parent paren
Core Core Core Core Core
level .depth=3 .depth=3 .depth=3 prev si& .depth=3
depth=3 .logical_index = .logical_index =1 .logical_index = - .logical_index =
.o.s_.lndex =0 next_cousin .o.s_.lndex =1 next_cousin .o.s__lndex =0 next_cousin .o.s_.lndex =1
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=1 prev_cousin| .arity=1 prev_cousin .arity=1 prev_cousin| .arity=1
children[0] children[O children([0] children[0]
first_child first_child first_child first_child
last_child last_child last_child last_child
parent parent parent parent
PU PU PU PU PU
level .depth=4 .depth=4 .depth=4 .depth=4
depth=4 .logical_index = .logical_index = .logical_index = .logical_index =
.o.s_.lndex =0 next_cousin ..os._lndex =2 next_cousin ..os._lndex =1 next_cousin .o.s_.mdex =3
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=0 prev_cousin| .arity=0 prev_cousin| .arity=0 prev_cousin| .arity=0

It should be noted that for PU objects, the logical index -- as computed linearly by
hwloc -- is not the same as the OS index.

The NUMA node is on the side because it is not part of the main tree but rather attached
to the object that corresponds to its locality (the entire machine here, hence the root
object). It is attached as a Memory child (in green) and has a virtual depth (negative). It
could also have siblings if there were multiple local NUMA nodes, or cousins if other
NUMA nodes were attached somewhere else in the machine.

I/0O or Misc objects could be attached in a similar manner.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

22

Terms and Definitions

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 4

Command-Line Tools

24 Command-Line Tools

hwloc comes with an extensive C programming interface and several command line
utilities. Each of them is fully documented in its own manual page; the following is a
summary of the available command line tools.

4.1 Istopo and Istopo-no-graphics

Istopo (also known as hwloc-1s) displays the hierarchical topology map of the cur-
rent system. The output may be graphical, ascii-art or textual, and can also be ex-
ported to numerous file formats such as PDF, PNG, XML, and others. Advanced
graphical outputs require the "Cairo" development package (usually cairo-devel
or libcairo2-dev).

Istopo and Istopo-no-graphics accept the same command-line options. However, graph-
ical outputs are only available in Istopo. Textual outputs (those that do not depend on
heavy external libraries such as Cairo) are supported in both Istopo and Istopo-no-
graphics.

This command can also display the processes currently bound to a part of the machine
(via the \——ps option).

Note that Istopo can read XML files and/or alternate chroot filesystems and display
topological maps representing those systems (e.g., use Istopo to output an XML file on
one system, and then use Istopo to read in that XML file and display it on a different
system).

4.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A
simple example is binding an executable to specific cores (or packages or bitmaps or
...). The hwloc-bind(1) man page provides much more detail on what is possible.

hwloc-bind can also be used to retrieve the current process’ binding, or retrieve the last
CPU(s) where a process ran, or operate on memory binding.

Just like hwloc-calc, the input locations given to hwloc-bind may be either objects or
cpusets (bitmaps as reported by hwloc-calc or hwloc-distrib).

4.3 hwloc-calc

hwloc-calc is hwloc’s Swiss Army Knife command-line tool for converting things.
The input may be either objects or cpusets (bitmaps as reported by another hwloc-
calc instance or by hwloc-distrib), that may be combined by addition, intersection or
subtraction. The output kinds include:

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

4.4 hwloc-info 25

* a cpuset bitmap: This compact opaque representation of objects is useful
for shell scripts etc. It may passed to hwloc command-line tools such as
hwloc-calc or hwloc-bind, or to hwloc command-line options such as 1stopo
\--restrict.

 the amount of the equivalent hwloc objects from a specific type, or the list of
their indexes. This is useful for iterating over all similar objects (for instance all
cores) within a given part of a platform.

* a hierarchical description of objects, for instance a thread index within a core
within a package. This gives a better view of the actual location of an object.

Moreover, input and/or output may be use either physical/OS object indexes or as
hwloc’s logical object indexes. It eases cooperation with external tools such as taskset
or numactl by exporting hwloc specifications into list of processor or NUMA node
physical indexes. See also Should I use logical or physical/OS indexes? and how?.

4.4 hwloc-info

hwloc-info dumps information about the given objects, as well as all its specific at-
tributes. It is intended to be used with tools such as grep for filtering certain attribute
lines. When no object is specified, or when \--topology is passed, hwloc-info
prints a summary of the topology. When \--support is passed, hwloc-info lists the
supported features for the topology.

4.5 hwloc-distrib

hwloc-distrib generates a set of cpuset bitmaps that are uniformly distributed across
the machine for the given number of processes. These strings may be used with hwloc-
bind to run processes to maximize their memory bandwidth by properly distributing
them across the machine.

4.6 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on
the local machine. By default, hwloc-ps only lists processes that are bound; unbound
process (and Linux kernel threads) are not displayed.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

26 Command-Line Tools

4.7 hwloc-annotate

hwloc-annotate may modify object (and topology) attributes such as string information
(see Custom string infos for details) or Misc children objects. It reads an input topology
from a XML file and outputs the annotated topology as another XML file.

4.8 hwloc-diff, hwloc-patch and hwloc-compress-dir

hwloc-diff computes the difference between two topologies and outputs it to another
XML file.

hwloc-patch reads such a difference file and applies to another topology.

hwloc-compress-dir compresses an entire directory of XML files by using hwloc-diff
to save the differences between topologies instead of entire topologies.

4.9 hwloc-dump-hwdata

hwloc-dump-hwdata is a Linux and x86-specific tool that dumps (during boot, privi-
leged) some topology and locality information from raw hardware files (SMBIOS and
ACPI tables) to human-readable and world-accessible files that the hwloc library will
later reuse.

Currently only used on Intel Xeon Phi processor platforms. See Why do I need hwloc-
dump-hwdata for memory on Intel Xeon Phi processor?.

See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the
location of dumped files.

4.10 hwloc-gather-topology and hwloc-gather-cpuid

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of
the current machine into a tarball (and the corresponding Istopo outputs).

hwloc-gather-cpuid is a x86-specific tool that dumps the result of CPUID instructions
on the current machine into a directory.

The output of hwloc-gather-cpuid is included in the tarball saved by hwloc-gather-
topology when running on Linux/x86.

These files may be used later (possibly offline) for simulating or debugging a machine
without actually running on it.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 5

Environment Variables

28 Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following
environment variables.

HWLOC_XMLFILE=/path/to/file.xml enforces the discovery from the given XML
file as if hwloc_topology_set_xml() had been called. This file may have been
generated earlier with Istopo file.xml. For convenience, this backend provides
empty binding hooks which just return success. To have hwloc still actually call
OS-specific hooks, HWLOC_THISSYSTEM should be set 1 in the environment
too, to assert that the loaded file is really the underlying system. See also Im-
porting and exporting topologies from/to XML files.

HWLOC_SYNTHETIC=synthetic_description enforces the discovery through a
synthetic description string as if hwloc_topology_set_synthetic() had been
called. For convenience, this backend provides empty binding hooks which just
return success. See also Synthetic topologies.

HWLOC_XML_VERBOSE=1

HWLOC_SYNTHETIC_VERBOSE=1 enables verbose messages in the XML or
synthetic topology backends. hwloc XML backends (see Importing and export-
ing topologies from/to XML files) can emit some error messages to the error
output stream. Enabling these verbose messages within hwloc can be useful for
understanding failures to parse input XML topologies. Similarly, enabling ver-
bose messages in the synthetic topology backend can help understand why the
description string is invalid. See also Synthetic topologies.

