
Hardware Locality (hwloc)
v2.0-20190524.0400.git8d9b4ef

Generated by Doxygen 1.6.1

Fri May 24 04:00:59 2019

Contents

1 Hardware Locality 1

1.1 Introduction . 1

1.2 Installation . 1

1.2.1 Basic Installation . 1

1.2.2 Installing from a Git clone . 2

1.3 Questions and Bugs . 2

2 Hardware Locality (hwloc) Introduction 3

2.1 hwloc Summary . 4

2.2 hwloc Installation . 5

2.3 Command-line Examples . 6

2.4 Programming Interface . 8

2.4.1 Portability . 8

2.4.2 API Example . 9

2.5 History / Credits . 10

2.6 Further Reading . 11

3 Terms and Definitions 13

3.1 Objects . 14

3.2 Indexes and Sets . 14

3.3 Hierarchy, Tree and Levels . 15

4 Command-Line Tools 17

4.1 lstopo and lstopo-no-graphics . 18

4.2 hwloc-bind . 18

4.3 hwloc-calc . 18

4.4 hwloc-info . 19

4.5 hwloc-distrib . 19

4.6 hwloc-ps . 19

ii CONTENTS

4.7 hwloc-annotate . 19

4.8 hwloc-diff, hwloc-patch and hwloc-compress-dir . 19

4.9 hwloc-dump-hwdata . 19

4.10 hwloc-gather-topology and hwloc-gather-cpuid . 20

5 Environment Variables 21

6 CPU and Memory Binding Overview 25

7 I/O Devices 27

7.1 Enabling and requirements . 28

7.2 I/O objects . 28

7.3 OS devices . 28

7.4 PCI devices and bridges . 30

7.5 Consulting I/O devices and binding . 30

7.6 Examples . 30

8 Miscellaneous objects 33

8.1 Misc objects added by hwloc . 34

8.2 Annotating topologies with Misc objects . 34

9 Object attributes 35

9.1 Normal attributes . 36

9.2 Custom string infos . 36

9.2.1 Hardware Platform Information . 36

9.2.2 Operating System Information . 36

9.2.3 hwloc Information . 37

9.2.4 CPU Information . 37

9.2.5 OS Device Information . 37

9.2.6 Other Object-specific Information . 38

9.2.7 User-Given Information . 38

10 Importing and exporting topologies from/to XML files 39

10.1 libxml2 and minimalistic XML backends . 40

10.2 XML import error management . 40

11 Synthetic topologies 43

11.1 Synthetic description string . 44

11.2 Loading a synthetic topology . 45

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS iii

11.3 Exporting a topology as a synthetic string . 45

12 Interoperability With Other Software 47

13 Thread Safety 49

14 Components and plugins 51

14.1 Components enabled by default . 52

14.2 Selecting which components to use . 52

14.3 Loading components from plugins . 53

14.4 Adding new discovery components and plugins . 53

14.4.1 Basics of discovery components . 53

14.4.2 Registering a new discovery component . 53

14.5 Existing components and plugins . 54

15 Embedding hwloc in Other Software 57

15.1 Using hwloc’s M4 Embedding Capabilities . 58

15.2 Example Embedding hwloc . 60

16 Frequently Asked Questions 61

16.1 Concepts . 62

16.1.1 I only need binding, why should I use hwloc ? . 62

16.1.2 Should I use logical or physical/OS indexes? and how? 62

16.1.3 hwloc is only a structural model, it ignores performance models, memory band-
width, etc.? . 63

16.1.4 hwloc only has a one-dimensional view of the architecture, it ignores distances? . . 63