HWLOC_THISSYSTEM=1 enforces the return value of hwloc_topology_is_-
thissystem(), as if HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM was set
with hwloc_topology_set_flags(). It means that it makes hwloc assume that the
selected backend provides the topology for the system on which we are running,
even if it is not the OS-specific backend but the XML backend for instance. This
means making the binding functions actually call the OS-specific system calls
and really do binding, while the XML backend would otherwise provide empty
hooks just returning success. This can be used for efficiency reasons to first de-
tect the topology once, save it to an XML file, and quickly reload it later through
the XML backend, but still having binding functions actually do bind. This
also enables support for the variable HWLOC_THISSYSTEM_ALLOWED_-
RESOURCES.

HWLOC_THISSYSTEM_ALLOWED_RESOURCES=1 Get the set of allowed
resources from the native operating system even if the topology was loaded
from XML or synthetic description, as if HWLOC_TOPOLOGY_FLAG._-
THISSYSTEM_ALLOWED_RESOURCES was set with hwloc_topology_set_-
flags(). This variable requires the topology to match the current system (see
the variable HWLOC_THISSYSTEM). This is useful when the topology is not
loaded directly from the local machine (e.g. for performance reason) and it
comes with all resources, but the running process is restricted to only a part
of the machine (for instance because of Linux Cgroup/Cpuset).

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

29

HWLOC_ALLOW=all Totally ignore administrative restrictions such as Linux
Cgroups and consider all resources (PUs and NUMA nodes) as allowed.
This is different from setting HWLOC_TOPOLOGY_FLAG_INCLUDE_-
DISALLOWED which gathers all resources but marks the unavailable ones as
disallowed.

HWLOC_HIDE_ERRORS=0 enables or disables verbose reporting of errors. The
hwloc library may issue warnings to the standard error stream when it detects a
problem during topology discovery, for instance if the operating system (or user)
gives contradictory topology information. Setting this environment variable to 1
removes the actual displaying of these error messages.

HWLOC_USE_NUMA_DISTANCES=7 enables or disables the use of NUMA dis-
tances. NUMA distances and memory target/initiator information may be used
to improve the locality of NUMA nodes, especially CPU-less nodes. Bits in the
value of this environment variable enable different features: Bit O enables the
gathering of NUMA distances from the operating system. Bit 1 further enables
the use of NUMA distances to improve the locality of CPU-less nodes. Bit 2
enables the use of target/initiator information.

HWLOC_GROUPING=1 enables or disables objects grouping based on distances.
By default, hwloc uses distance matrices between objects (either read from the
OS or given by the user) to find groups of close objects. These groups are de-
scribed by adding intermediate Group objects in the topology. Setting this en-
vironment variable to O will disable this grouping. This variable supersedes the
obsolete HWLOC_IGNORE_DISTANCES variable.

HWLOC_GROUPING_ACCURACY=0.05 relaxes distance comparison during
grouping. By default, objects may be grouped if their distances form a mini-
mal distance graph. When setting this variable to 0.02, and when HWLOC_-
DISTANCES_ADD_FLAG_GROUP_INACCURATE is given, these distances
do not have to be strictly equal anymore, they may just be equal with a 2% error.
If set to try instead of a numerical value, hwloc will try to group with perfect
accuracy (0, the default), then with 0.01, 0.02, 0.05 and finally 0.1. Numbers
given in this environment variable should always use a dot as a decimal mark
(for instance 0.01 instead of 0,01).

HWLOC_GROUPING_VERBOSE=0 enables or disables some verbose messages
during grouping. If this variable is set to 1, some debug messages will be dis-
played during distance-based grouping of objects even if debug was not specific
at configure time. This is useful when trying to find an interesting distance group-
ing accuracy.

HWLOC_PCI_LOCALITY=<domain/bus> <cpuset>;...

HWLOC_PCI_LOCALITY=/path/to/pci/locality/file changes the locality of I/O
devices behing the specified PCI buses. If no I/O locality information is avail-
able or if the BIOS reports incorrect information, it is possible to move a I/O

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

30

Environment Variables

device tree (OS and/or PCI devices with optional bridges) near a custom set of
processors.

Localities are given either inside the environment variable itself, or in the pointed
file. They may be separated either by semi-colons or by line-breaks.

Each locality contains a domain/bus specification (in hexadecimal numbers as
usual) followed by a whitespace and a cpuset:

* 0001 <cpuset> specifies the locality of all buses in PCI domain 0000.
* 0000:0f <cpuset> specifies only PCI bus Of in domain 0000.

* 0002:04-0a <cpuset> specifies a range of buses (from 04 to 0a)
within domain 0002.

Domain/bus specifications should usually match entire hierarchies of buses
behind a bridge (including primary, secondary and subordinate buses).
For instance, if hostbridge 0000:00 is above other bridges/switches
with buses 0000:01 to 0000:09, the variable should be HWLOC_PCI_-
LOCALITY="0000:00-09 <cpuset>". It supersedes the old HWLOC_PCI_-
0000_00_LOCALCPUS=<cpuset> which only works when hostbridges exist
in the topology.

If the variable is defined to empty or invalid, no forced PCI locality is applied but
hwloc’s internal automatic locality quirks are disabled, which means the exact
PCTI locality reported by the platform is used.

HWLOC_X86_TOPOEXT_NUMANODES=0 use AMD topoext CPUID leaf in

the x86 backend to detect NUMA nodes. When using the x86 backend, setting
this variable to 1 enables the building of NUMA nodes from AMD processor
CPUID instructions. However this strategy does not always reflect BIOS config-
uration such as NUMA interleaving. And node indexes may be different from
those of the operating system. Hence this should only be used when OS backends
are wrong and the user is sure that CPUID returns correct NUMA information.

HWLOC_KEEP_NVIDIA_GPU_NUMA_NODES=0 show or hide NUMA nodes

that correspond to NVIDIA GPU memory. By default they are ignored to avoid
interleaved memory being allocated on GPU by mistake. Setting this environ-
ment variable to 1 exposes these NUMA nodes. They may be recognized by the
GPUMemory subtype. They also have a PCIBusID info attribute to identify the
corresponding GPU.

HWLOC_KNL_MSCACHE_L3=0 Expose the KNL MCDRAM in cache mode as

a Memory-side Cache instead of a L3. hwloc releases prior to 2.1 exposed the
MCDRAM cache as a CPU-side L3 cache. Now that Memory-side caches are
supported by hwloc, it is still exposed as a L3 by default to avoid breaking exist-
ing applications. Setting this environment variable to 1 will expose it as a proper
Memory-side cache.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

31

HWLOC_ANNOTATE_GLOBAL_COMPONENTS=0 Allow components to an-
notate the topology even if they are usually excluded by global compo-
nents by default. Setting this variable to 1 and also setting HWLOC_ -
COMPONENTS=xml, pci, stop enables the addition of PCI vendor and model
info attributes to a XML topology that was generated without those names (if
pciaccess was missing).

HWLOC_FSROOT=/path/to/linux/filesystem-root/ switches to reading the topol-
ogy from the specified Linux filesystem root instead of the main file-system
root. This directory may have been saved previously from another machine with
hwloc—-gather-topology.

One should likely also set HWLOC_COMPONENTS=1inux, stop so that non-

Linux backends are disabled (the —i option of command-line tools takes care of
both).

Not using the main file-system root causes hwloc_topology_is_thissystem() to
return 0. For convenience, this backend provides empty binding hooks which just
return success. To have hwloc still actually call OS-specific hooks, HWLOC_-
THISSYSTEM should be set 1 in the environment too, to assert that the loaded
file is really the underlying system.

HWLOC_CPUID_PATH=/path/to/cpuid/ forces the x86 backend to read dumped
CPUIDs from the given directory instead of executing actual x86 CPUID in-
structions. This directory may have been saved previously from another machine
with hwloc—gather—-cpuid.

One should likely also set HWLOC_COMPONENTS=x86, st op so that non-x86
backends are disabled (the —1i option of command-line tools takes care of both).

It causes hwloc_topology_is_thissystem() to return 0. For convenience, this
backend provides empty binding hooks which just return success. To have hwloc
still actually call OS-specific hooks, HWLOC_THISSYSTEM should be set 1 in
the environment too, to assert that the loaded CPUID dump is really the under-
lying system.

HWLOC_DUMPED_HWDATA_DIR=/path/to/dumped/files/ loads files dumped
by hwloc-dump-hwdata (on Linux) from the given directory. The
default dump/load directory is configured during build based on \--
runstatedir, \--localstatedir, and \--prefix options. It usually points to
/var/run/hwloc/ in Linux distribution packages, but it may also point to
$prefix/var/run/hwloc/ when manually installing and only specifying
\--prefix.

HWLOC_COMPONENTS=list,of,components forces a list of components to en-
able or disable. Enable or disable the given comma-separated list of components
(if they do not conflict with each other). Component names prefixed with — are
disabled (a single phase may also be disabled).

Once the end of the list is reached, hwloc falls back to enabling the remaining
components (sorted by priority) that do not conflict with the already enabled

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

32 Environment Variables

ones, and unless explicitly disabled in the list. If st op is met, the enabling loop
immediately stops, no more component is enabled.

If xml or synthetic components are selected, the corresponding XML file-
name or synthetic description string should be pass in HWLOC_XMLFILE or
HWLOC_SYNTHETIC respectively.

Since this variable is the low-level and more generic way to select components,
it takes precedence over environment variables for selecting components.

If the variable is set to an empty string (or set to a single comma), no specific
component is loaded first, all components are loaded in priority order.

See Selecting which components to use for details.

HWLOC_COMPONENTS_VERBOSE=1 displays verbose information about
components. Display messages when components are registered or enabled. This
is the recommended way to list the available components with their priority (all
of them are registered at startup).

HWLOC_PLUGINS_PATH=/path/to/hwloc/plugins/:... changes the default
search directory for plugins. By default, $1ibdir/hwloc is used. The
variable may contain several colon-separated directories.

HWLOC_PLUGINS_VERBOSE=1 displays verbose information about plugins.
List which directories are scanned, which files are loaded, and which compo-
nents are successfully loaded.

HWLOC_PLUGINS_BLACKLIST=filenamel filename2,... prevents plugins
from being loaded if their filename (without path) is listed. Plugin filenames
may be found in verbose messages outputted when HWLOC_PLUGINS_-
VERBOSE=1.

HWLOC_DEBUG_VERBOSE=0 disables all verbose messages that are enabled by
default when ——enable-debug is passed to configure.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 6

CPU and Memory Binding
Overview

34 CPU and Memory Binding Overview

Some operating systems do not systematically provide separate functions for CPU and
memory binding. This means that CPU binding functions may have have effects on the
memory binding policy. Likewise, changing the memory binding policy may change
the CPU binding of the current thread. This is often not a problem for applications,
so by default hwloc will make use of these functions when they provide better binding
support.

If the application does not want the CPU binding to change when changing the mem-
ory policy, it needs to use the HWLOC_MEMBIND_NOCPUBIND flag to prevent
hwloc from using OS functions which would change the CPU binding. Additionally,
HWLOC_CPUBIND_NOMEMBIND can be passed to CPU binding function to pre-
vent hwloc from using OS functions would change the memory binding policy. Of
course, using these flags will reduce hwloc’s overall support for binding, so their use is
discouraged.

One can avoid using these flags but still closely control both memory and CPU binding
by allocating memory, touching each page in the allocated memory, and then changing
the CPU binding. The already-really-allocated memory will then be "locked" to phys-
ical memory and will not be migrated. Thus, even if the memory binding policy gets
changed by the CPU binding order, the already-allocated memory will not change with
it. When binding and allocating further memory, the CPU binding should be performed
again in case the memory binding altered the previously-selected CPU binding.

Not all operating systems support the notion of a "current" memory binding policy for
the current process, but such operating systems often still provide a way to allocate
data on a given node set. Conversely, some operating systems support the notion of a
"current" memory binding policy and do not permit allocating data on a specific node
set without changing the current policy and allocate the data. To provide the most
powerful coverage of these facilities, hwloc provides:

* functions that set/get the current memory binding policies (if supported):
hwloc_set/get_membind() and hwloc_set/get_proc_membind()

* a function that allocates memory bound to specific node set without changing the
current memory binding policy (if supported): hwloc_alloc_membind().

* a helper which, if needed, changes the current memory binding policy of the
process in order to obtain memory binding: hwloc_alloc_membind_policy().

An application can thus use the two first sets of functions if it wants to manage sepa-
rately the global process binding policy and directed allocation, or use the third set of
functions if it does not care about the process memory binding policy.

See CPU binding and Memory binding for hwloc’s API functions regarding CPU and
memory binding, respectively. There are some examples under doc/examples/ in the
source tree.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 7

I/0O Devices

36 I/0 Devices

hwloc usually manipulates processing units and memory but it can also discover I/O
devices and report their locality as well. This is useful for placing I/O intensive appli-
cations on cores near the I/O devices they use, or for gathering information about all
platform components.

7.1 Enabling and requirements

I/0O discovery is disabled by default (except in Istopo) for performance reasons. It can
be enabled by changing the filtering of I/O object types to HWLOC_TYPE_FILTER_ -
KEEP_IMPORTANT or HWLOC_TYPE_FILTER_KEEP_ALL before loading the
topology, for instance with hwloc_topology_set_io_types_filter ().

Note that I/O discovery requires significant help from the operating system. The
pciaccess library (the development package is usually libpciaccess—-devel or
libpciaccess—dev) is needed to fully detect PCI devices and bridges/switches.
On Linux, PCI discovery may still be performed even if 1ibpciaccess cannot be
used. But it misses PCI device names. Moreover, some operating systems require priv-
ileges for probing PCI devices, see Does hwloc require privileged access? for details.

The actual locality of I/O devices is only currently detected on Linux. Other operating
system will just report I/O devices as being attached to the topology root object.

7.2 1/0 objects

When I/O discovery is enabled and supported, some additional objects are added to the
topology. The corresponding I/O object types are:

* HWLOC_OBJ_OS_DEVICE describes an operating-system-specific handle such
as the sda drive or the eth0 network interface. See OS devices.

* HWLOC_OBJ_PCI_DEVICE and HWLOC_OBRJ_BRIDGE build up a PCI hier-
archy made of bridges (that may be actually be switches) and devices. See PCI
devices and bridges.

Any of these types may be filtered individually with hwloc_topology_set_ -
type_filter ().

hwloc tries to attach these new objects to normal objects (usually NUMA nodes) to
match their actual physical location. For instance, if a I/O hub (or root complex) is
physically connected to a package, the corresponding hwloc bridge object (and its PCI
bridges and devices children) is inserted as a child of the corresponding hwloc Package
object. These children are not in the normal children list but rather in the I/O-
specific children list.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

7.3 OS devices 37

I/O objects also have neither CPU sets nor node sets (NULL pointers) because they are
not directly usable by the user applications for binding. Moreover I/O hierarchies may
be highly complex (asymmetric trees of bridges). So I/O objects are placed in specific
levels with custom depths. Their lists may still be traversed with regular helpers such as
hwloc_get_next_obj_by_type(). However, hwloc offers some dedicated helpers such
as hwloc_get_next_pcidev() and hwloc_get_next_osdev() for convenience (see Finding
I/0O objects).