16.1.5 What are these Group objects in my topology? 63

16.1.6 What happens if my topology is asymmetric? . 64

16.1.7 What happens to my topology if I disable symmetric multithreading, hyper-
threading, etc. in the system? . 65

16.1.8 How may I ignore symmetric multithreading, hyper-threading, etc. in hwloc? . . . 65

16.2 Advanced . 66

16.2.1 I do not want hwloc to rediscover my enormous machine topology every time I
rerun a process . 66

16.2.2 How many topologies may I use in my program? 66

16.2.3 How to avoid memory waste when manipulating multiple similar topologies? . . . 67

16.2.4 How do I annotate the topology with private notes? 67

16.3 Caveats . 67

16.3.1 Why is hwloc slow? . 67

16.3.2 Does hwloc require privileged access? . 68

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

iv CONTENTS

16.3.3 What should I do when hwloc reports "operating system" warnings? 68

16.3.4 Why does Valgrind complain about hwloc memory leaks? 69

16.3.5 How do I handle ABI breaks and API upgrades? 69

16.4 Platform-specific . 70

16.4.1 How do I find the local MCDRAM NUMA node on Intel Xeon Phi processor? . . 70

16.4.2 Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi processor? . . 71

16.4.3 How do I build for Intel Xeon Phi coprocessor? 71

16.4.4 How do I build hwloc for BlueGene/Q? . 72

16.4.5 How do I build hwloc for Windows? . 72

16.4.6 How to get useful topology information on NetBSD? 72

16.4.7 Why does binding fail on AIX? . 72

17 Upgrading to the hwloc 2.0 API 75

17.1 New Organization of NUMA nodes and Memory . 76

17.1.1 Memory children . 76

17.1.2 Examples . 76

17.1.3 NUMA level and depth . 77

17.1.4 Finding Local NUMA nodes and looking at Children and Parents 77

17.2 4 Kinds of Objects and Children . 78

17.2.1 I/O and Misc children . 78

17.2.2 Kinds of objects . 78

17.3 HWLOC_OBJ_CACHE replaced . 79

17.4 allowed_cpuset and allowed_nodeset only in the main topology 79

17.5 Object depths are now signed int . 79

17.6 Memory attributes become NUMANode-specific . 79

17.7 Topology configuration changes . 80

17.8 XML changes . 80

17.9 Distances API totally rewritten . 81

17.10Return values of functions . 81

17.11Misc API changes . 81

17.12API removals and deprecations . 82

18 Network Locality (netloc) 83

18.1 Netloc Summary . 84

18.1.1 Supported Networks . 84

18.2 Netloc Installation . 84

18.3 Setup . 84

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS v

18.4 Topology display . 86

18.4.1 Generate the JSON file . 86

18.4.2 Using netloc_draw . 86

19 Netloc with Scotch 89

19.1 Introduction . 90

19.2 Setup . 90

19.3 Tools and API . 90

19.3.1 Build Scotch architectures . 90

19.3.2 Build Scotch sub-architectures . 90

19.3.3 Mapping of processes . 91

20 Module Index 93

20.1 Modules . 93

21 Data Structure Index 95

21.1 Data Structures . 95

22 Module Documentation 97

22.1 API version . 97

22.1.1 Define Documentation . 97

22.1.1.1 HWLOC_API_VERSION . 97

22.1.1.2 HWLOC_COMPONENT_ABI . 97

22.1.2 Function Documentation . 98

22.1.2.1 hwloc_get_api_version . 98

22.2 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) . 99

22.2.1 Detailed Description . 99

22.2.2 Typedef Documentation . 99

22.2.2.1 hwloc_const_cpuset_t . 99

22.2.2.2 hwloc_const_nodeset_t . 99

22.2.2.3 hwloc_cpuset_t . 99

22.2.2.4 hwloc_nodeset_t . 99

22.3 Object Types . 100

22.3.1 Define Documentation . 100

22.3.1.1 HWLOC_OBJ_TYPE_MIN . 100

22.3.2 Typedef Documentation . 101

22.3.2.1 hwloc_obj_bridge_type_t . 101

22.3.2.2 hwloc_obj_cache_type_t . 101

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

vi CONTENTS

22.3.2.3 hwloc_obj_osdev_type_t . 101

22.3.3 Enumeration Type Documentation . 101

22.3.3.1 hwloc_compare_types_e . 101

22.3.3.2 hwloc_obj_bridge_type_e . 101

22.3.3.3 hwloc_obj_cache_type_e . 101

22.3.3.4 hwloc_obj_osdev_type_e . 101

22.3.3.5 hwloc_obj_type_t . 102

22.3.4 Function Documentation . 103

22.3.4.1 hwloc_compare_types . 103

22.4 Object Structure and Attributes . 104

22.4.1 Typedef Documentation . 104

22.4.1.1 hwloc_obj_t . 104

22.5 Topology Creation and Destruction . 105

22.5.1 Typedef Documentation . 105

22.5.1.1 hwloc_topology_t . 105

22.5.2 Function Documentation . 105

22.5.2.1 hwloc_topology_abi_check . 105

22.5.2.2 hwloc_topology_check . 105

22.5.2.3 hwloc_topology_destroy . 106

22.5.2.4 hwloc_topology_dup . 106

22.5.2.5 hwloc_topology_init . 106

22.5.2.6 hwloc_topology_load . 106

22.6 Object levels, depths and types . 108

22.6.1 Detailed Description . 108

22.6.2 Enumeration Type Documentation . 108

22.6.2.1 hwloc_get_type_depth_e . 108

22.6.3 Function Documentation . 109

22.6.3.1 hwloc_get_depth_type . 109

22.6.3.2 hwloc_get_memory_parents_depth . 109

22.6.3.3 hwloc_get_nbobjs_by_depth . 109

22.6.3.4 hwloc_get_nbobjs_by_type . 109

22.6.3.5 hwloc_get_next_obj_by_depth . 109

22.6.3.6 hwloc_get_next_obj_by_type . 109

22.6.3.7 hwloc_get_obj_by_depth . 110

22.6.3.8 hwloc_get_obj_by_type . 110

22.6.3.9 hwloc_get_root_obj . 110

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS vii

22.6.3.10 hwloc_get_type_depth . 110

22.6.3.11 hwloc_get_type_or_above_depth . 110

22.6.3.12 hwloc_get_type_or_below_depth . 111

22.6.3.13 hwloc_topology_get_depth . 111

22.7 Converting between Object Types and Attributes, and Strings 112

22.7.1 Function Documentation . 112

22.7.1.1 hwloc_obj_attr_snprintf . 112

22.7.1.2 hwloc_obj_type_snprintf . 112

22.7.1.3 hwloc_obj_type_string . 112

22.7.1.4 hwloc_type_sscanf . 113

22.7.1.5 hwloc_type_sscanf_as_depth . 113

22.8 Consulting and Adding Key-Value Info Attributes . 114

22.8.1 Function Documentation . 114

22.8.1.1 hwloc_obj_add_info . 114

22.8.1.2 hwloc_obj_get_info_by_name . 114

22.9 CPU binding . 115

22.9.1 Detailed Description . 115

22.9.2 Enumeration Type Documentation . 116

22.9.2.1 hwloc_cpubind_flags_t . 116

22.9.3 Function Documentation . 117

22.9.3.1 hwloc_get_cpubind . 117

22.9.3.2 hwloc_get_last_cpu_location . 117

22.9.3.3 hwloc_get_proc_cpubind . 117

22.9.3.4 hwloc_get_proc_last_cpu_location . 117

22.9.3.5 hwloc_get_thread_cpubind . 117

22.9.3.6 hwloc_set_cpubind . 118

22.9.3.7 hwloc_set_proc_cpubind . 118

22.9.3.8 hwloc_set_thread_cpubind . 118

22.10Memory binding . 119

22.10.1 Detailed Description . 119

22.10.2 Enumeration Type Documentation . 120

22.10.2.1 hwloc_membind_flags_t . 120

22.10.2.2 hwloc_membind_policy_t . 121

22.10.3 Function Documentation . 122

22.10.3.1 hwloc_alloc . 122

22.10.3.2 hwloc_alloc_membind . 122

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

viii CONTENTS

22.10.3.3 hwloc_alloc_membind_policy . 122

22.10.3.4 hwloc_free . 122

22.10.3.5 hwloc_get_area_membind . 122

22.10.3.6 hwloc_get_area_memlocation . 123

22.10.3.7 hwloc_get_membind . 123

22.10.3.8 hwloc_get_proc_membind . 124

22.10.3.9 hwloc_set_area_membind . 124

22.10.3.10hwloc_set_membind . 124

22.10.3.11hwloc_set_proc_membind . 125

22.11Changing the Source of Topology Discovery . 126

22.11.1 Detailed Description . 126

22.11.2 Function Documentation . 126

22.11.2.1 hwloc_topology_set_pid . 126

22.11.2.2 hwloc_topology_set_synthetic . 126

22.11.2.3 hwloc_topology_set_xml . 127

22.11.2.4 hwloc_topology_set_xmlbuffer . 127

22.12Topology Detection Configuration and Query . 128

22.12.1 Detailed Description . 129

22.12.2 Enumeration Type Documentation . 129

22.12.2.1 hwloc_topology_flags_e . 129

22.12.2.2 hwloc_type_filter_e . 130

22.12.3 Function Documentation . 130

22.12.3.1 hwloc_topology_get_flags . 130

22.12.3.2 hwloc_topology_get_support . 130

22.12.3.3 hwloc_topology_get_type_filter . 131

22.12.3.4 hwloc_topology_get_userdata . 131

22.12.3.5 hwloc_topology_is_thissystem . 131

22.12.3.6 hwloc_topology_set_all_types_filter 131

22.12.3.7 hwloc_topology_set_cache_types_filter 131

22.12.3.8 hwloc_topology_set_flags . 131

22.12.3.9 hwloc_topology_set_icache_types_filter 131

22.12.3.10hwloc_topology_set_io_types_filter . 131

22.12.3.11hwloc_topology_set_type_filter . 132

22.12.3.12hwloc_topology_set_userdata . 132

22.13Modifying a loaded Topology . 133

22.13.1 Enumeration Type Documentation . 133

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS ix

22.13.1.1 hwloc_restrict_flags_e . 133

22.13.2 Function Documentation . 133

22.13.2.1 hwloc_obj_add_other_obj_sets . 133

22.13.2.2 hwloc_topology_alloc_group_object 133

22.13.2.3 hwloc_topology_insert_group_object 134

22.13.2.4 hwloc_topology_insert_misc_object 134

22.13.2.5 hwloc_topology_restrict . 135

22.14Finding Objects inside a CPU set . 136

22.14.1 Function Documentation . 136

22.14.1.1 hwloc_get_first_largest_obj_inside_cpuset 136

22.14.1.2 hwloc_get_largest_objs_inside_cpuset 136

22.14.1.3 hwloc_get_nbobjs_inside_cpuset_by_depth 136

22.14.1.4 hwloc_get_nbobjs_inside_cpuset_by_type 137

22.14.1.5 hwloc_get_next_obj_inside_cpuset_by_depth 137

22.14.1.6 hwloc_get_next_obj_inside_cpuset_by_type 137

22.14.1.7 hwloc_get_obj_index_inside_cpuset 137

22.14.1.8 hwloc_get_obj_inside_cpuset_by_depth 138

22.14.1.9 hwloc_get_obj_inside_cpuset_by_type 138

22.15Finding Objects covering at least CPU set . 139

22.15.1 Function Documentation . 139

22.15.1.1 hwloc_get_child_covering_cpuset . 139

22.15.1.2 hwloc_get_next_obj_covering_cpuset_by_depth 139

22.15.1.3 hwloc_get_next_obj_covering_cpuset_by_type 139

22.15.1.4 hwloc_get_obj_covering_cpuset . 140

22.16Looking at Ancestor and Child Objects . 141

22.16.1 Detailed Description . 141

22.16.2 Function Documentation . 141

22.16.2.1 hwloc_get_ancestor_obj_by_depth . 141

22.16.2.2 hwloc_get_ancestor_obj_by_type . 141

22.16.2.3 hwloc_get_common_ancestor_obj . 141

22.16.2.4 hwloc_get_next_child . 142

22.16.2.5 hwloc_obj_is_in_subtree . 142

22.17Kinds of object Type . 143

22.17.1 Detailed Description . 143

22.17.2 Function Documentation . 143

22.17.2.1 hwloc_obj_type_is_cache . 143

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

x CONTENTS

22.17.2.2 hwloc_obj_type_is_dcache . 143

22.17.2.3 hwloc_obj_type_is_icache . 143

22.17.2.4 hwloc_obj_type_is_io . 143

22.17.2.5 hwloc_obj_type_is_memory . 144

22.17.2.6 hwloc_obj_type_is_normal . 144

22.18Looking at Cache Objects . 145

22.18.1 Function Documentation . 145

22.18.1.1 hwloc_get_cache_covering_cpuset . 145

22.18.1.2 hwloc_get_cache_type_depth . 145

22.18.1.3 hwloc_get_shared_cache_covering_obj 145

22.19Finding objects, miscellaneous helpers . 146

22.19.1 Detailed Description . 146

22.19.2 Function Documentation . 146

22.19.2.1 hwloc_get_closest_objs . 146

22.19.2.2 hwloc_get_numanode_obj_by_os_index 146

22.19.2.3 hwloc_get_obj_below_array_by_type 147

22.19.2.4 hwloc_get_obj_below_by_type . 147

22.19.2.5 hwloc_get_pu_obj_by_os_index . 147

22.20Distributing items over a topology . 148

22.20.1 Enumeration Type Documentation . 148

22.20.1.1 hwloc_distrib_flags_e . 148

22.20.2 Function Documentation . 148

22.20.2.1 hwloc_distrib . 148

22.21CPU and node sets of entire topologies . 149

22.21.1 Function Documentation . 149

22.21.1.1 hwloc_topology_get_allowed_cpuset 149

22.21.1.2 hwloc_topology_get_allowed_nodeset 149

22.21.1.3 hwloc_topology_get_complete_cpuset 150

22.21.1.4 hwloc_topology_get_complete_nodeset 150

22.21.1.5 hwloc_topology_get_topology_cpuset 150

22.21.1.6 hwloc_topology_get_topology_nodeset 150

22.22Converting between CPU sets and node sets . 152

22.22.1 Function Documentation . 152

22.22.1.1 hwloc_cpuset_from_nodeset . 152

22.22.1.2 hwloc_cpuset_to_nodeset . 152

22.23Finding I/O objects . 153

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS xi

22.23.1 Function Documentation . 153

22.23.1.1 hwloc_bridge_covers_pcibus . 153

22.23.1.2 hwloc_get_next_bridge . 153

22.23.1.3 hwloc_get_next_osdev . 153

22.23.1.4 hwloc_get_next_pcidev . 153

22.23.1.5 hwloc_get_non_io_ancestor_obj . 154

22.23.1.6 hwloc_get_pcidev_by_busid . 154

22.23.1.7 hwloc_get_pcidev_by_busidstring . 154

22.24The bitmap API . 155

22.24.1 Detailed Description . 156

22.24.2 Define Documentation . 156

22.24.2.1 hwloc_bitmap_foreach_begin . 156

22.24.2.2 hwloc_bitmap_foreach_end . 157

22.24.3 Typedef Documentation . 157

22.24.3.1 hwloc_bitmap_t . 157

22.24.3.2 hwloc_const_bitmap_t . 157

22.24.4 Function Documentation . 157

22.24.4.1 hwloc_bitmap_allbut . 157

22.24.4.2 hwloc_bitmap_alloc . 157

22.24.4.3 hwloc_bitmap_alloc_full . 157

22.24.4.4 hwloc_bitmap_and . 157

22.24.4.5 hwloc_bitmap_andnot . 158

22.24.4.6 hwloc_bitmap_asprintf . 158

22.24.4.7 hwloc_bitmap_clr . 158

22.24.4.8 hwloc_bitmap_clr_range . 158

22.24.4.9 hwloc_bitmap_compare . 158

22.24.4.10hwloc_bitmap_compare_first . 158

22.24.4.11hwloc_bitmap_copy . 159

22.24.4.12hwloc_bitmap_dup . 159

22.24.4.13hwloc_bitmap_fill . 159

22.24.4.14hwloc_bitmap_first . 159

22.24.4.15hwloc_bitmap_first_unset . 159

22.24.4.16hwloc_bitmap_free . 159

22.24.4.17hwloc_bitmap_from_ith_ulong . 160

22.24.4.18hwloc_bitmap_from_ulong . 160

22.24.4.19hwloc_bitmap_intersects . 160

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

xii CONTENTS

22.24.4.20hwloc_bitmap_isequal . 160

22.24.4.21hwloc_bitmap_isfull . 160

22.24.4.22hwloc_bitmap_isincluded . 160

22.24.4.23hwloc_bitmap_isset . 161

22.24.4.24hwloc_bitmap_iszero . 161

22.24.4.25hwloc_bitmap_last . 161

22.24.4.26hwloc_bitmap_last_unset . 161

22.24.4.27hwloc_bitmap_list_asprintf . 161

22.24.4.28hwloc_bitmap_list_snprintf . 161

22.24.4.29hwloc_bitmap_list_sscanf . 162

22.24.4.30hwloc_bitmap_next . 162

22.24.4.31hwloc_bitmap_next_unset . 162

22.24.4.32hwloc_bitmap_not . 162

22.24.4.33hwloc_bitmap_only . 162

22.24.4.34hwloc_bitmap_or . 162

22.24.4.35hwloc_bitmap_set . 162

22.24.4.36hwloc_bitmap_set_ith_ulong . 162

22.24.4.37hwloc_bitmap_set_range . 162

22.24.4.38hwloc_bitmap_singlify . 163

22.24.4.39hwloc_bitmap_snprintf . 163

22.24.4.40hwloc_bitmap_sscanf . 163

22.24.4.41hwloc_bitmap_taskset_asprintf . 163

22.24.4.42hwloc_bitmap_taskset_snprintf . 163

22.24.4.43hwloc_bitmap_taskset_sscanf . 164

22.24.4.44hwloc_bitmap_to_ith_ulong . 164

22.24.4.45hwloc_bitmap_to_ulong . 164

22.24.4.46hwloc_bitmap_weight . 164

22.24.4.47hwloc_bitmap_xor . 164

22.24.4.48hwloc_bitmap_zero . 164

22.25Exporting Topologies to XML . 165

22.25.1 Enumeration Type Documentation . 165

22.25.1.1 hwloc_topology_export_xml_flags_e 165

22.25.2 Function Documentation . 165

22.25.2.1 hwloc_export_obj_userdata . 165

22.25.2.2 hwloc_export_obj_userdata_base64 . 166

22.25.2.3 hwloc_free_xmlbuffer . 166

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS xiii

22.25.2.4 hwloc_topology_export_xml . 166

22.25.2.5 hwloc_topology_export_xmlbuffer . 166

22.25.2.6 hwloc_topology_set_userdata_export_callback 167

22.25.2.7 hwloc_topology_set_userdata_import_callback 167

22.26Exporting Topologies to Synthetic . 169

22.26.1 Enumeration Type Documentation . 169

22.26.1.1 hwloc_topology_export_synthetic_flags_e 169

22.26.2 Function Documentation . 169

22.26.2.1 hwloc_topology_export_synthetic . 169

22.27Retrieve distances between objects . 171

22.27.1 Enumeration Type Documentation . 171

22.27.1.1 hwloc_distances_kind_e . 171

22.27.2 Function Documentation . 172

22.27.2.1 hwloc_distances_get . 172

22.27.2.2 hwloc_distances_get_by_depth . 172

22.27.2.3 hwloc_distances_get_by_type . 172

22.27.2.4 hwloc_distances_release . 172

22.28Helpers for consulting distance matrices . 173

22.28.1 Function Documentation . 173

22.28.1.1 hwloc_distances_obj_index . 173

22.28.1.2 hwloc_distances_obj_pair_values . 173

22.29Add or remove distances between objects . 174

22.29.1 Enumeration Type Documentation . 174

22.29.1.1 hwloc_distances_add_flag_e . 174

22.29.2 Function Documentation . 174

22.29.2.1 hwloc_distances_add . 174

22.29.2.2 hwloc_distances_remove . 174

22.29.2.3 hwloc_distances_remove_by_depth . 175

22.29.2.4 hwloc_distances_remove_by_type . 175

22.30Linux-specific helpers . 176

22.30.1 Detailed Description . 176

22.30.2 Function Documentation . 176

22.30.2.1 hwloc_linux_get_tid_cpubind . 176

22.30.2.2 hwloc_linux_get_tid_last_cpu_location 176

22.30.2.3 hwloc_linux_read_path_as_cpumask 176

22.30.2.4 hwloc_linux_set_tid_cpubind . 177

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

xiv CONTENTS

22.31Interoperability with Linux libnuma unsigned long masks 178

22.31.1 Detailed Description . 178

22.31.2 Function Documentation . 178

22.31.2.1 hwloc_cpuset_from_linux_libnuma_ulongs 178

22.31.2.2 hwloc_cpuset_to_linux_libnuma_ulongs 178

22.31.2.3 hwloc_nodeset_from_linux_libnuma_ulongs 179

22.31.2.4 hwloc_nodeset_to_linux_libnuma_ulongs 179

22.32Interoperability with Linux libnuma bitmask . 180

22.32.1 Detailed Description . 180

22.32.2 Function Documentation . 180

22.32.2.1 hwloc_cpuset_from_linux_libnuma_bitmask 180

22.32.2.2 hwloc_cpuset_to_linux_libnuma_bitmask 180

22.32.2.3 hwloc_nodeset_from_linux_libnuma_bitmask 180

22.32.2.4 hwloc_nodeset_to_linux_libnuma_bitmask 181

22.33Interoperability with glibc sched affinity . 182

22.33.1 Detailed Description . 182

22.33.2 Function Documentation . 182

22.33.2.1 hwloc_cpuset_from_glibc_sched_affinity 182

22.33.2.2 hwloc_cpuset_to_glibc_sched_affinity 182

22.34Interoperability with OpenCL . 183

22.34.1 Detailed Description . 183

22.34.2 Function Documentation . 183

22.34.2.1 hwloc_opencl_get_device_cpuset . 183

22.34.2.2 hwloc_opencl_get_device_osdev . 183

22.34.2.3 hwloc_opencl_get_device_osdev_by_index 184

22.35Interoperability with the CUDA Driver API . 185

22.35.1 Detailed Description . 185

22.35.2 Function Documentation . 185

22.35.2.1 hwloc_cuda_get_device_cpuset . 185

22.35.2.2 hwloc_cuda_get_device_osdev . 185

22.35.2.3 hwloc_cuda_get_device_osdev_by_index 186

22.35.2.4 hwloc_cuda_get_device_pci_ids . 186

22.35.2.5 hwloc_cuda_get_device_pcidev . 186

22.36Interoperability with the CUDA Runtime API . 187

22.36.1 Detailed Description . 187

22.36.2 Function Documentation . 187

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS xv

22.36.2.1 hwloc_cudart_get_device_cpuset . 187

22.36.2.2 hwloc_cudart_get_device_osdev_by_index 187

22.36.2.3 hwloc_cudart_get_device_pci_ids . 188

22.36.2.4 hwloc_cudart_get_device_pcidev . 188

22.37Interoperability with the NVIDIA Management Library 189

22.37.1 Detailed Description . 189

22.37.2 Function Documentation . 189

22.37.2.1 hwloc_nvml_get_device_cpuset . 189

22.37.2.2 hwloc_nvml_get_device_osdev . 189

22.37.2.3 hwloc_nvml_get_device_osdev_by_index 190

22.38Interoperability with OpenGL displays . 191

22.38.1 Detailed Description . 191

22.38.2 Function Documentation . 191

22.38.2.1 hwloc_gl_get_display_by_osdev . 191

22.38.2.2 hwloc_gl_get_display_osdev_by_name 191

22.38.2.3 hwloc_gl_get_display_osdev_by_port_device 191

22.39Interoperability with Intel Xeon Phi (MIC) . 193

22.39.1 Detailed Description . 193

22.39.2 Function Documentation . 193

22.39.2.1 hwloc_intel_mic_get_device_cpuset 193

22.39.2.2 hwloc_intel_mic_get_device_osdev_by_index 193

22.40Interoperability with OpenFabrics . 194

22.40.1 Detailed Description . 194

22.40.2 Function Documentation . 194

22.40.2.1 hwloc_ibv_get_device_cpuset . 194

22.40.2.2 hwloc_ibv_get_device_osdev . 194

22.40.2.3 hwloc_ibv_get_device_osdev_by_name 194

22.41Topology differences . 196

22.41.1 Detailed Description . 196

22.41.2 Typedef Documentation . 197

22.41.2.1 hwloc_topology_diff_obj_attr_type_t 197

22.41.2.2 hwloc_topology_diff_t . 197

22.41.2.3 hwloc_topology_diff_type_t . 197

22.41.3 Enumeration Type Documentation . 197

22.41.3.1 hwloc_topology_diff_apply_flags_e 197

22.41.3.2 hwloc_topology_diff_obj_attr_type_e 197

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

xvi CONTENTS

22.41.3.3 hwloc_topology_diff_type_e . 198

22.41.4 Function Documentation . 198

22.41.4.1 hwloc_topology_diff_apply . 198

22.41.4.2 hwloc_topology_diff_build . 198

22.41.4.3 hwloc_topology_diff_destroy . 199

22.41.4.4 hwloc_topology_diff_export_xml . 199

22.41.4.5 hwloc_topology_diff_export_xmlbuffer 199

22.41.4.6 hwloc_topology_diff_load_xml . 199

22.41.4.7 hwloc_topology_diff_load_xmlbuffer 200

22.42Sharing topologies between processes . 201

22.42.1 Detailed Description . 201

22.42.2 Function Documentation . 201

22.42.2.1 hwloc_shmem_topology_adopt . 201

22.42.2.2 hwloc_shmem_topology_get_length 202

22.42.2.3 hwloc_shmem_topology_write . 202

22.43Components and Plugins: Discovery components . 203

22.43.1 Typedef Documentation . 203

22.43.1.1 hwloc_disc_component_type_t . 203

22.43.2 Enumeration Type Documentation . 203

22.43.2.1 hwloc_disc_component_type_e . 203

22.44Components and Plugins: Discovery backends . 204

22.44.1 Function Documentation . 204

22.44.1.1 hwloc_backend_alloc . 204

22.44.1.2 hwloc_backend_enable . 204

22.45Components and Plugins: Generic components . 205

22.45.1 Typedef Documentation . 205

22.45.1.1 hwloc_component_type_t . 205

22.45.2 Enumeration Type Documentation . 205

22.45.2.1 hwloc_component_type_e . 205

22.46Components and Plugins: Core functions to be used by components 206

22.46.1 Typedef Documentation . 206

22.46.1.1 hwloc_report_error_t . 206

22.46.2 Function Documentation . 206

22.46.2.1 hwloc__insert_object_by_cpuset . 206

22.46.2.2 hwloc_alloc_setup_object . 206

22.46.2.3 hwloc_hide_errors . 206

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS xvii

22.46.2.4 hwloc_insert_object_by_cpuset . 207

22.46.2.5 hwloc_insert_object_by_parent . 207

22.46.2.6 hwloc_obj_add_children_sets . 207

22.46.2.7 hwloc_plugin_check_namespace . 207

22.46.2.8 hwloc_report_os_error . 208

22.46.2.9 hwloc_topology_reconnect . 208

22.47Components and Plugins: Filtering objects . 209

22.47.1 Function Documentation . 209

22.47.1.1 hwloc_filter_check_keep_object . 209

22.47.1.2 hwloc_filter_check_keep_object_type 209

22.47.1.3 hwloc_filter_check_osdev_subtype_important 209

22.47.1.4 hwloc_filter_check_pcidev_subtype_important 209

22.48Components and Plugins: helpers for PCI discovery . 210

22.48.1 Function Documentation . 210

22.48.1.1 hwloc_pcidisc_check_bridge_type . 210

22.48.1.2 hwloc_pcidisc_find_cap . 210

22.48.1.3 hwloc_pcidisc_find_linkspeed . 210

22.48.1.4 hwloc_pcidisc_setup_bridge_attr . 210

22.48.1.5 hwloc_pcidisc_tree_attach . 210

22.48.1.6 hwloc_pcidisc_tree_insert_by_busid 211

22.49Components and Plugins: finding PCI objects during other discoveries 212

22.49.1 Function Documentation . 212

22.49.1.1 hwloc_pcidisc_find_busid_parent . 212

22.49.1.2 hwloc_pcidisc_find_by_busid . 212

22.50Netloc API . 213

22.50.1 Enumeration Type Documentation . 213

22.50.1.1 "@3 . 213

23 Data Structure Documentation 215

23.1 hwloc_backend Struct Reference . 215

23.1.1 Detailed Description . 215

23.1.2 Field Documentation . 215

23.1.2.1 disable . 215

23.1.2.2 discover . 215

23.1.2.3 flags . 216

23.1.2.4 get_pci_busid_cpuset . 216

23.1.2.5 is_thissystem . 216

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

xviii CONTENTS

23.1.2.6 private_data . 216

23.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 217

23.2.1 Detailed Description . 217

23.2.2 Field Documentation . 217

23.2.2.1 depth . 217

23.2.2.2 domain . 217

23.2.2.3 downstream . 217

23.2.2.4 downstream_type . 217

23.2.2.5 pci . 217

23.2.2.6 pci . 217

23.2.2.7 secondary_bus . 217

23.2.2.8 subordinate_bus . 217

23.2.2.9 upstream . 217

23.2.2.10 upstream_type . 217

23.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference 219

23.3.1 Detailed Description . 219

23.3.2 Field Documentation . 219

23.3.2.1 associativity . 219

23.3.2.2 depth . 219

23.3.2.3 linesize . 219

23.3.2.4 size . 219

23.3.2.5 type . 219

23.4 hwloc_component Struct Reference . 220

23.4.1 Detailed Description . 220

23.4.2 Field Documentation . 220

23.4.2.1 abi . 220

23.4.2.2 data . 220

23.4.2.3 finalize . 220

23.4.2.4 flags . 220

23.4.2.5 init . 221

23.4.2.6 type . 221

23.5 hwloc_disc_component Struct Reference . 222

23.5.1 Detailed Description . 222

23.5.2 Field Documentation . 222

23.5.2.1 enabled_by_default . 222

23.5.2.2 excludes . 222

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS xix

23.5.2.3 instantiate . 222

23.5.2.4 name . 222

23.5.2.5 priority . 223

23.5.2.6 type . 223

23.6 hwloc_distances_s Struct Reference . 224

23.6.1 Detailed Description . 224

23.6.2 Field Documentation . 224

23.6.2.1 kind . 224

23.6.2.2 nbobjs . 224

23.6.2.3 objs . 224

23.6.2.4 values . 224

23.7 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference 225

23.7.1 Detailed Description . 225

23.7.2 Field Documentation . 225

23.7.2.1 depth . 225

23.7.2.2 kind . 225

23.7.2.3 subkind . 225

23.8 hwloc_info_s Struct Reference . 226

23.8.1 Detailed Description . 226

23.8.2 Field Documentation . 226

23.8.2.1 name . 226

23.8.2.2 value . 226

23.9 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference 227

23.9.1 Detailed Description . 227

23.9.2 Field Documentation . 227

23.9.2.1 count . 227

23.9.2.2 size . 227

23.10hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference 228

23.10.1 Detailed Description . 228

23.10.2 Field Documentation . 228

23.10.2.1 local_memory . 228

23.10.2.2 page_types . 228

23.10.2.3 page_types_len . 228

23.11hwloc_obj Struct Reference . 229

23.11.1 Detailed Description . 230

23.11.2 Field Documentation . 230

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

xx CONTENTS

23.11.2.1 arity . 230

23.11.2.2 attr . 230

23.11.2.3 children . 230

23.11.2.4 complete_cpuset . 230

23.11.2.5 complete_nodeset . 230

23.11.2.6 cpuset . 231

23.11.2.7 depth . 231

23.11.2.8 first_child . 231

23.11.2.9 gp_index . 231

23.11.2.10infos . 231

23.11.2.11infos_count . 231

23.11.2.12io_arity . 231

23.11.2.13io_first_child . 231

23.11.2.14last_child . 232

23.11.2.15logical_index . 232

23.11.2.16memory_arity . 232

23.11.2.17memory_first_child . 232

23.11.2.18misc_arity . 232

23.11.2.19misc_first_child . 232

23.11.2.20name . 232

23.11.2.21next_cousin . 232

23.11.2.22next_sibling . 232

23.11.2.23nodeset . 232

23.11.2.24os_index . 233

23.11.2.25parent . 233

23.11.2.26prev_cousin . 233

23.11.2.27prev_sibling . 233

23.11.2.28sibling_rank . 233

23.11.2.29subtype . 233

23.11.2.30symmetric_subtree . 233

23.11.2.31total_memory . 233

23.11.2.32type . 234

23.11.2.33userdata . 234

23.12hwloc_obj_attr_u Union Reference . 235

23.12.1 Detailed Description . 235

23.12.2 Field Documentation . 235

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS xxi

23.12.2.1 bridge . 235

23.12.2.2 cache . 235

23.12.2.3 group . 236

23.12.2.4 numanode . 236

23.12.2.5 osdev . 236

23.12.2.6 pcidev . 236

23.13hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference 237

23.13.1 Detailed Description . 237

23.13.2 Field Documentation . 237

23.13.2.1 type . 237

23.14hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 238

23.14.1 Detailed Description . 238

23.14.2 Field Documentation . 238

23.14.2.1 bus . 238

23.14.2.2 class_id . 238

23.14.2.3 dev . 238

23.14.2.4 device_id . 238

23.14.2.5 domain . 238

23.14.2.6 func . 238

23.14.2.7 linkspeed . 238

23.14.2.8 revision . 238

23.14.2.9 subdevice_id . 238

23.14.2.10subvendor_id . 238

23.14.2.11vendor_id . 238

23.15hwloc_topology_cpubind_support Struct Reference . 239

23.15.1 Detailed Description . 239

23.15.2 Field Documentation . 239

23.15.2.1 get_proc_cpubind . 239

23.15.2.2 get_proc_last_cpu_location . 239

23.15.2.3 get_thisproc_cpubind . 239

23.15.2.4 get_thisproc_last_cpu_location . 239

23.15.2.5 get_thisthread_cpubind . 239

23.15.2.6 get_thisthread_last_cpu_location . 240

23.15.2.7 get_thread_cpubind . 240

23.15.2.8 set_proc_cpubind . 240

23.15.2.9 set_thisproc_cpubind . 240

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

xxii CONTENTS

23.15.2.10set_thisthread_cpubind . 240

23.15.2.11set_thread_cpubind . 240

23.16hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference 241

23.16.1 Field Documentation . 241

23.16.1.1 next . 241

23.16.1.2 type . 241

23.17hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference 242

23.17.1 Field Documentation . 242

23.17.1.1 type . 242

23.18hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference 243

23.18.1 Field Documentation . 243

23.18.1.1 diff . 243

23.18.1.2 next . 243

23.18.1.3 obj_depth . 243

23.18.1.4 obj_index . 243

23.18.1.5 type . 243

23.19hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference 244

23.19.1 Detailed Description . 244

23.19.2 Field Documentation . 244

23.19.2.1 name . 244

23.19.2.2 newvalue . 244

23.19.2.3 oldvalue . 244

23.19.2.4 type . 244

23.20hwloc_topology_diff_obj_attr_u Union Reference . 245

23.20.1 Detailed Description . 245

23.20.2 Field Documentation . 245

23.20.2.1 generic . 245

23.20.2.2 string . 245

23.20.2.3 uint64 . 245

23.21hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference 246

23.21.1 Detailed Description . 246

23.21.2 Field Documentation . 246

23.21.2.1 index . 246

23.21.2.2 newvalue . 246

23.21.2.3 oldvalue . 246

23.21.2.4 type . 246

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

CONTENTS xxiii

23.22hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference 247

23.22.1 Field Documentation . 247

23.22.1.1 next . 247

23.22.1.2 obj_depth . 247

23.22.1.3 obj_index . 247

23.22.1.4 type . 247

23.23hwloc_topology_diff_u Union Reference . 248

23.23.1 Detailed Description . 248

23.23.2 Field Documentation . 248

23.23.2.1 generic . 248

23.23.2.2 obj_attr . 248

23.23.2.3 too_complex . 248

23.24hwloc_topology_discovery_support Struct Reference . 249

23.24.1 Detailed Description . 249

23.24.2 Field Documentation . 249

23.24.2.1 numa . 249

23.24.2.2 numa_memory . 249

23.24.2.3 pu . 249

23.25hwloc_topology_membind_support Struct Reference . 250

23.25.1 Detailed Description . 250

23.25.2 Field Documentation . 250

23.25.2.1 alloc_membind . 250

23.25.2.2 bind_membind . 250

23.25.2.3 firsttouch_membind . 250

23.25.2.4 get_area_membind . 250

23.25.2.5 get_area_memlocation . 251

23.25.2.6 get_proc_membind . 251

23.25.2.7 get_thisproc_membind . 251

23.25.2.8 get_thisthread_membind . 251

23.25.2.9 interleave_membind . 251

23.25.2.10migrate_membind . 251

23.25.2.11nexttouch_membind . 251

23.25.2.12set_area_membind . 251

23.25.2.13set_proc_membind . 251

23.25.2.14set_thisproc_membind . 251

23.25.2.15set_thisthread_membind . 251

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

xxiv CONTENTS

23.26hwloc_topology_support Struct Reference . 252

23.26.1 Detailed Description . 252

23.26.2 Field Documentation . 252

23.26.2.1 cpubind . 252

23.26.2.2 discovery . 252

23.26.2.3 membind . 252

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 1

Hardware Locality

Portable abstraction of parallel architectures for high-performance
computing

1.1 Introduction

The Hardware Locality (hwloc) software project aims at easing the process of discovering hardware re-
sources in parallel architectures. It offers command-line tools and a C API for consulting these resources,
their locality, attributes, and interconnection. hwloc primarily aims at helping high-performance comput-
ing (HPC) applications, but is also applicable to any project seeking to exploit code and/or data locality on
modern computing platforms.

hwloc is actually made of two subprojects distributed together:

• The original hwloc project for describing the internals of computing nodes. It is described in
details starting at section Hardware Locality (hwloc) Introduction.

• The network-oriented companion called netloc (Network Locality), described in details starting
with section Network Locality (netloc).

Netloc may be disabled, but the original hwloc cannot. Both hwloc and netloc APIs are documented after
these sections.

1.2 Installation

hwloc (http://www.open-mpi.org/projects/hwloc/) is available under the BSD license. It
is hosted as a sub-project of the overall Open MPI project (http://www.open-mpi.org/). Note that
hwloc does not require any functionality from Open MPI -- it is a wholly separate (and much smaller!)
project and code base. It just happens to be hosted as part of the overall Open MPI project.

1.2.1 Basic Installation

Installation is the fairly common GNU-based process:

shell$./configure --prefix=...

http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/

2 Hardware Locality

shell$ make
shell$ make install

hwloc- and netloc-specific configure options and requirements are documented in sections hwloc Installa-
tion and Netloc Installation respectively.

Also note that if you install supplemental libraries in non-standard locations, hwloc’s configure script may
not be able to find them without some help. You may need to specify additional CPPFLAGS, LDFLAGS,
or PKG_CONFIG_PATH values on the configure command line.

For example, if libpciaccess was installed into /opt/pciaccess, hwloc’s configure script may not find it be
default. Try adding PKG_CONFIG_PATH to the ./configure command line, like this:

./configure PKG_CONFIG_PATH=/opt/pciaccess/lib/pkgconfig ...

Running the "lstopo" tool is a good way to check as a graphical output whether hwloc properly detected
the architecture of your node. Netloc command-line tools can be used to display the network topology
interconnecting your nodes.

1.2.2 Installing from a Git clone

Additionally, the code can be directly cloned from Git:

shell$ git clone https://github.com/open-mpi/hwloc.git
shell$ cd hwloc
shell$./autogen.sh

Note that GNU Autoconf >=2.63, Automake >=1.11 and Libtool >=2.2.6 are required when building
from a Git clone.

Nightly development snapshots are available on the web site, they can be configured and built without any
need for Git or GNU Autotools.

1.3 Questions and Bugs

Bugs should be reported in the tracker (https://github.com/open-mpi/hwloc/issues).
Opening a new issue automatically displays lots of hints about how to debug and report issues.

Questions may be sent to the users or developers mailing lists
(http://www.open-mpi.org/community/lists/hwloc.php).

There is also a #hwloc IRC channel on Freenode (irc.freenode.net).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

https://github.com/open-mpi/hwloc/issues
http://www.open-mpi.org/community/lists/hwloc.php

Chapter 2

Hardware Locality (hwloc)
Introduction

4 Hardware Locality (hwloc) Introduction

Portable abstraction of hierarchical architectures for high-
performance computing

See also Further Reading for links to more sections about hwloc concepts.

2.1 hwloc Summary

hwloc provides command line tools and a C API to obtain the hierarchical map of key computing elements
within a node, such as: NUMA memory nodes, shared caches, processor packages, processor cores, pro-
cessing units (logical processors or "threads") and even I/O devices. hwloc also gathers various attributes
such as cache and memory information, and is portable across a variety of different operating systems and
platforms.

hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable to
any project seeking to exploit code and/or data locality on modern computing platforms.

hwloc supports the following operating systems:

• Linux (including old kernels not having sysfs topology information, with knowledge of cpusets,
ScaleMP vSMP support, etc.) on all supported hardware, including Intel Xeon Phi and NumaScale
NumaConnect.

• Solaris (with support for processor sets and logical domains)

• AIX

• Darwin / OS X

• FreeBSD and its variants (such as kFreeBSD/GNU)

• NetBSD

• HP-UX

• Microsoft Windows

• IBM BlueGene/Q Compute Node Kernel (CNK)

Since it uses standard Operating System information, hwloc’s support is mostly independant from the pro-
cessor type (x86, powerpc, ...) and just relies on the Operating System support. The main exception is
BSD operating systems (NetBSD, FreeBSD, etc.) because they do not provide support topology informa-
tion, hence hwloc uses an x86-only CPUID-based backend (which can be used for other OSes too, see the
Components and plugins section).

To check whether hwloc works on a particular machine, just try to build it and run lstopo or
lstopo-no-graphics. If some things do not look right (e.g. bogus or missing cache information), see
Questions and Bugs.

hwloc only reports the number of processors on unsupported operating systems; no topology information
is available.

For development and debugging purposes, hwloc also offers the ability to work on "fake" topologies:

• Symmetrical tree of resources generated from a list of level arities, see Synthetic topologies.

• Remote machine simulation through the gathering of topology as XML files, see Importing and
exporting topologies from/to XML files.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

2.2 hwloc Installation 5

hwloc can display the topology in a human-readable format, either in graphical mode (X11), or by exporting
in one of several different formats, including: plain text, PDF, PNG, and FIG (see Command-line Examples
below). Note that some of the export formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also brings a powerful
CPU bitmap API that is used to describe topology objects location on physical/logical processors. See the
Programming Interface below. It may also be used to binding applications onto certain cores or memory
nodes. Several utility programs are also provided to ease command-line manipulation of topology objects,
binding of processes, and so on.

Perl bindings are available from Bernd Kallies on CPAN.

Python bindings are available from Guy Streeter:

• Fedora RPM and tarball.

• git tree (html).

2.2 hwloc Installation

The generic installation procedure for both hwloc and netloc is described in Installation.

The hwloc command-line tool "lstopo" produces human-readable topology maps, as mentioned above. It
can also export maps to the "fig" file format. Support for PDF, Postscript, and PNG exporting is provided if
the "Cairo" development package (usually cairo-devel or libcairo2-dev) can be found in "lstopo"
when hwloc is configured and build.

The hwloc core may also benefit from the following development packages:

• libpciaccess for full I/O device discovery (libpciaccess-devel or libpciaccess-dev
package). On Linux, PCI discovery may still be performed (without vendor/device names) even
if libpciaccess cannot be used.

• the AMD OpenCL implementation for OpenCL device discovery.

• the NVIDIA CUDA Toolkit for CUDA device discovery.

• the NVIDIA Management Library (NVML) for NVML device discovery. It is included in CUDA
since version 8.0. Older NVML releases were available within the NVIDIA GPU Deployment Kit
from https://developer.nvidia.com/gpu-deployment-kit .

• the NV-CONTROL X extension library (NVCtrl) for NVIDIA display dis-
covery. The relevant development package is usually libXNVCtrl-devel
or libxnvctrl-dev. It is also available within nvidia-settings from
ftp://download.nvidia.com/XFree86/nvidia-settings/ and
https://github.com/NVIDIA/nvidia-settings/ .

• libxml2 for full XML import/export support (otherwise, the internal minimalistic parser will only
be able to import XML files that were exported by the same hwloc release). See Importing and
exporting topologies from/to XML files for details. The relevant development package is usually
libxml2-devel or libxml2-dev.

• libudev on Linux for easier discovery of OS device information (otherwise hwloc will try to man-
ually parse udev raw files). The relevant development package is usually libudev-devel or
libudev-dev.

• libtool’s ltdl library for dynamic plugin loading. The relevant development package is usually
libtool-ltdl-devel or libltdl-dev.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

http://search.cpan.org/~bka/Sys-Hwloc-0.10/
http://people.redhat.com/streeter/
git://git.fedorahosted.org/python-hwloc.git
http://git.fedorahosted.org/git/python-hwloc.git
https://developer.nvidia.com/gpu-deployment-kit
ftp://download.nvidia.com/XFree86/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/

6 Hardware Locality (hwloc) Introduction

PCI and XML support may be statically built inside the main hwloc library, or as separate dynamically-
loaded plugins (see the Components and plugins section).

Note that because of the possibility of GPL taint, the pciutils library libpci will not be used (re-
member that hwloc is BSD-licensed).

2.3 Command-line Examples

On a 4-package 2-core machine with hyper-threading, the lstopo tool may show the following graphical
output:

Here’s the equivalent output in textual form:

Machine
NUMANode L#0 (P#0)
Package L#0 + L3 L#0 (4096KB)

L2 L#0 (1024KB) + L1 L#0 (16KB) + Core L#0
PU L#0 (P#0)
PU L#1 (P#8)

L2 L#1 (1024KB) + L1 L#1 (16KB) + Core L#1
PU L#2 (P#4)
PU L#3 (P#12)

Package L#1 + L3 L#1 (4096KB)
L2 L#2 (1024KB) + L1 L#2 (16KB) + Core L#2

PU L#4 (P#1)
PU L#5 (P#9)

L2 L#3 (1024KB) + L1 L#3 (16KB) + Core L#3
PU L#6 (P#5)
PU L#7 (P#13)

Package L#2 + L3 L#2 (4096KB)
L2 L#4 (1024KB) + L1 L#4 (16KB) + Core L#4

PU L#8 (P#2)
PU L#9 (P#10)

L2 L#5 (1024KB) + L1 L#5 (16KB) + Core L#5
PU L#10 (P#6)
PU L#11 (P#14)

Package L#3 + L3 L#3 (4096KB)
L2 L#6 (1024KB) + L1 L#6 (16KB) + Core L#6

PU L#12 (P#3)
PU L#13 (P#11)

L2 L#7 (1024KB) + L1 L#7 (16KB) + Core L#7
PU L#14 (P#7)
PU L#15 (P#15)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

2.3 Command-line Examples 7

Note that there is also an equivalent output in XML that is meant for exporting/importing topologies but it
is hardly readable to human-beings (see Importing and exporting topologies from/to XML files for details).

On a 4-package 2-core Opteron NUMA machine (with two core cores disallowed by the administrator),
the lstopo tool may show the following graphical output (with \--whole-system for displaying
disallowed objects):

Here’s the equivalent output in textual form:

Machine (32GB total)
Package L#0

NUMANode L#0 (P#0 8190MB)
L2 L#0 (1024KB) + L1 L#0 (64KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (1024KB) + L1 L#1 (64KB) + Core L#1 + PU L#1 (P#1)

Package L#1
NUMANode L#1 (P#1 8192MB)
L2 L#2 (1024KB) + L1 L#2 (64KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (1024KB) + L1 L#3 (64KB) + Core L#3 + PU L#3 (P#3)

Package L#2
NUMANode L#2 (P#2 8192MB)
L2 L#4 (1024KB) + L1 L#4 (64KB) + Core L#4 + PU L#4 (P#4)
L2 L#5 (1024KB) + L1 L#5 (64KB) + Core L#5 + PU L#5 (P#5)

Package L#3
NUMANode L#3 (P#3 8192MB)
L2 L#6 (1024KB) + L1 L#6 (64KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (1024KB) + L1 L#7 (64KB) + Core L#7 + PU L#7 (P#7)

On a 2-package quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each package):

Here’s the same output in textual form:

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

8 Hardware Locality (hwloc) Introduction

Machine (total 16GB)
NUMANode L#0 (P#0 16GB)
Package L#0

L2 L#0 (4096KB)
L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L1 L#1 (32KB) + Core L#1 + PU L#1 (P#4)

L2 L#1 (4096KB)
L1 L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L1 L#3 (32KB) + Core L#3 + PU L#3 (P#6)

Package L#1
L2 L#2 (4096KB)

L1 L#4 (32KB) + Core L#4 + PU L#4 (P#1)
L1 L#5 (32KB) + Core L#5 + PU L#5 (P#5)

L2 L#3 (4096KB)
L1 L#6 (32KB) + Core L#6 + PU L#6 (P#3)
L1 L#7 (32KB) + Core L#7 + PU L#7 (P#7)

2.4 Programming Interface

The basic interface is available in hwloc.h. Some higher-level functions are available in hwloc/helper.h to
reduce the need to manually manipulate objects and follow links between them. Documentation for all these
is provided later in this document. Developers may also want to look at hwloc/inlines.h which contains
the actual inline code of some hwloc.h routines, and at this document, which provides good higher-level
topology traversal examples.

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is available and should
probably be read first.

Each hwloc object contains a cpuset describing the list of processing units that it contains. These bitmaps
may be used for CPU binding and Memory binding. hwloc offers an extensive bitmap manipulation inter-
face in hwloc/bitmap.h.

Moreover, hwloc also comes with additional helpers for interoperability with several commonly used envi-
ronments. See the Interoperability With Other Software section for details.

The complete API documentation is available in a full set of HTML pages, man pages, and self-contained
PDF files (formatted for both both US letter and A4 formats) in the source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Git clone, you will need to have Doxygen and
pdflatex installed -- the documentation will be built during the normal "make" process. The documentation
is installed during "make install" to $prefix/share/doc/hwloc/ and your systems default man page tree (under
$prefix, of course).

2.4.1 Portability

Operating System have varying support for CPU and memory binding, e.g. while some Operating Systems
provide interfaces for all kinds of CPU and memory bindings, some others provide only interfaces for a
limited number of kinds of CPU and memory binding, and some do not provide any binding interface at
all. Hwloc’s binding functions would then simply return the ENOSYS error (Function not implemented),
meaning that the underlying Operating System does not provide any interface for them. CPU binding and
Memory binding provide more information on which hwloc binding functions should be preferred because
interfaces for them are usually available on the supported Operating Systems.