7.3 OS devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), a
user-space application can hardly find out which PCI device it is actually using. Ap-
plications rather use software handles (such as the eth0 network interface, the sda hard
drive, or the mix4_0 OpenFabrics HCA). Therefore hwloc tries to add software devices
(HWLOC_OBJ_OS_DEVICE, also known as OS devices).

OS devices may be attached below PCI devices, but they may also be attached di-
rectly to normal objects. Indeed some OS devices are not related to PCI. For instance,
NVDIMM block devices (such as pmemOs on Linux) are directly attached near their
NUMA node (I/0 child of the parent whose memory child is the NUMA node). Also,
if hwloc could not discover PCI for some reason, PCI-related OS devices may also be
attached directly to normal objects.

hwloc first tries to discover OS devices from the operating system, e.g. eth0, sda or
mix4_0. However, this ability is currently only available on Linux for some classes of
devices.

hwloc then tries to discover software devices through additional I/O components using
external libraries. For instance proprietary graphics drivers do not expose any named
OS device, but hwloc may still create one OS object per software handle when sup-
ported. For instance the opencl and cuda components may add some openclOdO
and cuda0 OS device objects.

Here is a list of OS device objects commonly created by hwloc components when I/O
discovery is enabled and supported.
» Hard disks or non-volatile memory devices (HWLOC_OBJ_OSDEV_BLOCK)
— sda or dax2.0 (Linux component)
¢ Network interfaces (HWLOC_OBJ_OSDEV_NETWORK)
— eth0, wlan0, ib0O (Linux component)

¢ OpenFabrics (InfiniBand, Omni-Path, usNIC, etc) HCAs (HWLOC_OBJ_-
OSDEV_OPENFABRICS)

— mix5_0, hfil _0, qib0, usnic_0 (Linux component)

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

38 I/0 Devices

* GPUs (HWLOC_OBJ_OSDEV_GPU)

— nvmlO for the first NVML device (NVML component, using the NVIDIA
Management Library)

— :0.0 for the first display (GL component, using the NV-CONTROL X ex-
tension library, NVCtrl)

e Co-Processors (HWLOC_OBJ_OSDEV_COPROC)

— opencl0doO for the first device of the first OpenCL platform, openclid3 for
the fourth device of the second OpenCL platform (OpenCL component)

— cudaO for the first NVIDIA CUDA device (CUDA component, using the
NVIDIA CUDA Library)

— DMA engine channel (HWLOC_OBJ_OSDEV_DMA)

* dmaOchan0O (Linux component) when all OS devices are enabled
(HWLOC_TYPE_FILTER_KEEP_ALL)

Note that some PCI devices may contain multiple software devices (see the ex-
ample below).

See also Interoperability With Other Software for managing these devices with-
out considering them as hwloc objects.

7.4 PCI devices and bridges

A PCT hierarchy is usually organized as follows: A hostbridge object (HWLOC_OBJ_ —
BRIDGE object with upstream type Host and downstream type PCI) is attached below
a normal object (usually the entire machine or a NUMA node). There may be multiple
hostbridges in the machine, attached to different places, but all PCI devices are below
one of them (unless the Bridge object type is filtered-out).

Each hostbridge contains one or several children, either other bridges (usually PCI to
PCI switches) or PCI devices (HWLOC_OBJ_PCI_DEVICE). The number of bridges
between the hostbridge and a PCI device depends on the machine.

7.5 Consulting I/0 devices and binding

I/0 devices may be consulted by traversing the topology manually (with usual routines
such as hwloc_get_obj_by_type()) or by using dedicated helpers (such as hwloc_get_-
pcidev_by_busid(), see Finding I/O objects).

I/0 objects do not actually contain any locality information because their CPU sets and
node sets are NULL. Their locality must be retrieved by walking up the object tree
(through the parent link) until an non-I/O object is found (see hwloc_get_non_io_-
ancestor_obj()). This normal object should have non-NULL CPU sets and node sets

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

7.6 Examples 39

which describe the processing units and memory that are immediately close to the I/O
device. For instance the path from a OS device to its locality may go across a PCI
device parent, one or several bridges, up to a Package node with the same locality.

Command-line tools are also aware of I/O devices. Istopo displays the interesting ones
by default (passing \——no—1io disables it).

hwloc-calc and hwloc-bind may manipulate I/O devices specified by PCI bus ID or by
OS device name.

* pci=0000:02:03.0 is replaced by the set of CPUs that are close to the PCI
device whose bus ID is given.

* os=ethO is replaced by CPUs that are close to the I/O device whose software
handle is called ethO.

This enables easy binding of I/O-intensive applications near the device they use.

7.6 Examples

The following picture shows a dual-package dual-core host whose PCI bus is connected
to the first package and NUMA node.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

40

I/0 Devices

Machine (24GE total)

Package P#1 Package P#0
NUMANGde P#0 (12GB) NUMANode P#1 [12GE)
0.4 02
L3 (8192KE) O—-=O PCI 01:00.0 L3 (B192KE)
ethd
L2 (256KB) L2 (256KB) L2 (256KE) L2 (256KE)
02
L1 (32KB) L1 (32KB) PCI 01:00.1 L1 (32KB) L1 (32KE)
ethl
Core PED Core P#1 Core P#0 Core P#1
PU P#D P P#2 0.2 02 PU P#1 PU P#3
——{—— PCI03:00.0
sda
——{—— PCI04:03.0
0.1
PCI DD:1F.2
2.0
PCI 51:00.0
ibD ibl
mix4 0

Six interesting PCI devices were discovered. However, hwloc found some correspond-
ing software devices (eth0, ethl, sda, mix4_0, ib0, and ibI) for only four of these
physical devices. The other ones (PCI 102b:0532 and PCI 8086:3a20) are an unused
IDE controller (no disk attached) and a graphic card (no corresponding software device
reported to the user by the operating system).

On the contrary, it should be noted that three different software devices were found
for the last PCI device (PCI 15b3:634a). Indeed this OpenFabrics HCA PCI device
object contains one one OpenFabrics software device (mlx4_0) and two virtual network
interface software devices (ib0 and ib1).

Here is the corresponding textual output:

Machine (24GB total)

Package L#0

NUMANode L#0 (P#0
L3 L#0 (8192KB)

L2 L#0
L2 L#1

(256KB)
(256KB)

12GB)

+ L1 L#0
+ L1 L#1

(32KB)
(32KB)

+ Core L#0 + PU L#0
+ Core L#1 + PU L#1

(P#0)
(P#2)

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

7.6 Examples 41

HostBridge
PCIBridge
PCI 01:00.0 (Ethernet)
Net "ethO"
PCI 01:00.1 (Ethernet)
Net "ethl"
PCIBridge
PCI 03:00.0 (RAID)
Block "sda"
PCIBridge
PCI 04:03.0 (VGA)
PCI 00:1f.2 (IDE)
PCI 51:00.0 (InfiniBand)
Net "ibO"
Net "ibl"
Net "mlx4_0O"
Package L#1l
NUMANode L#1 (P#1 12GB)
L3 L#1l (8192KB)
L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#1)
L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

42

I/0 Devices

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 8

Miscellaneous objects

44 Miscellaneous objects

hwloc topologies may be annotated with Misc objects (of type HWLOC_OBJ_MISC)
either automatically or by the user. This is an flexible way to annotate topologies
with large sets of information since Misc objects may be inserted anywhere in the
topology (to annotate specific objects or parts of the topology), even below other Misc
objects, and each of them may contain multiple attributes (see also How do I annotate
the topology with private notes?).