Similarly, the ability of reporting topology information varies from one platform to another. As shown in
Command-line Examples, hwloc can obtain information on a wide variety of hardware topologies. How-
ever, some platforms and/or operating system versions will only report a subset of this information. For
example, on an PPC64-based system with 8 cores (each with 2 hardware threads) running a default 2.6.18-

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

2.4 Programming Interface 9

based kernel from RHEL 5.4, hwloc is only able to glean information about NUMA nodes and processor
units (PUs). No information about caches, packages, or cores is available.

Here’s the graphical output from lstopo on this platform when Simultaneous Multi-Threading (SMT) is
enabled:

And here’s the graphical output from lstopo on this platform when SMT is disabled:

Notice that hwloc only sees half the PUs when SMT is disabled. PU L#6, for example, seems to change
location from NUMA node #0 to #1. In reality, no PUs "moved" -- they were simply re-numbered when
hwloc only saw half as many (see also Logical index in Indexes and Sets). Hence, PU L#6 in the SMT-
disabled picture probably corresponds to PU L#12 in the SMT-enabled picture.

This same "PUs have disappeared" effect can be seen on other platforms -- even platforms / OSs that
provide much more information than the above PPC64 system. This is an unfortunate side-effect of how
operating systems report information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to 2.6.34, hwloc is able
to discover all the topology information. The following picture shows the entire topology layout when
SMT is enabled:

Developers using the hwloc API or XML output for portable applications should therefore be extremely
careful to not make any assumptions about the structure of data that is returned. For example, per the above
reported PPC topology, it is not safe to assume that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available in this version of
hwloc. Long-lived applications that are meant to span multiple different hardware platforms should also
be careful about making structure assumptions. For example, a new element may someday exist between a
core and a PU.

2.4.2 API Example

The following small C example (available in the source tree as “doc/examples/hwloc-hello.c”) prints the
topology of the machine and performs some thread and memory binding. More examples are available in

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

10 Hardware Locality (hwloc) Introduction

the doc/examples/ directory of the source tree.

hwloc provides a pkg-config executable to obtain relevant compiler and linker flags. For example, it
can be used thusly to compile applications that utilize the hwloc library (assuming GNU Make):

CFLAGS += $(shell pkg-config --cflags hwloc)
LDLIBS += $(shell pkg-config --libs hwloc)

hwloc-hello: hwloc-hello.c
$(CC) hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)

On a machine 2 processor packages -- each package of which has two processing cores -- the output from
running hwloc-hello could be something like the following:

shell$./hwloc-hello

*** Objects at level 0
Index 0: Machine

*** Objects at level 1
Index 0: Package#0
Index 1: Package#1

*** Objects at level 2
Index 0: Core#0
Index 1: Core#1
Index 2: Core#3
Index 3: Core#2

*** Objects at level 3
Index 0: PU#0
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3

*** Printing overall tree
Machine

Package#0
Core#0

PU#0
Core#1

PU#1
Package#1

Core#3
PU#2

Core#2
PU#3

*** 2 package(s)

*** Logical processor 0 has 0 caches totaling 0KB
shell$

2.5 History / Credits

hwloc is the evolution and merger of the libtopology (http://runtime.bordeaux.inria.fr/libtopology/)
project and the Portable Linux Processor Affinity (PLPA) (http://www.open-mpi.org/projects/plpa/)
project. Because of functional and ideological overlap, these two code bases and ideas were merged and
released under the name "hwloc" as an Open MPI sub-project.

libtopology was initially developed by the inria Runtime Team-Project
(http://runtime.bordeaux.inria.fr/) (headed by Raymond Namyst
(http://dept-info.labri.fr/∼namyst/). PLPA was initially developed by the Open
MPI development team as a sub-project. Both are now deprecated in favor of hwloc, which is distributed
as an Open MPI sub-project.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

http://runtime.bordeaux.inria.fr/libtopology/
http://www.open-mpi.org/projects/plpa/
http://runtime.bordeaux.inria.fr/
http://dept-info.labri.fr/~namyst/

2.6 Further Reading 11

2.6 Further Reading

The documentation chapters include

• Terms and Definitions

• Command-Line Tools

• Environment Variables

• CPU and Memory Binding Overview

• I/O Devices

• Miscellaneous objects

• Object attributes

• Importing and exporting topologies from/to XML files

• Synthetic topologies

• Interoperability With Other Software

• Thread Safety

• Components and plugins

• Embedding hwloc in Other Software

• Frequently Asked Questions

• Upgrading to the hwloc 2.0 API

Make sure to have had a look at those too!

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

12 Hardware Locality (hwloc) Introduction

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 3

Terms and Definitions

14 Terms and Definitions

3.1 Objects

Object Interesting kind of part of the system, such as a Core, a L2Cache, a NUMA memory node, etc.
The different types detected by hwloc are detailed in the hwloc_obj_type_t enumeration.

There are four kinds of Objects: Memory (NUMA nodes), I/O (Bridges, PCI and OS devices), Misc,
and Normal (everything else, including Machine, Package, Core, PU, CPU Caches, etc.). Normal
and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc don’t.

Objects are topologically sorted by locality (CPU and node sets) into a tree (see Hierarchy, Tree and
Levels).

Processing Unit (or Logical Processor) The smallest processing element that can be represented by a
hwloc object. It may be a single-core processor, a core of a multicore processor, or a single thread in
a SMT processor. hwloc’s PU acronym stands for Processing Unit.

"Logical processor" should not be confused with "Logical index of a processor".

Package A processor Package is the physical package that usually gets inserted into a socket on the moth-
erboard. It is also often called a physical processor or a CPU even if these names bring confusion
with respect to cores and processing units. A processor package usually contains multiple cores (and
may also be composed of multiple dies). hwloc Package objects were called Sockets up to hwloc
1.10.

NUMA Node An object that contains memory that is directly and byte-accessible to the host processors.
It is usually close to some cores as specified by its CPU set. Hence it is attached as a memory child
of the object that groups those cores together, for instance a Package objects with 4 Core children
(see Hierarchy, Tree and Levels).

3.2 Indexes and Sets

OS or physical index The index that the operating system (OS) uses to identify the object. This may be
completely arbitrary, non-unique, non-contiguous, not representative of logical proximity, and may
depend on the BIOS configuration. That is why hwloc almost never uses them, only in the default
lstopo output (P#x) and cpuset masks. See also Should I use logical or physical/OS indexes? and
how?.

Logical index Index to uniquely identify objects of the same type and depth, automatically computed
by hwloc according to the topology. It expresses logical proximity in a generic way, i.e. objects
which have adjacent logical indexes are adjacent in the topology. That is why hwloc almost always
uses it in its API, since it expresses logical proximity. They can be shown (as L#x) by lstopo
thanks to the -l option. This index is always linear and in the range [0, num_objs_same_type_-
same_level-1]. Think of it as “cousin rank.” The ordering is based on topology first, and then on
OS CPU numbers, so it is stable across everything except firmware CPU renumbering. "Logical
index" should not be confused with "Logical processor". A "Logical processor" (which in hwloc we
rather call "processing unit" to avoid the confusion) has both a physical index (as chosen arbitrarily
by BIOS/OS) and a logical index (as computed according to logical proximity by hwloc). See also
Should I use logical or physical/OS indexes? and how?.

CPU set The set of logical processors (or processing units) logically included in an object (if it makes
sense). They are always expressed using physical logical processor numbers (as announced by the
OS). They are implemented as the hwloc_bitmap_t opaque structure. hwloc CPU sets are just masks,
they do not have any relation with an operating system actual binding notion like Linux’ cpusets. I/O
and Misc objects do not have CPU sets while all Normal and Memory objects have non-NULL CPU
sets.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

3.3 Hierarchy, Tree and Levels 15

Node set The set of NUMA memory nodes logically included in an object (if it makes sense). They are
always expressed using physical node numbers (as announced by the OS). They are implemented
with the hwloc_bitmap_t opaque structure. as bitmaps. I/O and Misc objects do not have Node sets
while all Normal and Memory objects have non-NULL nodesets.

Bitmap A possibly-infinite set of bits used for describing sets of objects such as CPUs (CPU sets) or
memory nodes (Node sets). They are implemented with the hwloc_bitmap_t opaque structure.

3.3 Hierarchy, Tree and Levels

Parent object The object logically containing the current object, for example because its CPU set includes
the CPU set of the current object. All objects have a non-NULL parent, except the root of the
topology (Machine object).

Ancestor object The parent object, or its own parent, and so on.

Children object(s) The object (or objects) contained in the current object because their CPU set is in-
cluded in the CPU set of the current object. Each object may also contain separated lists for Memory,
I/O and Misc object children.

Arity The number of normal children of an object. There are also specific arities for Memory, I/O and
Misc children.

Sibling objects Objects in the same children list, which all of them are normal children of the same parent,
or all of them are Memory children of the same parent, or I/O children, or Misc. They usually have
the same type (and hence are cousins, as well). But they may not if the topology is asymmetric.

Sibling rank Index to uniquely identify objects which have the same parent, and is always in the range
[0, arity-1] (respectively memory_arity, io_arity or misc_arity for Memory, I/O and Misc children of
a parent).

Cousin objects Objects of the same type (and depth) as the current object, even if they do not have the
same parent.

Level Set of objects of the same type and depth. All these objects are cousins.

Memory, I/O and Misc objects also have their own specific levels and (virtual) depth.

Depth Nesting level in the object tree, starting from the root object. If the topology is symmetric, the
depth of a child is equal to the parent depth plus one, and an object depth is also equal to the number
of parent/child links between the root object and the given object. If the topology is asymmetric, the
difference between some parent and child depths may be larger than one when some intermediate
levels (for instance groups) are missing in only some parts of the machine.

The depth of the Machine object is always 0 since it is always the root of the topology. The depth of
PU objects is equal to the number of levels in the topology minus one.

Memory, I/O and Misc objects also have their own specific levels and depth.

The following diagram can help to understand the vocabulary of the relationships by showing the example
of a machine with two dual core packages (with no hardware threads); thus, a topology with 5 levels. Each
box with rounded corner corresponds to one hwloc_obj_t, containing the values of the different integer
fields (depth, logical_index, etc.), and arrows show to which other hwloc_obj_t pointers point to (first_-
child, parent, etc.).

The topology always starts with a Machine object as root (depth 0) and ends with PU objects at the bottom
(depth 4 here).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

16 Terms and Definitions

Objects of the same level (cousins) are listed in red boxes and linked with red arrows. Children of the same
parent (siblings) are linked with blue arrows.

The L2 cache of the last core is intentionally missing to show how asymmetric topologies are handled. See
What happens if my topology is asymmetric? for more information about such strange topologies.

Package
.depth = 1
.logical_index =0
.os_index = 0
.sibling_rank=0
.arity=2

next_sibling

prev_sibling

last_child
children[1]

children[0]
first_child

children[1]
last_child

children[0]
first_child

first_child
children[0]

Machine
level
depth=0

Package
level
depth=1

next_sibling

prev_sibling

next_cousin

prev_cousin

next_cousin

prev_cousin

Cache
level
depth=2

first_child
last_child

children[0]
first_child
last_child

children[0]
first_child
last_child

children[0]

Core

.arity=1

.depth = 3

.logical_index = 3

.os_index = 1

.sibling_rank=0
next_cousin

prev_cousin

Core
level
depth=3

first_child
last_child

children[0]
first_child
last_child

children[0]
first_child
last_child

children[0]
first_child
last_child

children[0]

next_cousin

prev_cousin

next_cousin

prev_cousin

PU
level
depth=4

children[1]
last_child

.os_index = 3

PU

.sibling_rank=0

.arity=0

.depth = 4

.logical_index = 3

next_cousin

prev_cousin

parent

parent

.arity=2

.logical_index = 1

.depth = 1
Package

.sibling_rank=1

parent

next_cousin

prev_cousin

parent parent

.arity=1

Cache Cache Cache

.logical_index = 0 .logical_index = 1

.os_index = 0

.sibling_rank=0

.arity=1 .arity=1

.depth = 2 .depth = 2 .depth = 2
.logical_index = 2

.os_index = 1

.sibling_rank=1
.os_index = 0
.sibling_rank=0

parent parent parent

.arity=1

Core Core Core

.logical_index = 0 .logical_index = 1

.os_index = 0

.sibling_rank=0

.arity=1 .arity=1

.depth = 3 .depth = 3 .depth = 3
.logical_index = 2

.os_index = 1

.sibling_rank=0
.os_index = 0
.sibling_rank=0

parent parent parent parent

.os_index = 0 .os_index = 2 .os_index = 1

.sibling_rank=0

PU PU PU

.sibling_rank=0 .sibling_rank=0
.arity=0 .arity=0 .arity=0

.depth = 4

.logical_index = 2
.depth = 4
.logical_index = 1

.depth = 4

.logical_index = 0

next_cousin

prev_cousin

next_cousin

prev_cousin

prev_sibling

next_sibling

parent

.logical_index = 0

.os_index = 1

.sibling_rank = 0

.os_index = 0

.depth = −3

Machine
.depth = 0
.logical_index = 0
.os_index = −1
.sibling_rank=0
.arity=2
.memory_arity=1

NUMA Node

parent

memory_first_child

It should be noted that for PU objects, the logical index -- as computed linearly by hwloc -- is not the same
as the OS index.

The NUMA node is on the side because it is not part of the main tree but rather attached to the object that
corresponds to its locality (the entire machine here, hence the root object). It is attached as a Memory child
(in green) and has a virtual depth (negative). It could also have siblings if there were multiple local NUMA
nodes, or cousins if other NUMA nodes were attached somewhere else in the machine.

I/O or Misc object could be attached in a similar manner.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 4

Command-Line Tools

18 Command-Line Tools

hwloc comes with an extensive C programming interface and several command line utilities. Each of them
is fully documented in its own manual page; the following is a summary of the available command line
tools.

4.1 lstopo and lstopo-no-graphics

lstopo (also known as hwloc-ls) displays the hierarchical topology map of the current system. The output
may be graphical, ascii-art or textual, and can also be exported to numerous file formats such as PDF,
PNG, XML, and others. Advanced graphical outputs require the "Cairo" development package (usually
cairo-devel or libcairo2-dev).

lstopo and lstopo-no-graphics accept the same command-line options. However, graphical outputs are only
available in lstopo. Textual outputs (those that do not depend on heavy external libraries such as Cairo) are
supported in both lstopo and lstopo-no-graphics.

This command can also display the processes currently bound to a part of the machine (via the \--ps
option).

Note that lstopo can read XML files and/or alternate chroot filesystems and display topological maps rep-
resenting those systems (e.g., use lstopo to output an XML file on one system, and then use lstopo to read
in that XML file and display it on a different system).

4.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A simple example
is binding an executable to specific cores (or packages or bitmaps or ...). The hwloc-bind(1) man page
provides much more detail on what is possible.

hwloc-bind can also be used to retrieve the current process’ binding, or retrieve the last CPU(s) where a
process ran, or operate on memory binding.

Just like hwloc-calc, the input locations given to hwloc-bind may be either objects or cpusets (bitmaps as
reported by hwloc-calc or hwloc-distrib).

4.3 hwloc-calc

hwloc-calc is hwloc’s Swiss Army Knife command-line tool for converting things. The input may be either
objects or cpusets (bitmaps as reported by another hwloc-calc instance or by hwloc-distrib), that may be
combined by addition, intersection or subtraction. The output kinds include:

• a cpuset bitmap: This compact opaque representation of objects is useful for shell scripts etc. It may
passed to hwloc command-line tools such as hwloc-calc or hwloc-bind, or to hwloc command-line
options such as lstopo \--restrict.

• the amount of the equivalent hwloc objects from a specific type, or the list of their indexes. This is
useful for iterating over all similar objects (for instance all cores) within a given part of a platform.

• a hierarchical description of objects, for instance a thread index within a core within a package. This
gives a better view of the actual location of an object.

Moreover, input and/or output may be use either physical/OS object indexes or as hwloc’s logical object
indexes. It eases cooperation with external tools such as taskset or numactl by exporting hwloc specifica-

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

4.4 hwloc-info 19

tions into list of processor or NUMA node physical indexes. See also Should I use logical or physical/OS
indexes? and how?.

4.4 hwloc-info

hwloc-info dumps information about the given objects, as well as all its specific attributes. It is intended
to be used with tools such as grep for filtering certain attribute lines. When no object is specified, or when
\--topology is passed, hwloc-info prints a summary of the topology. When \--support is passed,
hwloc-info lists the supported features for the topology.

4.5 hwloc-distrib

hwloc-distrib generates a set of cpuset bitmaps that are uniformly distributed across the machine for the
given number of processes. These strings may be used with hwloc-bind to run processes to maximize their
memory bandwidth by properly distributing them across the machine.

4.6 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on the local machine. By
default, hwloc-ps only lists processes that are bound; unbound process (and Linux kernel threads) are not
displayed.

4.7 hwloc-annotate

hwloc-annotate may modify object (and topology) attributes such as string information (see Custom string
infos for details) or Misc children objects. It reads an input topology from a XML file and outputs the
annotated topology as another XML file.

4.8 hwloc-diff, hwloc-patch and hwloc-compress-dir

hwloc-diff computes the difference between two topologies and outputs it to another XML file.

hwloc-patch reads such a difference file and applies to another topology.

hwloc-compress-dir compresses an entire directory of XML files by using hwloc-diff to save the differences
between topologies instead of entire topologies.

4.9 hwloc-dump-hwdata

hwloc-dump-hwdata is a Linux and x86-specific tool that dumps (during boot, privileged) some topology
and locality information from raw hardware files (SMBIOS and ACPI tables) to human-readable and world-
accessible files that the hwloc library will later reuse.

Currently only used on Intel Xeon Phi processor platforms. See Why do I need hwloc-dump-hwdata for
memory on Intel Xeon Phi processor?.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

20 Command-Line Tools

See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped
files.

4.10 hwloc-gather-topology and hwloc-gather-cpuid

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of the current machine
into a tarball (and the corresponding lstopo outputs).

hwloc-gather-cpuid is a x86-specific tool that dumps the result of CPUID instructions on the current ma-
chine into a directory.

These files may be used later (possibly offline) for simulating or debugging a machine without actually
running on it.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 5

Environment Variables

22 Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following environment variables.