These Misc objects may have a subtype field to replace Misc with something else
in the Istopo output.

8.1 Misc objects added by hwloc

hwloc only uses Misc objects when other object types are not sufficient, and when the
Misc object type is not filtered-out anymore. This currently includes:

* Memory modules (DIMMs), on Linux when privileged and when dmi-sysfs
is supported by the kernel. These objects have a subtype field of value
MemoryModule. They are currently always attached to the root object. Their
attributes describe the DIMM vendor, model, etc. 1stopo -v displays them
as:

Misc (MemoryModule) (P#1 Devicelocation="Bottom-Slot 2 (right)" BankLocation="BANK
2" Vendor=Elpida SerialNumber=21733667 AssetTag=9876543210 PartNumber="EBJ81UG8EF
UO-GN-F ")

* Displaying process binding in 1stopo \--top. These objects have a
subtype field of value Process and a name attribute made of their PID and
program name. They are attached below the object they are bound to. The textual
1lstopo displays them as:

PU L#0 (P#0)
Misc (Process) 4445 myprogram

8.2 Annotating topologies with Misc objects

The user may annotate hwloc topologies with its own Misc objects. This can be
achieved with hwloc_topology_insert_misc_object () as well as hwloc-
annotate command-line tool.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 9

Object attributes

46 Object attributes

9.1 Normal attributes

hwloc objects have many generic attributes in the hwloc_obj structure, for instance
their logical_index or os_index (see Should I use logical or physical/OS in-
dexes? and how?), depth or name.

The kind of object is first described by the obj—>type generic attribute (an in-
teger). OS devices also have a specific obj—>attr->osdev.type integer
for distinguishing between NICs, GPUs, etc. Objects may also have an optional
obj—->subtype pointing to a better description string. For instance subtype is useful
to say what Group objects are actually made of (e.g. Book for Linux S/390 books). It
may also specify that a Block OS device is a Disk, or that a CoProcessor OS device is
a CUDA device. This subtype is displayed by Istopo either in place or after the main
obj->type attribute. NUMA nodes that correspond GPU memory may also have
GPUMemory as subtype.

Each object also contains an attr field that, if non NULL, points to a union hwloc_-
obj_attr_u of type-specific attribute structures. For instance, a L2Cache object ob j
contains cache-specific information in obj->attr->cache, such as its size and
associativity, cache type. See hwloc_obj_attr_u for details.

9.2 Custom string infos

Aside os these generic attribute fields, hwloc annotates many objects with string at-
tributes that are made of a key and a value. Each object contains a list of such pairs
that may be consulted manually (looking at the object infos array field) or using the
hwloc_obj_get_info_by_name(). The user may additionally add new key-value pairs
to any object using hwloc_obj_add_info() or the hwloc-annotate program.

Here is a non-exhaustive list of attributes that may be automatically added by hwloc.
Note that these attributes heavily depend on the ability of the operating system to report
them. Many of them will therefore be missing on some OS.

9.2.1 Hardware Platform Information

These info attributes are attached to the root object (Machine).

PlatformName, PlatformModel, PlatformVendor, PlatformBoardID, PlatformRevision,

System VersionRegister, Processor VersionRegister (Machine) Some
POWER/PowerPC-specific attributes describing the platform and proces-
sor. Currently only available on Linux. Usually added to Package objects, but
can be in Machine instead if hwloc failed to discover any package.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

9.2 Custom string infos 47

DMIBoardVendor, DMIBoardName, etc. DMI hardware information such as the
motherboard and chassis models and vendors, the BIOS revision, etc., as re-
ported by Linux under /sys/class/dmi/id/.

MemoryMode, ClusterMode Intel Xeon Phi processor configuration modes. Avail-
able if hwloc-dump-hwdata was used (see Why do I need hwloc-dump-hwdata
for memory on Intel Xeon Phi processor?) or if hwloc managed to guess them
from the NUMA configuration.

The memory mode may be Cache, Flat, Hybrid50 (half the MCDRAM is used
as a cache) or Hybrid25 (25% of MCDRAM as cache). The cluster mode may
be Quadrant, Hemisphere, AlI2All, SNC2 or SNC4. See doc/examples/get-knl-
modes.c in the source directory for an example of retrieving these attributes.

9.2.2 Operating System Information

These info attributes are attached to the root object (Machine).

OSName, OSRelease, OSVersion, HostName, Architecture The operating system
name, release, version, the hostname and the architecture name, as reported by
the Unix uname command.

LinuxCgroup The name the Linux control group where the calling process is placed.

9.2.3 hwloc Information

Unless specified, these info attributes are attached to the root object (Machine).

Backend (topology root, or specific object added by that backend) The name of
the hwloc backend/component that filled the topology. If several components
were combined, multiple Backend keys may exist, with different values, for in-
stance x86 and Linux in the root object and CUDA in CUDA OS device objects.

SyntheticDescription The description string that was given to hwloc to build this
synthetic topology.

hwlocVersion The version number of the hwloc library that was used to generate the
topology. If the topology was loaded from XML, this is not the hwloc version
that loaded it, but rather the first hwloc instance that exported the topology to
XML earlier.

ProcessName The name of the process that contains the hwloc library that was used
to generate the topology. If the topology was from XML, this is not the hwloc
process that loaded it, but rather the first process that exported the topology to
XML earlier.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

48 Object attributes

9.2.4 CPU Information

These info attributes are attached to Package objects, or to the root object (Machine) if
package locality information is missing.

CPUModel The processor model name.

CPUVendor, CPUModelNumber, CPUFamilyNumber, CPUStepping The pro-
cessor vendor name, model number, family number, and stepping number.
Currently available for x86 and Xeon Phi processors on most systems, and for
1a64 processors on Linux (except CPUStepping).

CPURevision A POWER/PowerPC-specific general processor revision number, cur-
rently only available on Linux.

CPUType A Solaris-specific general processor type name, such as "i86pc".

9.2.5 OS Device Information

These info attributes are attached to OS device objects specified in parentheses.

Vendor, Model, Revision, SerialNumber, Size, SectorSize (Block OS devices)
The vendor and model names, revision, serial number, size (in kB) and
SectorSize (in bytes).

LinuxDeviceID (Block OS devices) The major/minor device number such as 8:0 of
Linux device.

GPUVendor, GPUModel (GPU or Co-Processor OS devices) The vendor and
model names of the GPU device.

OpenCLDeviceType, OpenCLPlatformIndex,

OpenCLPlatformName, OpenCLPlatformDeviceIndex (OpenCL OS devices)
The type of OpenCL device, the OpenCL platform index and name, and the
index of the device within the platform.

OpenCLComputeUnits, OpenCLGlobalMemorySize (OpenCL OS devices) The
number of compute units and global memory size (in kB) of an OpenCL device.

NVIDIAUUID, NVIDIASerial NVML GPU OS devices) The UUID and Serial of
NVIDIA GPUs.

CUDAMultiProcessors, CUDACoresPerMP,

CUDAGIlobalMemorySize, CUDAL2CacheSize, CUDASharedMemorySizePerMP (CUDA OS devices)

The number of shared multiprocessors, the number of cores per multiprocessor,
the global memory size, the (global) L2 cache size, and size of the shared
memory in each multiprocessor of a CUDA device. Sizes are in kB.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

9.2 Custom string infos 49

Address, Port (Network interface OS devices) The MAC address and the port num-
ber of a software network interface, such as eth4 on Linux.

NodeGUID, SysImageGUID, Portl1State, Port2LLID, Port2LMC, Port3GID1 (OpenFabrics OS devices)
The node GUID and GUID mask, the state of a port #1 (value is 4 when active),
the LID and LID mask count of port #2, and GID #1 of port #3.