HWLOC_XMLFILE=/path/to/file.xml enforces the discovery from the given XML file as if hwloc_-
topology_set_xml() had been called. This file may have been generated earlier with lstopo file.xml.
For convenience, this backend provides empty binding hooks which just return success. To have
hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM should be set 1 in the envi-
ronment too, to assert that the loaded file is really the underlying system. See also Importing and
exporting topologies from/to XML files.

HWLOC_SYNTHETIC=synthetic_description enforces the discovery through a synthetic description
string as if hwloc_topology_set_synthetic() had been called. For convenience, this backend provides
empty binding hooks which just return success. See also Synthetic topologies.

HWLOC_XML_VERBOSE=1

HWLOC_SYNTHETIC_VERBOSE=1 enables verbose messages in the XML or synthetic topology
backends. hwloc XML backends (see Importing and exporting topologies from/to XML files) can
emit some error messages to the error output stream. Enabling these verbose messages within hwloc
can be useful for understanding failures to parse input XML topologies. Similarly, enabling verbose
messages in the synthetic topology backend can help understand why the description string is invalid.
See also Synthetic topologies.

HWLOC_THISSYSTEM=1 enforces the return value of hwloc_topology_is_thissystem(), as if
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM was set with hwloc_topology_set_flags(). It
means that it makes hwloc assume that the selected backend provides the topology for the system on
which we are running, even if it is not the OS-specific backend but the XML backend for instance.
This means making the binding functions actually call the OS-specific system calls and really do
binding, while the XML backend would otherwise provide empty hooks just returning success. This
can be used for efficiency reasons to first detect the topology once, save it to an XML file, and quickly
reload it later through the XML backend, but still having binding functions actually do bind. This
also enables support for the variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES.

HWLOC_THISSYSTEM_ALLOWED_RESOURCES=1 Get the set of allowed resources from the
native operating system even if the topology was loaded from XML or synthetic description, as if
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES was set with hwloc_-
topology_set_flags(). This variable requires the topology to match the current system (see the vari-
able HWLOC_THISSYSTEM). This is useful when the topology is not loaded directly from the
local machine (e.g. for performance reason) and it comes with all resources, but the running process
is restricted to only a part of the machine (for instance because of Linux Cgroup/Cpuset).

HWLOC_HIDE_ERRORS=0 enables or disables verbose reporting of errors. The hwloc library may
issue warnings to the standard error stream when it detects a problem during topology discovery,
for instance if the operating system (or user) gives contradictory topology information. Setting this
environment variable to 1 removes the actual displaying of these error messages.

HWLOC_GROUPING=1 enables or disables objects grouping based on distances. By default, hwloc
uses distance matrices between objects (either read from the OS or given by the user) to find groups
of close objects. These groups are described by adding intermediate Group objects in the topol-
ogy. Setting this environment variable to 0 will disable this grouping. This variable supersedes the
obsolete HWLOC_IGNORE_DISTANCES variable.

HWLOC_GROUPING_ACCURACY=0.05 relaxes distance comparison during grouping. By default,
objects may be grouped if their distances form a minimal distance graph. When setting this variable
to 0.02, and when HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE is given, these
distances do not have to be strictly equal anymore, they may just be equal with a 2% error. If set to
try instead of a numerical value, hwloc will try to group with perfect accuracy (0, the default), then

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23

with 0.01, 0.02, 0.05 and finally 0.1. Numbers given in this environment variable should always use
a dot as a decimal mark (for instance 0.01 instead of 0,01).

HWLOC_GROUPING_VERBOSE=0 enables or disables some verbose messages during grouping. If
this variable is set to 1, some debug messages will be displayed during distance-based grouping
of objects even if debug was not specific at configure time. This is useful when trying to find an
interesting distance grouping accuracy.

HWLOC_PCI_LOCALITY=<domain/bus> <cpuset>;...

HWLOC_PCI_LOCALITY=/path/to/pci/locality/file changes the locality of I/O devices behing the
specified PCI buses. If no I/O locality information is available or if the BIOS reports incorrect
information, it is possible to move a I/O device tree (OS and/or PCI devices with optional bridges)
near a custom set of processors.

Localities are given either inside the environment variable itself, or in the pointed file. They may be
separated either by semi-colons or by line-breaks.

Each locality contains a domain/bus specification (in hexadecimal numbers as usual) followed by a
whitespace and a cpuset:

• 0001 <cpuset> specifies the locality of all buses in PCI domain 0000.

• 0000:0f <cpuset> specifies only PCI bus 0f in domain 0000.

• 0002:04-0a <cpuset> specifies a range of buses (from 04 to 0a) within domain 0002.

Domain/bus specifications should usually match entire hierarchies of buses behind a bridge
(including primary, secondary and subordinate buses). For instance, if hostbridge 0000:00
contains other bridges creating buses 0000:01 to 0000:09, the variable should be HWLOC_-
PCI_LOCALITY="0000:00-09 <cpuset>". It supersedes the old HWLOC_PCI_0000_00_-
LOCALCPUS=<cpuset> which only works when hostbridges exist in the topology.

If the variable is defined to empty or invalid, no forced PCI locality is applied but hwloc’s internal
automatic locality quirks are disabled, which means the exact PCI locality reported by the platform
is used.

HWLOC_FSROOT=/path/to/linux/filesystem-root/ switches to reading the topology from the specified
Linux filesystem root instead of the main file-system root. This directory may have been saved
previously from another machine with hwloc-gather-topology.

One should likely also set HWLOC_COMPONENTS=linux,linuxio,stop so that non-Linux
backends are disabled (the -i option of command-line tools takes care of both).

Not using the main file-system root causes hwloc_topology_is_thissystem() to return 0. For conve-
nience, this backend provides empty binding hooks which just return success. To have hwloc still
actually call OS-specific hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to
assert that the loaded file is really the underlying system.

HWLOC_CPUID_PATH=/path/to/cpuid/ forces the x86 backend to read dumped CPUIDs from the
given directory instead of executing actual x86 CPUID instructions. This directory may have been
saved previously from another machine with hwloc-gather-cpuid.

One should likely also set HWLOC_COMPONENTS=x86,stop so that non-x86 backends are dis-
abled (the -i option of command-line tools takes care of both).

It causes hwloc_topology_is_thissystem() to return 0. For convenience, this backend provides empty
binding hooks which just return success. To have hwloc still actually call OS-specific hooks,
HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded CPUID
dump is really the underlying system.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

24 Environment Variables

HWLOC_DUMPED_HWDATA_DIR=/path/to/dumped/files/ loads files dumped by
hwloc-dump-hwdata (on Linux) from the given directory. The default dump/load direc-
tory is configured during build based on \--runstatedir, \--localstatedir, and \--prefix options. It
usually points to /var/run/hwloc/ in Linux distribution packages, but it may also point to
$prefix/var/run/hwloc/ when manually installing and only specifying \--prefix.

HWLOC_COMPONENTS=list,of,components forces a list of components to enable or disable. Enable
or disable the given comma-separated list of components (if they do not conflict with each other).
Component names prefixed with - are disabled. Once the end of the list is reached, hwloc falls
back to enabling the remaining components (sorted by priority) that do not conflict with the already
enabled ones, and unless explicitly disabled in the list. If stop is met, the enabling loop immediately
stops, no more component is enabled.

If xml or synthetic components are selected, the corresponding XML filename or synthetic
description string should be pass in HWLOC_XMLFILE or HWLOC_SYNTHETIC respectively.

Since this variable is the low-level and more generic way to select components, it takes precedence
over environment variables for selecting components.

If the variable is set to an empty string (or set to a single comma), no specific component is loaded
first, all components are loaded in priority order.

See Selecting which components to use for details.

HWLOC_COMPONENTS_VERBOSE=1 displays verbose information about components. Display
messages when components are registered or enabled. This is the recommended way to list the
available components with their priority (all of them are registered at startup).

HWLOC_PLUGINS_PATH=/path/to/hwloc/plugins/:... changes the default search directory for plu-
gins. By default, $libdir/hwloc is used. The variable may contain several colon-separated
directories.

HWLOC_PLUGINS_VERBOSE=1 displays verbose information about plugins. List which directories
are scanned, which files are loaded, and which components are successfully loaded.

HWLOC_PLUGINS_BLACKLIST=filename1,filename2,... prevents plugins from being loaded if
their filename (without path) is listed. Plugin filenames may be found in verbose messages outputted
when HWLOC_PLUGINS_VERBOSE=1.

HWLOC_DEBUG_VERBOSE=0 disables all verbose messages that are enabled by default when
--enable-debug is passed to configure.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 6

CPU and Memory Binding Overview

26 CPU and Memory Binding Overview

Some operating systems do not systematically provide separate functions for CPU and memory binding.
This means that CPU binding functions may have have effects on the memory binding policy. Likewise,
changing the memory binding policy may change the CPU binding of the current thread. This is often not
a problem for applications, so by default hwloc will make use of these functions when they provide better
binding support.

If the application does not want the CPU binding to change when changing the memory policy, it needs
to use the HWLOC_MEMBIND_NOCPUBIND flag to prevent hwloc from using OS functions which
would change the CPU binding. Additionally, HWLOC_CPUBIND_NOMEMBIND can be passed to CPU
binding function to prevent hwloc from using OS functions would change the memory binding policy. Of
course, using these flags will reduce hwloc’s overall support for binding, so their use is discouraged.

One can avoid using these flags but still closely control both memory and CPU binding by allocating
memory, touching each page in the allocated memory, and then changing the CPU binding. The already-
really-allocated memory will then be "locked" to physical memory and will not be migrated. Thus, even if
the memory binding policy gets changed by the CPU binding order, the already-allocated memory will not
change with it. When binding and allocating further memory, the CPU binding should be performed again
in case the memory binding altered the previously-selected CPU binding.

Not all operating systems support the notion of a "current" memory binding policy for the current process,
but such operating systems often still provide a way to allocate data on a given node set. Conversely, some
operating systems support the notion of a "current" memory binding policy and do not permit allocating
data on a specific node set without changing the current policy and allocate the data. To provide the most
powerful coverage of these facilities, hwloc provides:

• functions that set/get the current memory binding policies (if supported): hwloc_set/get_membind()
and hwloc_set/get_proc_membind()

• a function that allocates memory bound to specific node set without changing the current memory
binding policy (if supported): hwloc_alloc_membind().

• a helper which, if needed, changes the current memory binding policy of the process in order to
obtain memory binding: hwloc_alloc_membind_policy().

An application can thus use the two first sets of functions if it wants to manage separately the global process
binding policy and directed allocation, or use the third set of functions if it does not care about the process
memory binding policy.

See CPU binding and Memory binding for hwloc’s API functions regarding CPU and memory binding,
respectively. There are some examples under doc/examples/ in the source tree.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 7

I/O Devices

28 I/O Devices

hwloc usually manipulates processing units and memory but it can also discover I/O devices and report
their locality as well. This is useful for placing I/O intensive applications on cores near the I/O devices
they use, or for gathering information about all platform components.

7.1 Enabling and requirements

I/O discovery is disabled by default (except in lstopo) for performance reasons. It can be enabled by
changing the filtering of I/O object types to HWLOC_TYPE_FILTER_KEEP_IMPORTANT or HWLOC_-
TYPE_FILTER_KEEP_ALL before loading the topology, for instance with hwloc_topology_set_-
io_types_filter().

Note that I/O discovery requires significant help from the operating system. The pciaccess library (the
development package is usually libpciaccess-devel or libpciaccess-dev) is needed to fully
detect PCI devices and bridges. On Linux, PCI discovery may still be performed even if libpciaccess
cannot be used. But it misses PCI device names. Moreover, some operating systems require privileges for
probing PCI devices, see Does hwloc require privileged access? for details.

The actual locality of I/O devices is only currently detected on Linux. Other operating system will just
report I/O devices as being attached to the topology root object.

7.2 I/O objects

When I/O discovery is enabled and supported, some additional objects are added to the topology. The
corresponding I/O object types are:

• HWLOC_OBJ_OS_DEVICE describes an operating-system-specific handle such as the sda drive or
the eth0 network interface. See OS devices.

• HWLOC_OBJ_PCI_DEVICE and HWLOC_OBJ_BRIDGE build up a PCI hierarchy made of devices
and bridges. See PCI devices and bridges.

Any of these types may be filtered individually with hwloc_topology_set_type_filter().

hwloc tries to attach these new objects to normal objects (usually NUMA nodes) to match their actual
physical location. For instance, if a I/O Hub is physically connected to a package, the corresponding
hwloc bridge object (and its PCI bridges and devices children) is inserted as a child of the corresponding
hwloc Package object. These children are not in the normal children list but rather in the I/O-specific
children list.

I/O objects also have neither CPU sets nor node sets (NULL pointers) because they are not directly us-
able by the user applications for binding. Moreover I/O hierarchies may be highly complex (asymmetric
trees of bridges). So I/O objects are placed in specific levels with custom depths. Their lists may still be
traversed with regular helpers such as hwloc_get_next_obj_by_type(). However, hwloc offers some dedi-
cated helpers such as hwloc_get_next_pcidev() and hwloc_get_next_osdev() for convenience (see Finding
I/O objects).

7.3 OS devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), a user-space application
can hardly find out which PCI device it is actually using. Applications rather use software handles (such as

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

7.3 OS devices 29

the eth0 network interface, the sda hard drive, or the mlx4_0 OpenFabrics HCA). Therefore hwloc tries to
add software devices (HWLOC_OBJ_OS_DEVICE, also known as OS devices).

OS devices may be attached below PCI devices, but they may also be attached directly to normal objects.
Indeed some OS devices are not related to PCI. For instance, NVDIMM block devices (such as pmem0s
on Linux) are directly attached near their NUMA node (I/O child of the parent whose memory child is the
NUMA node). Also, if hwloc could not discover PCI for some reason, PCI-related OS devices may also
be attached directly to normal objects.

hwloc first tries to discover OS devices from the operating system, e.g. eth0, sda or mlx4_0. However, this
ability is currently only available on Linux for some classes of devices.

hwloc then tries to discover software devices through additional I/O components using external libraries.
For instance proprietary graphics drivers do not expose any named OS device, but hwloc may still create
one OS object per software handle when supported. For instance the opencl and cuda components may
add some opencl0d0 and cuda0 OS device objects.

Here is a list of OS device objects commonly created by hwloc components when I/O discovery is enabled
and supported.

• Hard disks (HWLOC_OBJ_OSDEV_BLOCK)

– sda (Linux component)

• Network interfaces (HWLOC_OBJ_OSDEV_NETWORK)

– eth0, wlan0, ib0 (Linux component)

• OpenFabrics (InfiniBand, Omni-Path, usNIC, etc) HCAs (HWLOC_OBJ_OSDEV_-
OPENFABRICS)

– mlx5_0, hfi1_0, qib0, usnic_0 (Linux component)

• GPUs (HWLOC_OBJ_OSDEV_GPU)

– nvml0 for the first NVML device (NVML component, using the NVIDIA Management Library)

– :0.0 for the first display (GL component, using the NV-CONTROL X extension library, NVCtrl)

• Co-Processors (HWLOC_OBJ_OSDEV_COPROC)

– opencl0d0 for the first device of the first OpenCL platform, opencl1d3 for the fourth device of
the second OpenCL platform (OpenCL component)

– cuda0 for the first NVIDIA CUDA device (CUDA component, using the NVIDIA CUDA Li-
brary)

– mic0 for the first Intel Xeon Phi (MIC) coprocessor (Linux component)

• DMA engine channel (HWLOC_OBJ_OSDEV_DMA)

– dma0chan0 (Linux component) when all OS devices are enabled (HWLOC_TYPE_FILTER_-
KEEP_ALL)

Note that some PCI devices may contain multiple software devices (see the example below).

See also Interoperability With Other Software for managing these devices without considering them as
hwloc objects.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

30 I/O Devices

7.4 PCI devices and bridges

A PCI hierarchy is usually organized as follows: A hostbridge object (HWLOC_OBJ_BRIDGE object
with upstream type Host and downstream type PCI) is attached below a normal object (usually the entire
machine or a NUMA node). There may be multiple hostbridges in the machine, attached to different places,
but all PCI devices are below one of them (unless the Bridge object type is filtered-out).

Each hostbridge contains one or several children, either other bridges (usually PCI to PCI) or PCI devices
(HWLOC_OBJ_PCI_DEVICE). The number of bridges between the hostbridge and a PCI device depends
on the machine.

7.5 Consulting I/O devices and binding

I/O devices may be consulted by traversing the topology manually (with usual routines such as hwloc_-
get_obj_by_type()) or by using dedicated helpers (such as hwloc_get_pcidev_by_busid(), see Finding I/O
objects).

I/O objects do not actually contain any locality information because their CPU sets and node sets are NULL.
Their locality must be retrieved by walking up the object tree (through the parent link) until an non-I/O
object is found (see hwloc_get_non_io_ancestor_obj()). This normal object should have non-NULL CPU
sets and node sets which describe the processing units and memory that are immediately close to the I/O
device. For instance the path from a OS device to its locality may go across a PCI device parent, one or
several bridges, up to a Package node with the same locality.

Command-line tools are also aware of I/O devices. lstopo displays the interesting ones by default (passing
\--no-io disables it).

hwloc-calc and hwloc-bind may manipulate I/O devices specified by PCI bus ID or by OS device name.

• pci=0000:02:03.0 is replaced by the set of CPUs that are close to the PCI device whose bus ID
is given.

• os=eth0 is replaced by CPUs that are close to the I/O device whose software handle is called
eth0.

This enables easy binding of I/O-intensive applications near the device they use.

7.6 Examples

The following picture shows a dual-package dual-core host whose PCI bus is connected to the first package
and NUMA node.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

7.6 Examples 31

Six interesting PCI devices were discovered. However, hwloc found some corresponding software devices
(eth0, eth1, sda, mlx4_0, ib0, and ib1) for only four of these physical devices. The other ones (PCI
102b:0532 and PCI 8086:3a20) are an unused IDE controller (no disk attached) and a graphic card (no
corresponding software device reported to the user by the operating system).

On the contrary, it should be noted that three different software devices were found for the last PCI device
(PCI 15b3:634a). Indeed this OpenFabrics HCA PCI device object contains one one OpenFabrics software
device (mlx4_0) and two virtual network interface software devices (ib0 and ib1).