9.2.6 Other Object-specific Information

These info attributes are attached to objects specified in parentheses.

DAXDevice (NUMA Nodes) The name of the Linux DAX device that was used to
expose a non-volatile memory region as a volatile NUMA node.

PCIBusID (GPUMemory NUMA Nodes) The PCI bus ID of the GPU whose mem-
ory is exposed in this NUMA node.

Inclusive (Caches) The inclusiveness of a cache (1 if inclusive, 0 otherwise). Cur-
rently only available on x86 processors.

SolarisProcessorGroup (Group) The Solaris kstat processor group name that was
used to build this Group object.

PCIVendor, PCIDevice (PCI devices and bridges) The vendor and device names of
the PCI device.

PCISlot (PCI devices or Bridges) The name/number of the physical slot where the
device is plugged. If the physical device contains PCI bridges above the actual
PCI device, the attribute may be attached to the highest bridge (i.e. the first
object that actually appears below the physical slot).

Vendor, AssetTag, PartNumber, DeviceLocation, BankLocation (MemoryModule Misc objects)
Information about memory modules (DIMMs) extracted from SMBIOS.

9.2.7 User-Given Information

Here is a non-exhaustive list of user-provided info attributes that have a special mean-
ing:

IstopoStyle Enforces the style of an object (background and text colors) in the graph-
ical output of Istopo. See CUSTOM COLORS in the Istopo(1) manpage for
details.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

50

Object attributes

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 10

Importing and exporting
topologies from/to XML files

52 Importing and exporting topologies from/to XML files

hwloc offers the ability to export topologies to XML files and reload them later. This
is for instance useful for loading topologies faster (see I do not want hwloc to redis-
cover my enormous machine topology every time I rerun a process), manipulating other
nodes’ topology, or avoiding the need for privileged processes (see Does hwloc require
privileged access?).

Topologies may be exported to XML files thanks to hwloc_topology_export_xml(),
or to a XML memory buffer with hwloc_topology_export_xmlbuffer(). The Istopo
program can also serve as a XML topology export tool.

XML topologies may then be reloaded later with hwloc_topology_set_xml() and
hwloc_topology_set_xmlbuffer(). The HWLOC_XMLFILE environment variable also
tells hwloc to load the topology from the given XML file (see Environment Variables).

Note:

Loading XML topologies disables binding because the loaded topology may not
correspond to the physical machine that loads it. This behavior may be reverted by
asserting that loaded file really matches the underlying system with the HWLOC_-
THISSYSTEM environment variable or the HWLOC_TOPOLOGY_FLAG_IS_-
THISSYSTEM topology flag.

The topology flag HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_-
RESOURCES may be used to load a XML topology that contains the entire ma-
chine and restrict it to the part that is actually available to the current process (e.g.
when Linux Cgroup/Cpuset are used to restrict the set of resources).

hwloc also offers the ability to export/import Topology differences.

XML topology files are not localized. They use a dot as a decimal separator.
Therefore any exported topology can be reloaded on any other machine without
requiring to change the locale.

XML exports contain all details about the platform. It means that two very sim-
ilar nodes still have different XML exports (e.g. some serial numbers or MAC
addresses are different). If a less precise exporting/importing is required, one may
want to look at Synthetic topologies instead.

10.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features
full XML support, for instance when those files have to be manipulated by non-
hwloc software (e.g. a XSLT parser). The libxml2 backend is enabled by default if
libxml2 development headers are available (the relevant development package is usu-
ally 1ibxml2-devel or libxml2-dev).

If libxml2 is not available at configure time, or if \-—disable-1ibxml?2 is passed,
hwloc falls back to a custom backend. Contrary to the aforementioned full XML back-
end with libxml2, this minimalistic XML backend cannot be guaranteed to work with

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

10.2 XML import error management 53

external programs. It should only be assumed to be compatible with the same hwloc
release (even if using the libxml2 backend). Its advantage is, however, to always be
available without requiring any external dependency.

If libxml2 is available but the core hwloc library should not directly depend on it,
the libxml2 support may be built as a dynamicall-loaded plugin. One should pass
\-—enable-plugins to enable plugin support (when supported) and build as plu-
gins all component that support it. Or pass \-—enable-plugins=xml_libxml
to only build this libxml2 support as a plugin.

10.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax,
non-hwloc-valid XML contents, or incompatibilities between hwloc releases (see Are
XML topology files compatible between hwloc releases?).

Both backend cannot detect all these errors when the input XML file or buffer
is selected (when hwloc_topology_set_xml() or hwloc_topology_set_xmlbuffer() is
called). Some errors such non-hwloc-valid contents can only be detected later when
loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_-
topology_set_xml() (or hwloc_topology_set_xmlbuffer()) and hwloc_topology_load()
to handle all these errors.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

54

Importing and exporting topologies from/to XML files

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 11

Synthetic topologies

56 Synthetic topologies

hwloc may load fake or remote topologies so as to consult them without having the un-
derlying hardware available. Aside from loading XML topologies, hwloc also enables
the building of synthetic topologies that are described by a single string listing the arity
of each levels.

For instance, Istopo may create a topology made of 2 packages, containing a single
NUMA node and a L2 cache above two single-threaded cores:

$ lstopo -1 "pack:2 node:1l 12:1 core:2 pu:l" -
Machine (2048MB)
Package L#0
NUMANode L#0 (P#0 1024MB)
L2 L#0 (4096KB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
Package L#1
NUMANode L#1 (P#1 1024MB)
L2 L#1 (4096KB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Replacing — with £ile.xml in this command line will export this topology to XML
as usual.

Note:

Synthetic topologies offer a very basic way to export a topology and reimport it on
another machine. It is a lot less precise than XML but may still be enough when
only the hierarchy of resources matters.

11.1 Synthetic description string

Each item in the description string gives the type of the level and the number of such
children under each object of the previous level. That is why the above topology con-
tains 4 cores (2 cores times 2 nodes).

These type names must be written as numanode, package, core, 12u, 111, pu,
group (hwloc_obj_type_sscanf() is used for parsing the type names). They do not
need to be written case-sensitively, nor entirely (as long as there is no ambiguity, 2
characters such as ma select a Machine level). Note that I/O and Misc objects are not
available.

Instead of specifying the type of each level, it is possible to just specify the arities and

let hwloc choose all types according to usual topologies. The following examples are
therefore equivalent:

$ lstopo -1 "2 3 4 5 6"
$ lstopo —-i "Package:2 NUMANode:3 L2Cache:4 Core:5 PU:6"

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

11.2 Loading a synthetic topology 57

NUMA nodes are handled in a special way since they are not part of the main CPU hi-
erarchy but rather attached below it as memory children. Thus, NUMANode : 3 actually
means Group : 3 where one NUMA node is attached below each group. These groups
are merged back into the parent when possible (typically when a single NUMA node
is requested below each parent).

It is also possible the explicitly attach NUMA nodes to specific levels. For instance,

a topology similar to a Intel Xeon Phi processor (with 2 NUMA nodes per 16-core
group) may be created with:

$ lstopo —-1i "package:1l group:4 [numa] [numa] core:16 pu:4"

The root object does not appear in the synthetic description string since it is always a
Machine object. Therefore the Machine type is disallowed in the description as well.

A NUMA level (with a single NUMA node) is automatically added if needed.

Each item may be followed parentheses containing a list of space-separated attributes.
For instance:

* IL2iCache:2 (size=32kB) specifies 2 children of 32kB level-2 instruction
caches. The size may be specified in bytes (without any unit suffix) or as TB,
GB, MB or kB.