Here is the corresponding textual output:

Machine (24GB total)
Package L#0

NUMANode L#0 (P#0 12GB)
L3 L#0 (8192KB)

L2 L#0 (256KB) + L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (256KB) + L1 L#1 (32KB) + Core L#1 + PU L#1 (P#2)

HostBridge
PCIBridge

PCI 01:00.0 (Ethernet)
Net "eth0"

PCI 01:00.1 (Ethernet)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

32 I/O Devices

Net "eth1"
PCIBridge

PCI 03:00.0 (RAID)
Block "sda"

PCIBridge
PCI 04:03.0 (VGA)

PCI 00:1f.2 (IDE)
PCI 51:00.0 (InfiniBand)

Net "ib0"
Net "ib1"
Net "mlx4_0"

Package L#1
NUMANode L#1 (P#1 12GB)
L3 L#1 (8192KB)

L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#1)
L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 8

Miscellaneous objects

34 Miscellaneous objects

hwloc topologies may be annotated with Misc objects (of type HWLOC_OBJ_MISC) either automatically
or by the user. This is an flexible way to annotate topologies with large sets of information since Misc
objects may be inserted anywhere in the topology (to annotate specific objects or parts of the topology),
even below other Misc objects, and each of them may contain multiple attributes (see also How do I
annotate the topology with private notes?).

These Misc objects may have a subtype field to replace Misc with something else in the lstopo output.

8.1 Misc objects added by hwloc

hwloc only uses Misc objects when other object types are not sufficient, and when the Misc object type is
not filtered-out anymore. This currently includes:

• Memory modules (DIMMs), on Linux when privileged and when dmi-sysfs is supported by the
kernel. These objects have a subtype field of value MemoryModule. They are currently always
attached to the root object. Their attributes describe the DIMM vendor, model, etc. lstopo -v
displays them as:

Misc(MemoryModule) (P#1 DeviceLocation="Bottom-Slot 2(right)" BankLocation="BANK
2" Vendor=Elpida SerialNumber=21733667 AssetTag=9876543210 PartNumber="EBJ81UG8EF
U0-GN-F ")

• Displaying process binding in lstopo \--top. These objects have a subtype field of value
Process and a name attribute made of their PID and program name. They are attached below the
object they are bound to. The textual lstopo displays them as:

PU L#0 (P#0)
Misc(Process) 4445 myprogram

8.2 Annotating topologies with Misc objects

The user may annotate hwloc topologies with its own Misc objects. This can be achieved with hwloc_-
topology_insert_misc_object() as well as hwloc-annotate command-line tool.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 9

Object attributes

36 Object attributes

9.1 Normal attributes

hwloc objects have many generic attributes in the hwloc_obj structure, for instance their logical_-
index or os_index (see Should I use logical or physical/OS indexes? and how?), depth or name.

The kind of object is first described by the obj->type generic attribute (an integer). OS devices also have
a specific obj->attr->osdev.type integer for distinguishing between NICs, GPUs, etc. Objects
may also have an optional obj->subtype pointing to a better description string. For instance subtype
is useful to say what Group objects are actually made of (e.g. Book for Linux S/390 books). It may also
specify that a Block OS device is a Disk, or that a CoProcessor OS device is a CUDA device. This subtype
is displayed by lstopo either in place or after the main obj->type attribute.

Each object also contains an attr field that, if non NULL, points to a union hwloc_obj_attr_u of type-
specific attribute structures. For instance, a L2Cache object obj contains cache-specific information in
obj->attr->cache, such as its size and associativity, cache type. See hwloc_obj_attr_u for details.

9.2 Custom string infos

Aside os these generic attribute fields, hwloc annotates many objects with string attributes that are made
of a key and a value. Each object contains a list of such pairs that may be consulted manually (looking at
the object infos array field) or using the hwloc_obj_get_info_by_name(). The user may additionally add
new key-value pairs to any object using hwloc_obj_add_info() or the hwloc-annotate program.

Here is a non-exhaustive list of attributes that may be automatically added by hwloc. Note that these
attributes heavily depend on the ability of the operating system to report them. Many of them will therefore
be missing on some OS.

9.2.1 Hardware Platform Information

These info attributes are attached to the root object (Machine).

PlatformName, PlatformModel, PlatformVendor, PlatformBoardID, PlatformRevision,

SystemVersionRegister, ProcessorVersionRegister (Machine) Some POWER/PowerPC-specific at-
tributes describing the platform and processor. Currently only available on Linux. Usually added
to Package objects, but can be in Machine instead if hwloc failed to discover any package.

DMIBoardVendor, DMIBoardName, etc. DMI hardware information such as the motherboard
and chassis models and vendors, the BIOS revision, etc., as reported by Linux under
/sys/class/dmi/id/.

MemoryMode, ClusterMode Intel Xeon Phi processor configuration modes. Available if hwloc-dump-
hwdata was used (see Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?)
or if hwloc managed to guess them from the NUMA configuration.

The memory mode may be Cache, Flat, Hybrid50 (half the MCDRAM is used as a cache) or Hy-
brid25 (25% of MCDRAM as cache). The cluster mode may be Quadrant, Hemisphere, All2All,
SNC2 or SNC4. See doc/examples/get-knl-modes.c in the source directory for an example of retriev-
ing these attributes.

9.2.2 Operating System Information

These info attributes are attached to the root object (Machine).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

9.2 Custom string infos 37

OSName, OSRelease, OSVersion, HostName, Architecture The operating system name, release, ver-
sion, the hostname and the architecture name, as reported by the Unix uname command.

LinuxCgroup The name the Linux control group where the calling process is placed.

9.2.3 hwloc Information

Unless specified, these info attributes are attached to the root object (Machine).

Backend (topology root, or specific object added by that backend) The name of the hwloc backend/-
component that filled the topology. If several components were combined, multiple Backend keys
may exist, with different values, for instance x86 and Linux in the root object and CUDA in CUDA
OS device objects.

SyntheticDescription The description string that was given to hwloc to build this synthetic topology.

hwlocVersion The version number of the hwloc library that was used to generate the topology. If the
topology was loaded from XML, this is not the hwloc version that loaded it, but rather the first hwloc
instance that exported the topology to XML earlier.

ProcessName The name of the process that contains the hwloc library that was used to generate the
topology. If the topology was from XML, this is not the hwloc process that loaded it, but rather the
first process that exported the topology to XML earlier.

9.2.4 CPU Information

These info attributes are attached to Package objects, or to the root object (Machine) if package locality
information is missing.

CPUModel The processor model name.

CPUVendor, CPUModelNumber, CPUFamilyNumber, CPUStepping The processor vendor name,
model number, family number, and stepping number. Currently available for x86 and Xeon Phi
processors on most systems, and for ia64 processors on Linux (except CPUStepping).

CPURevision A POWER/PowerPC-specific general processor revision number, currently only available
on Linux.

CPUType A Solaris-specific general processor type name, such as "i86pc".

9.2.5 OS Device Information

These info attributes are attached to OS device objects specified in parentheses.

Vendor, Model, Revision, SerialNumber, Size, SectorSize (Block OS devices) The vendor and model
names, revision, serial number, size (in kB) and SectorSize (in bytes).

LinuxDeviceID (Block OS devices) The major/minor device number such as 8:0 of Linux device.

GPUVendor, GPUModel (GPU or Co-Processor OS devices) The vendor and model names of the
GPU device.

OpenCLDeviceType, OpenCLPlatformIndex,

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

38 Object attributes

OpenCLPlatformName, OpenCLPlatformDeviceIndex (OpenCL OS devices) The type of OpenCL
device, the OpenCL platform index and name, and the index of the device within the platform.

OpenCLComputeUnits, OpenCLGlobalMemorySize (OpenCL OS devices) The number of compute
units and global memory size (in kB) of an OpenCL device.

NVIDIAUUID, NVIDIASerial (NVML GPU OS devices) The UUID and Serial of NVIDIA GPUs.

CUDAMultiProcessors, CUDACoresPerMP,

CUDAGlobalMemorySize, CUDAL2CacheSize, CUDASharedMemorySizePerMP (CUDA OS devices)
The number of shared multiprocessors, the number of cores per multiprocessor, the global memory
size, the (global) L2 cache size, and size of the shared memory in each multiprocessor of a CUDA
device. Sizes are in kB.

MICSerialNumber (MIC coprocessor OS device) The serial number of an Intel Xeon Phi (MIC) co-
processor. hwloc may run either inside the coprocessor itself, or on the host processor. That attribute
is set in both cases, so that the exact same coprocessor may be identified from both point of views,
even if there are multiple nodes with multiple MICs. When running hwloc on the host, each hwloc
OS device object that corresponds to a Xeon Phi gets such an attribute. When running hwloc inside
a Xeon Phi coprocessor, the root of the topology (Machine object) gets this attribute.

MICFamily, MICSKU, MICActiveCores, MICMemorySize (MIC coprocessor OS device) The fam-
ily, SKU (model), number of active cores, and memory size (in kB) of an Intel Xeon Phi (MIC)
coprocessor.

Address, Port (Network interface OS devices) The MAC address and the port number of a software
network interface, such as eth4 on Linux.

NodeGUID, SysImageGUID, Port1State, Port2LID, Port2LMC, Port3GID1 (OpenFabrics OS devices)
The node GUID and GUID mask, the state of a port #1 (value is 4 when active), the LID and LID
mask count of port #2, and GID #1 of port #3.

9.2.6 Other Object-specific Information

These info attributes are attached to objects specified in parentheses.

Inclusive (Caches) The inclusiveness of a cache (1 if inclusive, 0 otherwise). Currently only available on
x86 processors.

SolarisProcessorGroup (Group) The Solaris kstat processor group name that was used to build this
Group object.

PCIVendor, PCIDevice (PCI devices and bridges) The vendor and device names of the PCI device.

PCISlot (PCI devices or Bridges) The name/number of the physical slot where the device is plugged. If
the physical device contains PCI bridges above the actual PCI device, the attribute may be attached
to the highest bridge (i.e. the first object that actually appears below the physical slot).

Vendor, AssetTag, PartNumber, DeviceLocation, BankLocation (MemoryModule Misc objects)
Information about memory modules (DIMMs) extracted from SMBIOS.

9.2.7 User-Given Information

Here is a non-exhaustive list of user-provided info attributes that have a special meaning:

lstopoStyle Enforces the style of an object (background and text colors) in the graphical output of lstopo.
See CUSTOM COLORS in the lstopo(1) manpage for details.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 10

Importing and exporting topologies
from/to XML files

40 Importing and exporting topologies from/to XML files

hwloc offers the ability to export topologies to XML files and reload them later. This is for instance useful
for loading topologies faster (see I do not want hwloc to rediscover my enormous machine topology every
time I rerun a process), manipulating other nodes’ topology, or avoiding the need for privileged processes
(see Does hwloc require privileged access?).

Topologies may be exported to XML files thanks to hwloc_topology_export_xml(), or to a XML memory
buffer with hwloc_topology_export_xmlbuffer(). The lstopo program can also serve as a XML topology
export tool.

XML topologies may then be reloaded later with hwloc_topology_set_xml() and hwloc_topology_set_-
xmlbuffer(). The HWLOC_XMLFILE environment variable also tells hwloc to load the topology from the
given XML file.

Note:

Loading XML topologies disables binding because the loaded topology may not correspond to the
physical machine that loads it. This behavior may be reverted by asserting that loaded file re-
ally matches the underlying system with the HWLOC_THISSYSTEM environment variable or the
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.
The topology flag HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES may
be used to load a XML topology that contains the entire machine and restrict it to the part that is
actually available to the current process (e.g. when Linux Cgroup/Cpuset are used to restrict the set of
resources).
hwloc also offers the ability to export/import Topology differences.
XML topology files are not localized. They use a dot as a decimal separator. Therefore any exported
topology can be reloaded on any other machine without requiring to change the locale.
XML exports contain all details about the platform. It means that two very similar nodes still have
different XML exports (e.g. some serial numbers or MAC addresses are different). If a less precise
exporting/importing is required, one may want to look at Synthetic topologies instead.

10.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features full XML support, for
instance when those files have to be manipulated by non-hwloc software (e.g. a XSLT parser). The libxml2
backend is enabled by default if libxml2 development headers are available (the relevant development
package is usually libxml2-devel or libxml2-dev).

If libxml2 is not available at configure time, or if \--disable-libxml2 is passed, hwloc falls back to a
custom backend. Contrary to the aforementioned full XML backend with libxml2, this minimalistic XML
backend cannot be guaranteed to work with external programs. It should only be assumed to be compatible
with the same hwloc release (even if using the libxml2 backend). Its advantage is, however, to always be
available without requiring any external dependency.

If libxml2 is available but the core hwloc library should not directly depend on it, the libxml2 sup-
port may be built as a dynamicall-loaded plugin. One should pass \--enable-plugins to en-
able plugin support (when supported) and build as plugins all component that support it. Or pass
\--enable-plugins=xml_libxml to only build this libxml2 support as a plugin.

10.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax or non-hwloc-valid
XML contents.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

10.2 XML import error management 41

Both backend cannot detect all these errors when the input XML file or buffer is selected (when hwloc_-
topology_set_xml() or hwloc_topology_set_xmlbuffer() is called). Some errors such non-hwloc-valid con-
tents can only be detected later when loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_topology_set_xml() (or
hwloc_topology_set_xmlbuffer()) and hwloc_topology_load() to handle all these errors.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

42 Importing and exporting topologies from/to XML files

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 11

Synthetic topologies

44 Synthetic topologies

hwloc may load fake or remote topologies so as to consult them without having the underlying hardware
available. Aside from loading XML topologies, hwloc also enables the building of synthetic topologies
that are described by a single string listing the arity of each levels.

For instance, lstopo may create a topology made of 2 packages, containing a single NUMA node and a L2
cache above two single-threaded cores:

$ lstopo -i "pack:2 node:1 l2:1 core:2 pu:1" -
Machine (2048MB)

Package L#0
NUMANode L#0 (P#0 1024MB)
L2 L#0 (4096KB)

Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)

Package L#1
NUMANode L#1 (P#1 1024MB)
L2 L#1 (4096KB)

Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Replacing - with file.xml in this command line will export this topology to XML as usual.

Note:

Synthetic topologies offer a very basic way to export a topology and reimport it on another machine.
It is a lot less precise than XML but may still be enough when only the hierarchy of resources matters.

11.1 Synthetic description string

Each item in the description string gives the type of the level and the number of such children under each
object of the previous level. That is why the above topology contains 4 cores (2 cores times 2 nodes).

These type names must be written as numanode, package, core, l2u, l1i, pu, group (hwloc_-
obj_type_sscanf() is used for parsing the type names). They do not need to be written case-sensitively, nor
entirely (as long as there is no ambiguity, 2 characters such as ma select a Machine level). Note that I/O
and Misc objects are not available.

Instead of specifying the type of each level, it is possible to just specify the arities and let hwloc choose all
types according to usual topologies. The following examples are therefore equivalent:

$ lstopo -i "2 3 4 5 6"
$ lstopo -i "Package:2 NUMANode:3 L2Cache:4 Core:5 PU:6"

NUMA nodes are handled in a special way since they are not part of the main CPU hierarchy but rather
attached below it as memory children. Thus, NUMANode:3 actually means Group:3 where one NUMA
node is attached below each group. These groups are merged back into the parent when possible (typically
when a single NUMA node is requested below each parent).

It is also possible the explicitly attach NUMA nodes to specific levels. For instance, a topology similar to
a Intel Xeon Phi processor (with 2 NUMA nodes per 16-core group) may be created with:

$ lstopo -i "package:1 group:4 [numa] [numa] core:16 pu:4"

The root object does not appear in the synthetic description string since it is always a Machine object.
Therefore the Machine type is disallowed in the description as well.

A NUMA level (with a single NUMA node) is automatically added if needed.

Each item may be followed parentheses containing a list of space-separated attributes. For instance:

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

11.2 Loading a synthetic topology 45

• L2iCache:2(size=32kB) specifies 2 children of 32kB level-2 instruction caches. The size may
be specified in bytes (without any unit suffix) or as TB, GB, MB or kB.

• NUMANode:3(memory=16MB) specifies 3 NUMA nodes with 16MB each. The size may be
specified in bytes (without any unit suffix) or as TB, GB, MB or kB.

• PU:2(indexes=0,2,1,3) specifies 2 PU children and the full list of OS indexes among the
entire set of 4 PU objects.

• PU:2(indexes=numa:core) specifies 2 PU children whose OS indexes are interleaved by
NUMA node first and then by package.

• Attributes in parentheses at the very beginning of the description apply to the root object.

11.2 Loading a synthetic topology

Aside from lstopo, the hwloc programming interface offers the same ability by passing the synthetic de-
scription string to hwloc_topology_set_synthetic() before hwloc_topology_load().

Synthetic topologies are created by the synthetic component. This component may be enabled by
force by setting the HWLOC_SYNTHETIC environment variable to something such as node:2 core:3
pu:4.

Loading a synthetic topology disables binding support since the topology usually does not match the un-
derlying hardware. Binding may be reenabled as usual by setting HWLOC_THISSYSTEM=1 in the envi-
ronment or by setting the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

11.3 Exporting a topology as a synthetic string

The function hwloc_topology_export_synthetic() may export a topology as a synthetic string. It offers a
convenient way to quickly describe the contents of a machine. The lstopo tool may also perform such an
export by forcing the output format.

$ lstopo --of synthetic --no-io
Package:1 L3Cache:1 L2Cache:2 L1dCache:1 L1iCache:1 Core:1 PU:2

The exported string may be passed back to hwloc for recreating another similar topology. The entire tree
will be similar, but some attributes such as the processor model will be missing.

Such an export is only possible if the topology is totally symmetric. It means that the symmetric_-
subtree field of the root object is set. Also memory children should be attached in a symmetric way
(e.g. the same number of memory children below each Package object, etc.). However, I/O devices and
Misc objects are ignored when looking at symmetry and exporting the string.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

46 Synthetic topologies

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 12

Interoperability With Other Software

48 Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with specific or non-
portable libraries that manipulate similar kinds of objects. hwloc therefore offers several specific "helpers"
to assist converting between those specific interfaces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be available. The hwloc
core therefore generally does not explicitly depend on these types of libraries. However, when a custom
application uses or otherwise depends on such a library, it may optionally include the corresponding hwloc
helper to extend the hwloc interface with dedicated helpers.