* NUMANode: 3 (memory=16MB) specifies 3 NUMA nodes with 16MB each.
The size may be specified in bytes (without any unit suffix) or as TB, GB, MB
or kB.

* PU:2 (indexes=0,2,1, 3) specifies 2 PU children and the full list of OS
indexes among the entire set of 4 PU objects.

* PU:2 (indexes=numa:core) specifies 2 PU children whose OS indexes are
interleaved by NUMA node first and then by package.

 Attributes in parentheses at the very beginning of the description apply to the
root object.

11.2 Loading a synthetic topology

Aside from Istopo, the hwloc programming interface offers the same ability by pass-
ing the synthetic description string to hwloc_topology_set_synthetic() before hwloc_-
topology_load().

Synthetic topologies are created by the synthetic component. This component
may be enabled by force by setting the HWLOC_SYNTHETIC environment variable
to something such as node:2 core:3 pu:4.

Loading a synthetic topology disables binding support since the topology usually
does not match the underlying hardware. Binding may be reenabled as usual by

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

58 Synthetic topologies

setting HWLOC_THISSYSTEM-=1 in the environment or by setting the HWLOC_-
TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

11.3 Exporting a topology as a synthetic string

The function hwloc_topology_export_synthetic() may export a topology as a synthetic
string. It offers a convenient way to quickly describe the contents of a machine. The
Istopo tool may also perform such an export by forcing the output format.

$ lstopo —--of synthetic --no-io
Package:1 L3Cache:1 L2Cache:2 LldCache:1 LliCache:1 Core:1 PU:2

The exported string may be passed back to hwloc for recreating another similar topol-
ogy (see also Are synthetic strings compatible between hwloc releases?). The entire
tree will be similar, but some attributes such as the processor model will be missing.

Such an export is only possible if the topology is totally symmetric. It means that the
symmetric_subtree field of the root object is set. Also memory children should
be attached in a symmetric way (e.g. the same number of memory children below each
Package object, etc.). However, I/O devices and Misc objects are ignored when looking
at symmetry and exporting the string.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 12

Interoperability With Other
Software

60 Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with
specific or non-portable libraries that manipulate similar kinds of objects. hwloc there-
fore offers several specific "helpers" to assist converting between those specific inter-
faces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be
available. The hwloc core therefore generally does not explicitly depend on these types
of libraries. However, when a custom application uses or otherwise depends on such a
library, it may optionally include the corresponding hwloc helper to extend the hwloc
interface with dedicated helpers.

Most of these helpers use structures that are specific to these external libraries and only
meaningful on the local machine. If so, the helper requires the input topology to match
the current machine. Some helpers also require I/O device discovery to be supported
and enabled for the current topology.

Linux specific features hwloc/linux.h offers Linux-specific helpers that utilize some
non-portable features of the Linux system, such as binding threads through their
thread ID ("tid") or parsing kernel CPU mask files.

Linux libnuma hwloc/linux-libnuma.h provides conversion helpers between hwloc
CPU sets and libnuma-specific types, such as bitmasks. It helps you use libnuma
memory-binding functions with hwloc CPU sets.

Glibc hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU
sets in order to use hwloc with functions such as sched_getaffinity() or pthread_-
attr_setaffinity_np().

OpenFabrics Verbs hwloc/openfabrics-verbs.h helps interoperability with the Open-
Fabrics Verbs interface. For example, it can return a list of processors near an
OpenFabrics device. It may also return the corresponding OS device hwloc ob-
ject for further information (if I/O device discovery is enabled).

OpenCL hwloc/opencl.h enables interoperability with the OpenCL interface. Only
the AMD and NVIDIA implementations currently offer locality information. It
may return the list of processors near a GPU givenasa cl_device_id. It may
also return the corresponding OS device hwloc object for further information (if
I/O device discovery is enabled).

NVIDIA CUDA hwloc/cuda.h and hwloc/cudart.h enable interoperability with
NVIDIA CUDA Driver and Runtime interfaces. For instance, it may return the
list of processors near NVIDIA GPUs. It may also return the corresponding OS
device hwloc object for further information (if I/O device discovery is enabled).

NVIDIA Management Library (NVML) hwloc/nvml.h enables interoperability
with the NVIDIA NVML interface. It may return the list of processors near a
NVIDIA GPU given as a nvmlDevice_t. It may also return the correspond-
ing OS device hwloc object for further information (if I/O device discovery is
enabled).

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

61

NVIDIA displays hwloc/gl.h enables interoperability with NVIDIA displays using
the NV-CONTROL X extension (NVCtrl library). If I/O device discovery is
enabled, it may return the OS device hwloc object that corresponds to a display
given as a name such as :0.0 or given as a port/device pair (server/screen).

Taskset command-line tool The taskset command-line tool is widely used for bind-
ing processes. It manipulates CPU set strings in a format that is slightly different
from hwloc’s one (it does not divide the string in fixed-size subsets and separates
them with commas). To ease interoperability, hwloc offers routines to convert
hwloc CPU sets from/to taskset-specific string format. Most hwloc command-
line tools also support the \-—taskset option to manipulate taskset-specific
strings.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

62

Interoperability With Other Software

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 13

Thread Safety

64 Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather
reentrant: all state is held in a hwloc_topology_t instance without mutex protection.
That means, for example, that two threads can safely operate on and modify two differ-
ent hwloc_topology_t instances, but they should not simultaneously invoke functions
that modify the same instance. Similarly, one thread should not modify a hwloc_-
topology_t instance while another thread is reading or traversing it. However, two
threads can safely read or traverse the same hwloc_topology_t instance concurrently.

When running in multiprocessor environments, be aware that proper thread synchro-
nization and/or memory coherency protection is needed to pass hwloc data (such as
hwloc_topology_t pointers) from one processor to another (e.g., a mutex, semaphore,
or a memory barrier). Note that this is not a hwloc-specific requirement, but it is worth
mentioning.

For reference, hwloc_topology_t modification operations include (but may not be lim-
ited to):

Creation and destruction hwloc_topology_init (), hwloc_-
topology_load (), hwloc_topology_destroy () (see Topology
Creation and Destruction) imply major modifications of the structure, including
freeing some objects. No other thread cannot access the topology or any of its
objects at the same time.

Also references to objects inside the topology are not valid anymore after these
functions return.

Runtime topology modifications hwloc_topology_insert_misc_-
object (), hwloc_topology_alloc_group_object (), and
hwloc_topology_insert_group_object () (see Modifying a
loaded Topology) may modify the topology significantly by adding objects
inside the tree, changing the topology depth, etc.

hwloc_distances_add () and hwloc_distances_remove () (see
Add or remove distances between objects) modify the list of distance structures
in the topology, and the former may even insert new Group objects.

hwloc_topology_restrict () modifies the topology even more dramati-
cally by removing some objects.

Although references to former objects may still be valid after insertion or re-
striction, it is strongly advised to not rely on any such guarantee and always
re-consult the topology to reacquire new instances of objects.

Consulting distances hwloc_distances_get () and its variants are thread-safe
except if the topology was recently modified (because distances may involve
objects that were removed).

Whenever the topology is modified (see above), one dummy (but valid)
hwloc_distances_get () call should be performed in the same thread-safe
context to force the refresh of internal distances structures.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

65

Once this refresh has been performed, multiple hwloc_distances_get ()
may then be performed concurrently by multiple threads.