Most of these helpers use structures that are specific to these external libraries and only meaningful on the
local machine. If so, the helper requires the input topology to match the current machine. Some helpers
also require I/O device discovery to be supported and enabled for the current topology.

Linux specific features hwloc/linux.h offers Linux-specific helpers that utilize some non-portable fea-
tures of the Linux system, such as binding threads through their thread ID ("tid") or parsing kernel
CPU mask files.

Linux libnuma hwloc/linux-libnuma.h provides conversion helpers between hwloc CPU sets and
libnuma-specific types, such as bitmasks. It helps you use libnuma memory-binding functions with
hwloc CPU sets.

Glibc hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU sets in order to use
hwloc with functions such as sched_getaffinity() or pthread_attr_setaffinity_np().

OpenFabrics Verbs hwloc/openfabrics-verbs.h helps interoperability with the OpenFabrics Verbs inter-
face. For example, it can return a list of processors near an OpenFabrics device. It may also return the
corresponding OS device hwloc object for further information (if I/O device discovery is enabled).

Intel Xeon Phi (MIC) hwloc/intel-mic.h helps interoperability with Intel Xeon Phi (MIC) coprocessors
by returning the list of processors near these devices. It may also return the corresponding OS device
hwloc object for further information (if I/O device discovery is enabled).

AMD OpenCL hwloc/opencl.h enables interoperability with the OpenCL interface. Only the AMD
implementation currently offers locality information. It may return the list of processors near an
AMD/ATI GPU given as a cl_device_id. It may also return the corresponding OS device hwloc
object for further information (if I/O device discovery is enabled).

NVIDIA CUDA hwloc/cuda.h and hwloc/cudart.h enable interoperability with NVIDIA CUDA Driver
and Runtime interfaces. For instance, it may return the list of processors near NVIDIA GPUs. It
may also return the corresponding OS device hwloc object for further information (if I/O device
discovery is enabled).

NVIDIA Management Library (NVML) hwloc/nvml.h enables interoperability with the NVIDIA
NVML interface. It may return the list of processors near a NVIDIA GPU given as a
nvmlDevice_t. It may also return the corresponding OS device hwloc object for further in-
formation (if I/O device discovery is enabled).

NVIDIA displays hwloc/gl.h enables interoperability with NVIDIA displays using the NV-CONTROL
X extension (NVCtrl library). If I/O device discovery is enabled, it may return the OS device hwloc
object that corresponds to a display given as a name such as :0.0 or given as a port/device pair
(server/screen).

Taskset command-line tool The taskset command-line tool is widely used for binding processes. It ma-
nipulates CPU set strings in a format that is slightly different from hwloc’s one (it does not divide the
string in fixed-size subsets and separates them with commas). To ease interoperability, hwloc offers
routines to convert hwloc CPU sets from/to taskset-specific string format. Most hwloc command-line
tools also support the \--taskset option to manipulate taskset-specific strings.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 13

Thread Safety

50 Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather reentrant: all state
is held in a hwloc_topology_t instance without mutex protection. That means, for example, that two
threads can safely operate on and modify two different hwloc_topology_t instances, but they should not
simultaneously invoke functions that modify the same instance. Similarly, one thread should not modify
a hwloc_topology_t instance while another thread is reading or traversing it. However, two threads can
safely read or traverse the same hwloc_topology_t instance concurrently.

When running in multiprocessor environments, be aware that proper thread synchronization and/or memory
coherency protection is needed to pass hwloc data (such as hwloc_topology_t pointers) from one proces-
sor to another (e.g., a mutex, semaphore, or a memory barrier). Note that this is not a hwloc-specific
requirement, but it is worth mentioning.

For reference, hwloc_topology_t modification operations include (but may not be limited to):

Creation and destruction hwloc_topology_init(), hwloc_topology_load(),
hwloc_topology_destroy() (see Topology Creation and Destruction) imply major
modifications of the structure, including freeing some objects. No other thread cannot access the
topology or any of its objects at the same time.

Also references to objects inside the topology are not valid anymore after these functions return.

Runtime topology modifications hwloc_topology_insert_misc_object(), hwloc_-
topology_alloc_group_object(), and hwloc_topology_insert_group_-
object() (see Modifying a loaded Topology) may modify the topology significantly by adding
objects inside the tree, changing the topology depth, etc.

hwloc_distances_add() and hwloc_distances_remove() (see Add or remove dis-
tances between objects) modify the list of distance structures in the topology, and the former may
even insert new Group objects.

hwloc_topology_restrict() modifies the topology even more dramatically by removing
some objects.

Although references to former objects may still be valid after insertion or restriction, it is strongly ad-
vised to not rely on any such guarantee and always re-consult the topology to reacquire new instances
of objects.

Consulting distances hwloc_distances_get() and its variants are thread-safe except if the topol-
ogy was recently modified (because distances may involve objects that were removed).

Whenever the topology is modified (see above), one dummy (but valid) hwloc_distances_-
get() call should be performed in the same thread-safe context to force the refresh of internal
distances structures.

Once this refresh has been performed, multiple hwloc_distances_get() may then be per-
formed concurrently by multiple threads.

Locating topologies hwloc_topology_set_∗ (see Topology Detection Configuration and Query) do
not modify the topology directly, but they do modify internal structures describing the behavior of
the upcoming invocation of hwloc_topology_load(). Hence, all of these functions should not
be used concurrently.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 14

Components and plugins

52 Components and plugins

hwloc is organized in components that are responsible for discovering objects. Depending on the topology
configuration, some components will be used, some will be ignored. The usual default is to enable the
native operating system component, (e.g. linux or solaris) and the pci miscellaneous component. If
available, an architecture-specific component (such as x86) may also improve the topology detection.

If a XML topology is loaded, the xml discovery component will be used instead of all other components.
It internally uses a specific class of components for the actual XML import/export routines (xml_libxml
and xml_nolibxml) but these will not be discussed here (see libxml2 and minimalistic XML backends).

14.1 Components enabled by default

The hwloc core contains a list of components sorted by priority. Each one is enabled as long as it does not
conflict with the previously enabled ones. This includes native operating system components, architecture-
specific ones, and if available, I/O components such as pci.

Usually the native operating system component (when it exists, e.g. linux or aix) is enabled first. Then
hwloc looks for an architecture specific component (e.g. x86). Finally there also exist a basic component
(no_os) that just tries to discover the number of PUs in the system.

Each component discovers as much topology information as possible. Most of them, including most native
OS components, do nothing unless the topology is still empty. Some others, such as x86 and pci, can
complete and annotate what other backends found earlier.

Default priorities ensure that clever components are invoked first. Native operating system components
have higher priorities, and are therefore invoked first, because they likely offer very detailed topology
information. If needed, it will be later extended by architecture-specific information (e.g. from the x86
component).

If any configuration function such as hwloc_topology_set_xml() is used before loading the topology, the
corresponding component is enabled first. Then, as usual, hwloc enables any other component (based on
priorities) that does not conflict.

Certain components that manage a virtual topology, for instance XML topology import or synthetic topol-
ogy description, conflict with all other components. Therefore, one of them may only be loaded (e.g. with
hwloc_topology_set_xml()) if no other component is enabled.

The environment variable HWLOC_COMPONENTS_VERBOSE may be set to get verbose messages about
component registration (including their priority) and enabling.

14.2 Selecting which components to use

If no topology configuration functions such as hwloc_topology_set_synthetic() have been
called, plugins may be selected with environment variables such as HWLOC_XMLFILE, HWLOC_-
SYNTHETIC, HWLOC_FSROOT, or HWLOC_CPUID_PATH (see Environment Variables).

Finally, the environment variable HWLOC_COMPONENTS resets the list of selected components. If the
variable is set and empty (or set to a single comma separating nothing, since some operating systems do
not accept empty variables), the normal plugin priority order is used.

If the variable is set to x86 in this variable will cause the x86 component to take precedence over any other
component, including the native operating system component. It is therefore loaded first, before hwloc
tries to load all remaining non-conflicting components. In this case, x86 would take care of discovering
everything it supports, instead of only completing what the native OS information. This may be useful if
the native component is buggy on some platforms.

It is possible to prevent some components from being loaded by prefixing their name with - in the list. For

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

14.3 Loading components from plugins 53

instance x86,-pci will load the x86 component, then let hwloc load all the usual components except
pci.

It is possible to prevent all remaining components from being loaded by placing stop in the environment
variable. Only the components listed before this keyword will be enabled.

14.3 Loading components from plugins

Components may optionally be built as plugins so that the hwloc core library does not directly depend
on their dependencies (for instance the libpciaccess library). Plugin support may be enabled with
the \--enable-plugins configure option. All components buildable as plugins will then be built as
plugins. The configure option may be given a comma-separated list of component names to specify the
exact list of components to build as plugins.

Plugins are built as independent dynamic libraries that are installed in $libdir/hwloc. All plu-
gins found in this directory are loaded during topology_init() (unless blacklisted in HWLOC_-
PLUGINS_BLACKLIST, see Environment Variables). A specific list of directories (colon-separated) to
scan may be specified in the HWLOC_PLUGINS_PATH environment variable.

Note that loading a plugin just means that the corresponding component is registered to the hwloc core.
Components are then only enabled if the topology configuration requests it, as explained in the previous
sections.

Also note that plugins should carefully be enabled and used when embedding hwloc in another project, see
Embedding hwloc in Other Software for details.

14.4 Adding new discovery components and plugins

The types and functions cited below are declared in the hwloc/plugins.h header. Components are supposed
to only use hwloc public headers (hwloc.h and anything under the include/hwloc subdirectory) and
nothing from the include/private subdirectory in the source tree.

14.4.1 Basics of discovery components

Each discovery component is defined by a hwloc_disc_component structure which contains an
instantiate() callback. This function is invoked when this component is actually used by a topology.
It fills a new hwloc_backend structure that usually contains a discover() callback taking care of
the actual topology discovery.

Note:

If two discovery components have the same name, only the highest priority one is actually made
available. This offers a way for third-party plugins to override existing components.

14.4.2 Registering a new discovery component

Registering components to the hwloc core relies on a hwloc_component structure. Its data field points
to the previously defined hwloc_disc_component structure while its type should be HWLOC_-
COMPONENT_TYPE_DISC. This structure should be named hwloc_<name>_component.

The configure script should be modified to add <name> to its hwloc_components shell variable so
that the component is actually available.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

54 Components and plugins

Note:

The symbol name of the hwloc_component structure is independent of the name of the discovery
component mentioned in the previous section.

When the component is statically built inside the hwloc library, the symbol hwloc_<name>_-
component is added by configure to the src/static-components.h. The core then registers all
components listed in this file.

If the new component may be built as a plugin, the configure script should also define the shell vari-
able hwloc_<name>_component_maybeplugin=1. When the configure script actually enables
the component as a plugin, it will set the variable hwloc_<name>_component to plugin. The build
system may then use this variable to change the way the component is built. It should create a hwloc_-
<name>.so shared object. All these files are loaded in alphabetic order, and the components they contain
are registered to the hwloc core.

14.5 Existing components and plugins

All components distributed within hwloc are listed below. The list of actually available components may
be listed at running with the HWLOC_COMPONENTS_VERBOSE environment variable (see Environment
Variables).

aix, darwin, freebsd, hpux, linux, netbsd, solaris, windows Each officially supported operating system
has its own native component, which is statically built when supported, and which is used by default.

x86 The x86 architecture (either 32 or 64 bits) has its own component that may complete or replace the
previously-found CPU information. It is statically built when supported.

bgq This component is specific to IBM BlueGene/Q compute node (running CNK). It is built and enabled
by default when \--host=powerpc64-bgq-linux is passed to configure (see How do I build
hwloc for BlueGene/Q?).

no_os A basic component that just tries to detect the number of processing units in the system. It mostly
serves on operating systems that are not natively supported. It is always statically built.

pci PCI object discovery uses the external pciaccess library (aka libpciaccess); see I/O Devices. It may
be built as a plugin.

linuxio (former linuxpci) This component can probe I/O devices on Linux. It discovers PCI devices
without the help of external libraries such as libpciaccess. Its priority is lower than the pci component
because it misses device names. It also discovers many kinds of Linux-specific OS devices.

opencl The OpenCL component creates co-processor OS device objects such as opencl0d0 (first device
of the first OpenCL platform) or opencl1d3 (fourth device of the second platform). Only the AMD
OpenCL implementation currently offers locality information. It may be built as a plugin.

cuda This component creates co-processor OS device objects such as cuda0 that correspond to NVIDIA
GPUs used with CUDA library. It may be built as a plugin.

nvml Probing the NVIDIA Management Library creates OS device objects such as nvml0 that are useful
for batch schedulers. It also detects the actual PCIe link bandwidth without depending on power
management state and without requiring administrator privileges. It may be built as a plugin.

gl Probing the NV-CONTROL X extension (NVCtrl library) creates OS device objects such as :0.0 cor-
responding to NVIDIA displays. They are useful for graphical applications that need to place com-
putation and/or data near a rendering GPU. It may be built as a plugin.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

14.5 Existing components and plugins 55

synthetic Synthetic topology support (see Synthetic topologies) is always built statically.

xml XML topology import (see Importing and exporting topologies from/to XML files) is always built
statically. It internally uses one of the XML backends (see libxml2 and minimalistic XML backends).

• xml_nolibxml is a basic and hwloc-specific XML import/export. It is always statically built.

• xml_libxml relies on the external libxml2 library for provinding a feature-complete XML im-
port/export. It may be built as a plugin.

fake A dummy plugin that does nothing but is used for debugging plugin support.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

56 Components and plugins

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 15

Embedding hwloc in Other Software

58 Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out the LICENSE file)
so that users don’t have to separately download and install it before installing your software. This can
be advantageous to ensure that your software uses a known-tested/good version of hwloc, or for use on
systems that do not have hwloc pre-installed.

When used in "embedded" mode, hwloc will:

• not install any header files

• not build any documentation files

• not build or install any executables or tests

• not build libhwloc.∗ -- instead, it will build libhwloc_embedded.∗

There are two ways to put hwloc into "embedded" mode. The first is directly from the configure command
line:

shell$./configure --enable-embedded-mode ...

The second requires that your software project uses the GNU Autoconf / Automake / Libtool tool chain
to build your software. If you do this, you can directly integrate hwloc’s m4 configure macro into your
configure script. You can then invoke hwloc’s configuration tests and build setup by calling an m4 macro
(see below).

Although hwloc dynamic shared object plugins may be used in embedded mode, the embedder project
will have to manually setup libltdl in its build system so that hwloc can load its plugins at run time. Also,
embedders should be aware of complications that can arise due to public and private linker namespaces
(e.g., if the embedder project is loaded into a private namespace and then hwloc tries to dynamically load
its plugins, such loading may fail since the hwloc plugins can’t find the hwloc symbols they need). The
embedder project is strongly advised not to use hwloc’s dynamically loading plugins / libltdl capability.

15.1 Using hwloc’s M4 Embedding Capabilities

Every project is different, and there are many different ways of integrating hwloc into yours. What follows
is one example of how to do it.

If your project uses recent versions Autoconf, Automake, and Libtool to build, you can use hwloc’s em-
bedded m4 capabilities. We have tested the embedded m4 with projects that use Autoconf 2.65, Automake
1.11.1, and Libtool 2.2.6b. Slightly earlier versions of may also work but are untested. Autoconf versions
prior to 2.65 are almost certain to not work.

You can either copy all the config/hwloc∗m4 files from the hwloc source tree to the directory where your
project’s m4 files reside, or you can tell aclocal to find more m4 files in the embedded hwloc’s "config" sub-
directory (e.g., add "-Ipath/to/embedded/hwloc/config" to your Makefile.am’s ACLOCAL_AMFLAGS).

The following macros can then be used from your configure script (only HWLOC_SETUP_CORE must be
invoked if using the m4 macros):

• HWLOC_SETUP_CORE(config-dir-prefix, action-upon-success, action-upon-failure, print_-
banner_or_not): Invoke the hwloc configuration tests and setup the hwloc tree to build. The first
argument is the prefix to use for AC_OUTPUT files -- it’s where the hwloc tree is located relative
to $top_srcdir. Hence, if your embedded hwloc is located in the source tree at contrib/hwloc,
you should pass [contrib/hwloc] as the first argument. If HWLOC_SETUP_CORE and the
rest of configure completes successfully, then "make" traversals of the hwloc tree with standard

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

15.1 Using hwloc’s M4 Embedding Capabilities 59

Automake targets (all, clean, install, etc.) should behave as expected. For example, it is safe to
list the hwloc directory in the SUBDIRS of a higher-level Makefile.am. The last argument, if not
empty, will cause the macro to display an announcement banner that it is starting the hwloc core
configuration tests.

HWLOC_SETUP_CORE will set the following environment variables and AC_SUBST them:
HWLOC_EMBEDDED_CFLAGS, HWLOC_EMBEDDED_CPPFLAGS, and HWLOC_EMBEDDED_-
LIBS. These flags are filled with the values discovered in the hwloc-specific m4 tests, and can be used in
your build process as relevant. The _CFLAGS, _CPPFLAGS, and _LIBS variables are necessary to build
libhwloc (or libhwloc_embedded) itself.

HWLOC_SETUP_CORE also sets HWLOC_EMBEDDED_LDADD environment variable (and AC_-
SUBSTs it) to contain the location of the libhwloc_embedded.la convenience Libtool archive. It can be
used in your build process to link an application or other library against the embedded hwloc library.

NOTE: If the HWLOC_SET_SYMBOL_PREFIX macro is used, it must be invoked before
HWLOC_SETUP_CORE.

• HWLOC_BUILD_STANDALONE: HWLOC_SETUP_CORE defaults to building hwloc in an
"embedded" mode (described above). If HWLOC_BUILD_STANDALONE is invoked ∗before∗
HWLOC_SETUP_CORE, the embedded definitions will not apply (e.g., libhwloc.la will be built,
not libhwloc_embedded.la).

• HWLOC_SET_SYMBOL_PREFIX(foo_): Tells the hwloc to prefix all of hwloc’s types and public
symbols with "foo_"; meaning that function hwloc_init() becomes foo_hwloc_init(). Enum values
are prefixed with an upper-case translation if the prefix supplied; HWLOC_OBJ_CORE becomes
FOO_HWLOC_OBJ_CORE. This is recommended behavior if you are including hwloc in middle-
ware -- it is possible that your software will be combined with other software that links to another
copy of hwloc. If both uses of hwloc utilize different symbol prefixes, there will be no type/symbol
clashes, and everything will compile, link, and run successfully. If you both embed hwloc without
changing the symbol prefix and also link against an external hwloc, you may get multiple symbol
definitions when linking your final library or application.