Locating topologies hwloc_topology_set_x (see Topology Detection Config-
uration and Query) do not modify the topology directly, but they do modify inter-
nal structures describing the behavior of the upcoming invocation of hwloc_—
topology_load (). Hence, all of these functions should not be used concur-
rently.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

66

Thread Safety

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 14

Components and plugins

68 Components and plugins

hwloc is organized in components that are responsible for discovering objects. De-
pending on the topology configuration, some components will be used, some will
be ignored. The usual default is to enable the native operating system component,
(e.g. linux or solaris) and the pci miscellaneous component. If available, an
architecture-specific component (such as x86) may also improve the topology detec-
tion.

If a XML topology is loaded, the xm1 discovery component will be used instead of
all other components. It internally uses a specific class of components for the actual
XML import/export routines (xm1_1ibxml and xm1_nolibxml) but these will not
be discussed here (see libxml2 and minimalistic XML backends).

14.1 Components enabled by default

The hwloc core contains a list of components sorted by priority. Each one is enabled as
long as it does not conflict with the previously enabled ones. This includes native oper-
ating system components, architecture-specific ones, and if available, /O components
such as pci.

Usually the native operating system component (when it exists, e.g. 1inux or aix) is
enabled first. Then hwloc looks for an architecture specific component (e.g. x86). Fi-
nally there also exist a basic component (no_os) that just tries to discover the number
of PUs in the system.

Each component discovers as much topology information as possible. Most of them,
including most native OS components, do nothing unless the topology is still empty.
Some others, such as x86 and pci, can complete and annotate what other backends
found earlier. Discovery is performed by phases: CPUs are first discovered, then mem-
ory is attached, then PCI, etc.

Default priorities ensure that clever components are invoked first. Native operating
system components have higher priorities, and are therefore invoked first, because they
likely offer very detailed topology information. If needed, it will be later extended by
architecture-specific information (e.g. from the x86 component).

If any configuration function such as hwloc_topology_set_xml() is used before loading
the topology, the corresponding component is enabled first. Then, as usual, hwloc
enables any other component (based on priorities) that does not conflict.

Certain components that manage a virtual topology, for instance XML topology import
or synthetic topology description, conflict with all other components. Therefore, one
of them may only be loaded (e.g. with hwloc_topology_set_xml ()) if no other
component is enabled.

The environment variable HWLOC_COMPONENTS_VERBOSE may be set to get ver-
bose messages about component registration (including their priority) and enabling.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

14.2 Selecting which components to use 69

14.2 Selecting which components to use

If no topology configuration functions such as hwloc_topology_set_-
synthetic () have been called, plugins may be selected with environment variables
such as HWLOC_XMLFILE, HWLOC_SYNTHETIC, HWLOC_FSROOT, or HWLOC_—
CPUID_PATH (see Environment Variables).

Finally, the environment variable HWLOC_COMPONENTS resets the list of selected
components. If the variable is set and empty (or set to a single comma separating noth-
ing, since some operating systems do not accept empty variables), the normal plugin
priority order is used.

If the variable is set to x86 in this variable will cause the x86 component to take
precedence over any other component, including the native operating system compo-
nent. It is therefore loaded first, before hwloc tries to load all remaining non-conflicting
components. In this case, x86 would take care of discovering everything it supports,
instead of only completing what the native OS information. This may be useful if the
native component is buggy on some platforms.

It is possible to prevent some components from being loaded by prefixing their name
with — in the list. For instance x86, —pci will load the x8 6 component, then let hwloc
load all the usual components except pci. A single component phase may also be
blacklisted, for instance with ~1inux:io. hwloc_topology_set_components() may
also be used inside the program to prevent the loading of a specific component (or
phases) for the target topology.

It is possible to prevent all remaining components from being loaded by placing st op
in the environment variable. Only the components listed before this keyword will be
enabled.

14.3 Loading components from plugins

Components may optionally be built as plugins so that the hwloc core library does
not directly depend on their dependencies (for instance the 1ibpciaccess library).
Plugin support may be enabled with the \-—enable-plugins configure option.
All components buildable as plugins will then be built as plugins. The configure option
may be given a comma-separated list of component names to specify the exact list of
components to build as plugins.

Plugins are built as independent dynamic libraries that are installed in
$libdir/hwloc. All plugins found in this directory are loaded during
topology_init () (unless blacklisted in HWLOC_PLUGINS_BLACKLIST,
see Environment Variables). A specific list of directories (colon-separated) to scan
may be specified in the HWLOC_PLUGINS_PATH environment variable.

Note that loading a plugin just means that the corresponding component is registered
to the hwloc core. Components are then only enabled if the topology configuration

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

70 Components and plugins

requests it, as explained in the previous sections.

Also note that plugins should carefully be enabled and used when embedding hwloc in
another project, see Embedding hwloc in Other Software for details.

14.4 Existing components and plugins

All components distributed within hwloc are listed below. The list of actually available
components may be listed at running with the HWRLOC_COMPONENTS_VERBOSE en-
vironment variable (see Environment Variables).

linux The official component for discovering CPU, memory and I/O devices on
Linux. It discovers PCI devices without the help of external libraries such as
libpciaccess, but requires the pci component for adding vendor/device names to
PCI objects. It also discovers many kinds of Linux-specific OS devices.

aix, darwin, freebsd, hpux, netbsd, solaris, windows Each officially supported op-
erating system has its own native component, which is statically built when sup-
ported, and which is used by default.

x86 The x86 architecture (either 32 or 64 bits) has its own component that may com-
plete or replace the previously-found CPU information. It is statically built when
supported.

bgq This component is specific to IBM BlueGene/Q compute node (running CNK).
It is built and enabled by default when \--host=powerpc64-bgg-linux
is passed to configure (see How do I build hwloc for BlueGene/Q?).

no_os A basic component that just tries to detect the number of processing units in
the system. It mostly serves on operating systems that are not natively supported.
It is always statically built.

pci PCI object discovery uses the external pciaccess library (aka libpciaccess); see
I/O Devices. It may also annotate existing PCI devices with vendor and device
names. It may be built as a plugin.

opencl The OpenCL component creates co-processor OS device objects such as
opencl0dO0 (first device of the first OpenCL platform) or openclid3 (fourth de-
vice of the second platform). Only the AMD OpenCL implementation currently
offers locality information. It may be built as a plugin.

cuda This component creates co-processor OS device objects such as cuda0 that cor-
respond to NVIDIA GPUs used with CUDA library. It may be built as a plugin.

nvml Probing the NVIDIA Management Library creates OS device objects such as
nvmlO that are useful for batch schedulers. It also detects the actual PCle link
bandwidth without depending on power management state and without requiring
administrator privileges. It may be built as a plugin.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

14.4 Existing components and plugins 71

gl Probing the NV-CONTROL X extension (NVCitrl library) creates OS device ob-
jects such as 0.0 corresponding to NVIDIA displays. They are useful for graph-
ical applications that need to place computation and/or data near a rendering
GPU. It may be built as a plugin.

synthetic Synthetic topology support (see Synthetic topologies) is always built stati-
cally.

xml XML topology import (see Importing and exporting topologies from/to XML
files) is always built statically. It internally uses one of the XML backends (see
libxml2 and minimalistic XML backends).

* xml_nolibxml is a basic and hwloc-specific XML import/export. It is al-
ways statically built.

» xml_libxml relies on the external libxml?2 library for provinding a feature-
complete XML import/export. It may be built as a plugin.

fake A dummy plugin that does nothing but is used for debugging plugin support.

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

72

Components and plugins

Generated on Tue May 26 03:01:08 2020 for Hardware Locality (hwloc) by Doxygen

Chapter 15

Embedding hwloc in Other
Software

74 Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out
the LICENSE file) so that users don’t have to separately download and install it before
installing your software. This can be advantageous to ensure that your software uses
a known-tested/good version of hwloc, or for use on systems that do not have hwloc
pre-installed.

When used in "embedded" mode