• HWLOC_SETUP_DOCS, HWLOC_SETUP_UTILS, HWLOC_SETUP_TESTS: These three
macros only apply when hwloc is built in "standalone" mode (i.e., they should NOT be invoked
unless HWLOC_BUILD_STANDALONE has already been invoked).

• HWLOC_DO_AM_CONDITIONALS: If you embed hwloc in a larger project and build it condi-
tionally with Automake (e.g., if HWLOC_SETUP_CORE is invoked conditionally), you must un-
conditionally invoke HWLOC_DO_AM_CONDITIONALS to avoid warnings from Automake (for
the cases where hwloc is not selected to be built). This macro is necessary because hwloc uses
some AM_CONDITIONALs to build itself, and AM_CONDITIONALs cannot be defined condi-
tionally. Note that it is safe (but unnecessary) to call HWLOC_DO_AM_CONDITIONALS even if
HWLOC_SETUP_CORE is invoked unconditionally. If you are not using Automake to build hwloc,
this macro is unnecessary (and will actually cause errors because it invoked AM_∗ macros that will
be undefined).

NOTE: When using the HWLOC_SETUP_CORE m4 macro, it may be necessary to explicitly in-
voke AC_CANONICAL_TARGET (which requires config.sub and config.guess) and/or AC_USE_-
SYSTEM_EXTENSIONS macros early in the configure script (e.g., after AC_INIT but before AM_INIT_-
AUTOMAKE). See the Autoconf documentation for further information.

Also note that hwloc’s top-level configure.ac script uses exactly the macros described above to build hwloc
in a standalone mode (by default). You may want to examine it for one example of how these macros are
used.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

60 Embedding hwloc in Other Software

15.2 Example Embedding hwloc

Here’s an example of integrating with a larger project named sandbox that already uses Autoconf, Au-
tomake, and Libtool to build itself:

First, cd into the sandbox project source tree
shell$ cd sandbox
shell$ cp -r /somewhere/else/hwloc-<version> my-embedded-hwloc
shell$ edit Makefile.am

1. Add "-Imy-embedded-hwloc/config" to ACLOCAL_AMFLAGS
2. Add "my-embedded-hwloc" to SUBDIRS
3. Add "$(HWLOC_EMBEDDED_LDADD)" and "$(HWLOC_EMBEDDED_LIBS)" to

sandbox’s executable’s LDADD line. The former is the name of the
Libtool convenience library that hwloc will generate. The latter
is any dependent support libraries that may be needed by
$(HWLOC_EMBEDDED_LDADD).

4. Add "$(HWLOC_EMBEDDED_CFLAGS)" to AM_CFLAGS
5. Add "$(HWLOC_EMBEDDED_CPPFLAGS)" to AM_CPPFLAGS

shell$ edit configure.ac
1. Add "HWLOC_SET_SYMBOL_PREFIX(sandbox_hwloc_)" line
2. Add "HWLOC_SETUP_CORE([my-embedded-hwloc], [happy=yes], [happy=no])" line
3. Add error checking for happy=no case

shell$ edit sandbox.c
1. Add #include <hwloc.h>
2. Add calls to sandbox_hwloc_init() and other hwloc API functions

Now you can bootstrap, configure, build, and run the sandbox as normal -- all calls to "sandbox_hwloc_∗"
will use the embedded hwloc rather than any system-provided copy of hwloc.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 16

Frequently Asked Questions

62 Frequently Asked Questions

16.1 Concepts

16.1.1 I only need binding, why should I use hwloc ?

hwloc is its portable API that works on a variety of operating systems. It supports binding of threads,
processes and memory buffers (see CPU binding and Memory binding). Even if some features are not
supported on some systems, using hwloc is much easier than reimplementing your own portability layer.

Moreover, hwloc provides knowledge of cores and hardware threads. It offers easy ways to bind tasks
to individual hardware threads, or to entire multithreaded cores, etc. See How may I ignore symmetric
multithreading, hyper-threading, etc. in hwloc?. Most alternative software for binding do not even know
whether each core is single-threaded, multithreaded or hyper-threaded. They would bind to individual
threads without any way to know whether multiple tasks are in the same physical core.

However, using hwloc comes with an overhead since a topology must be loaded before gathering infor-
mation and binding tasks or memory. Fortunately this overhead may be significantly reduced by filtering
non-interesting information out of the topology. For instance the following code builds a topology that
only contains Cores (explicitly filtered-in below), hardware threads (PUs, cannot be filtered-out), NUMA
nodes (cannot be filtered-out), and the root object (usually a Machine; the root cannot be removed without
breaking the tree).

hwloc_topology_t topology;
hwloc_topology_init(&topology);
/* filter everything out */
hwloc_topology_set_all_types_filter(topology, HWLOC_TYPE_FILTER_KEEP_NONE);
/* filter Cores back in */
hwloc_topology_set_type_filter(topology, HWLOC_OBJ_CORE, HWLOC_TYPE_FILTER_KEEP_ALL);
hwloc_topology_load(topology);

However, one should remember that filtering such objects out removes locality information from the hwloc
tree. For instance, we do not know anymore which PU is close to which NUMA node. This would be
useful to applications that explicitly want to place specific memory buffers close to specific tasks. Those
applications just need to tell hwloc to keep Group objects that bring structure information:

hwloc_topology_set_type_filter(topology, HWLOC_OBJ_GROUP, HWLOC_TYPE_FILTER_KEEP_STRUCTURE);

Note that the default configuration is to keep all objects enabled, except I/Os and instruction caches.

16.1.2 Should I use logical or physical/OS indexes? and how?

One of the original reasons why hwloc was created is that physical/OS indexes (obj->os_index) are
often crazy and unpredictable: logical processors numbers are usually non-contiguous (processors 0 and
1 are not physically close), they vary from one machine to another, and may even change after a BIOS
or system update. This numbers make task placement hardly portable. Moreover some objects have no
physical/OS numbers (caches), and some objects have non-unique numbers (core numbers are only unique
within a socket). Physical/OS indexes are only guaranteed to exist and be unique for PU and NUMA nodes.

hwloc therefore introduces logical indexes (obj->logical_index) which are portable, contiguous
and logically ordered (based on the resource organization in the locality tree). In general, one should only
use logical indexes and just let hwloc do the internal conversion when really needed (when talking to the
OS and hardware).

hwloc developers recommends that users do not use physical/OS indexes unless they really know what they
are doing. The main reason for still using physical/OS indexes is when interacting with non-hwloc tools
such as numactl or taskset, or when reading hardware information from raw sources such as /proc/cpuinfo.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

16.1 Concepts 63

lstopo options -l and -p may be used to switch between logical indexes (prefixed with L#) and phys-
ical/OS indexes (P#). Converting one into the other may also be achieved with hwloc-calc which may
manipulate either logical or physical indexes as input or output. See also hwloc-calc.

Convert PU with physical number 3 into logical number
$ hwloc-calc -I pu --physical-input --logical-output pu:3
5

Convert a set of NUMA nodes from logical to physical
(beware that the output order may not match the input order)
$ hwloc-calc -I numa --logical-input --physical-output numa:2-3 numa:7
0,2,5

16.1.3 hwloc is only a structural model, it ignores performance models, memory
bandwidth, etc.?

hwloc is indeed designed to provide applications with a structural model of the platform. This is an orthog-
onal approach to describing the machine with performance models, for instance using memory bandwidth
or latencies measured by benchmarks. We believe that both approaches are important for helping applica-
tion make the most of the hardware.

For instance, on a dual-processor host with four cores each, hwloc clearly shows which four cores are to-
gether. Latencies between all pairs of cores of the same processor are likely identical, and also likely lower
than the latency between cores of different processors. However, the structural model cannot guarantee
such implementation details. On the other side, performance models would reveal such details without
always clearly identifying which cores are in the same processor.

The focus of hwloc is mainly of the structural modeling side. However, hwloc lets user adds performance
information to the topology through distances (see Retrieve distances between objects and Add or remove
distances between objects) or even custom annotations (see How do I annotate the topology with private
notes?). hwloc may also use such distance information for grouping objects together (see hwloc only has
a one-dimensional view of the architecture, it ignores distances? and What are these Group objects in my
topology?).

16.1.4 hwloc only has a one-dimensional view of the architecture, it ignores dis-
tances?

hwloc places all objects in a tree. Each level is a one-dimensional view of a set of similar objects. All
children of the same object (siblings) are assumed to be equally interconnected (same distance between
any of them), while the distance between children of different objects (cousins) is supposed to be larger.

Modern machines exhibit complex hardware interconnects, so this tree may miss some information about
the actual physical distances between objects. The hwloc topology may therefore be annotated with dis-
tance information that may be used to build a more realistic representation (multi-dimensional) of each
level. For instance, there can be a distance matrix that representing the latencies between any pair of
NUMA nodes if the BIOS and/or operating system reports them.

For more information about the distance API, see Retrieve distances between objects and Add or remove
distances between objects.

16.1.5 What are these Group objects in my topology?

hwloc comes with a set of predefined object types (Core, Package, NUMA node, Caches) that match the
vast majority of hardware platforms. The HWLOC_OBJ_GROUP type was designed for cases where this

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

64 Frequently Asked Questions

set is not sufficient. Groups may be used anywhere to add more structure information to the topology, for
instance to show that 2 out of 4 NUMA nodes are actually closer than the others. When applicable, the
subtype field describes why a Group was actually added (see also Normal attributes).

hwloc currently uses Groups for the following reasons:

• NUMA parents when memory locality does not match any existing object.

• I/O parents when I/O locality does not match any existing object.

• Distance-based groups made of close objects.

• AMD Bulldozer dual-core compute units (subtype is ComputeUnit, in the x86 backend), but
these objects are usually merged with the L2 caches.

• Intel extended topology enumeration unknown levels (in the x86 backend).

• Windows processor groups (unless they contain a single NUMA node, or a single Package, etc.).

• IBM S/390 "Books" on Linux (subtype is Book).

• AIX unknown hierarchy levels.

hwloc Groups are only kept if no other object has the same locality information. It means that a Group
containing a single child is merged into that child. And a Group is merged into its parent if it is its only
child. For instance a Windows processor group containing a single NUMA node would be merged with
that NUMA node since it already contains the relevant hierarchy information.

16.1.6 What happens if my topology is asymmetric?

hwloc supports asymmetric topologies even if most platforms are usually symmetric. For example, there
could be different types of processors in a single machine, each with different numbers of cores, symmetric
multithreading, or levels of caches.

In practice, asymmetric topologies mostly appear when intermediate groups are added for I/O affinity: on
a 4-package machine, an I/O bus may be connected to 2 packages. These packages are below an additional
Group object, while the other packages are not (see also What are these Group objects in my topology?).

To understand how hwloc manages such cases, one should first remember the meaning of levels and cousin
objects. All objects of the same type are gathered as horizontal levels with a given depth. They are also
connected through the cousin pointers of the hwloc_obj structure. Object attribute (cache depth and type,
group depth) are also taken in account when gathering objects as horizontal levels. To be clear: there will
be one level for L1i caches, another level for L1d caches, another one for L2, etc.

If the topology is asymmetric (e.g., if a group is missing above some processors), a given horizontal level
will still exist if there exist any objects of that type. However, some branches of the overall tree may not
have an object located in that horizontal level. Note that this specific hole within one horizontal level does
not imply anything for other levels. All objects of the same type are gathered in horizontal levels even if
their parents or children have different depths and types.

See the diagram in Terms and Definitions for a graphical representation of such topologies.

Moreover, it is important to understand that a same parent object may have children of different types (and
therefore, different depths). These children are therefore siblings (because they have the same parent),
but they are not cousins (because they do not belong to the same horizontal level).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

16.1 Concepts 65

16.1.7 What happens to my topology if I disable symmetric multithreading, hyper-
threading, etc. in the system?

hwloc creates one PU (processing unit) object per hardware thread. If your machine supports symmetric
multithreading, for instance Hyper-Threading, each Core object may contain multiple PU objects:

$ lstopo -
...

Core L#0
PU L#0 (P#0)
PU L#1 (P#2)

Core L#1
PU L#2 (P#1)
PU L#3 (P#3)

x86 machines usually offer the ability to disable hyper-threading in the BIOS. Or it can be disabled on the
Linux kernel command-line at boot time, or later by writing in sysfs virtual files.

If you do so, the hwloc topology structure does not significantly change, but some PU objects will not
appear anymore. No level will disappear, you will see the same number of Core objects, but each of them
will contain a single PU now. The PU level does not disappear either (remember that hwloc topologies
always contain a PU level at the bottom of the topology) even if there is a single PU object per Core parent.

$ lstopo -
...

Core L#0
PU L#0 (P#0)

Core L#1
PU L#1 (P#1)

16.1.8 How may I ignore symmetric multithreading, hyper-threading, etc. in
hwloc?

First, see What happens to my topology if I disable symmetric multithreading, hyper-threading, etc. in the
system? for more information about multithreading.

If you need to ignore symmetric multithreading in software, you should likely manipulate hwloc Core
objects directly:

/* get the number of cores */
unsigned nbcores = hwloc_get_nbobjs_by_type(topology, HWLOC_OBJ_CORE);
...
/* get the third core below the first package */
hwloc_obj_t package, core;
package = hwloc_get_obj_by_type(topology, HWLOC_OBJ_PACKAGE, 0);
core = hwloc_get_obj_inside_cpuset_by_type(topology, package->cpuset,

HWLOC_OBJ_CORE, 2);

Whenever you want to bind a process or thread to a core, make sure you singlify its cpuset first, so that the
task is actually bound to a single thread within this core (to avoid useless migrations).

/* bind on the second core */
hwloc_obj_t core = hwloc_get_obj_by_type(topology, HWLOC_OBJ_CORE, 1);
hwloc_cpuset_t set = hwloc_bitmap_dup(core->cpuset);
hwloc_bitmap_singlify(set);
hwloc_set_cpubind(topology, set, 0);
hwloc_bitmap_free(set);

With hwloc-calc or hwloc-bind command-line tools, you may specify that you only want a single-thread
within each core by asking for their first PU object:

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

66 Frequently Asked Questions

$ hwloc-calc core:4-7
0x0000ff00
$ hwloc-calc core:4-7.pu:0
0x00005500

When binding a process on the command-line, you may either specify the exact thread that you want to
use, or ask hwloc-bind to singlify the cpuset before binding

$ hwloc-bind core:3.pu:0 -- echo "hello from first thread on core #3"
hello from first thread on core #3
...
$ hwloc-bind core:3 --single -- echo "hello from a single thread on core #3"
hello from a single thread on core #3

16.2 Advanced

16.2.1 I do not want hwloc to rediscover my enormous machine topology every
time I rerun a process

Although the topology discovery is not expensive on common machines, its overhead may become sig-
nificant when multiple processes repeat the discovery on large machines (for instance when starting one
process per core in a parallel application). The machine topology usually does not vary much, except if
some cores are stopped/restarted or if the administrator restrictions are modified. Thus rediscovering the
whole topology again and again may look useless.

For this purpose, hwloc offers XML import/export and shared memory features.

XML lets you save the discovered topology to a file (for instance with the lstopo program) and reload it
later by setting the HWLOC_XMLFILE environment variable. The HWLOC_THISSYSTEM environment
variable should also be set to 1 to assert that loaded file is really the underlying system.

Loading a XML topology is usually much faster than querying multiple files or calling multiple functions
of the operating system. It is also possible to manipulate such XML files with the C programming interface,
and the import/export may also be directed to memory buffer (that may for instance be transmitted between
applications through a package). See also Importing and exporting topologies from/to XML files.

Note:

The environment variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES may be used to load
a XML topology that contains the entire machine and restrict it to the part that is actually available
to the current process (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources). See
Environment Variables.

Shared-memory topologies consist in one process exposing its topology in a shared-memory buffer so that
other processes (running on the same machine) may use it directly. This has the advantage of reducing the
memory footprint since a single topology is stored in physical memory for multiple processes. However, it
requires all processes to map this shared-memory buffer at the same virtual address, which may be difficult
in some cases. This API is described in Sharing topologies between processes.

16.2.2 How many topologies may I use in my program?

hwloc lets you manipulate multiple topologies at the same time. However, these topologies consume mem-
ory and system resources (for instance file descriptors) until they are destroyed. It is therefore discouraged
to open the same topology multiple times.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

16.3 Caveats 67

Sharing a single topology between threads is easy (see Thread Safety) since the vast majority of accesses
are read-only.

If multiple topologies of different (but similar) nodes are needed in your program, have a look at How to
avoid memory waste when manipulating multiple similar topologies?.

16.2.3 How to avoid memory waste when manipulating multiple similar topolo-
gies?

hwloc does not share information between topologies. If multiple similar topologies are loaded in memory,
for instance the topologies of different identical nodes of a cluster, lots of information will be duplicated.

hwloc/diff.h (see also Topology differences) offers the ability to compute topology differences, apply or
unapply them, or export/import to/from XML. However, this feature is limited to basic differences such as
attribute changes. It does not support complex modifications such as adding or removing some objects.

16.2.4 How do I annotate the topology with private notes?

Each hwloc object contains a userdata field that may be used by applications to store private point-
ers. This field is only valid during the lifetime of these container object and topology. It becomes
invalid as soon the topology is destroyed, or as soon as the object disappears, for instance when re-
stricting the topology. The userdata field is not exported/imported to/from XML by default since
hwloc does not know what it contains. This behavior may be changed by specifying application-
specific callbacks with hwloc_topology_set_userdata_export_callback() and hwloc_-
topology_set_userdata_import_callback().

Each object may also contain some info attributes (key name and value) that are setup by hwloc during
discovery and that may be extended by the user with hwloc_obj_add_info() (see also Object at-
tributes). Contrary to the userdata field which is unique, multiple info attributes may exist for each
object, even with the same name. These attributes are always exported to XML. However, only character
strings may be used as key names and values.

It is also possible to insert Misc objects with a custom name anywhere as a leaf of the topology (see
Miscellaneous objects). And Misc objects may have their own userdata and info attributes just like any
other object.

The hwloc-annotate command-line tool may be used for adding Misc objects and info attributes.

There is also a topology-specific userdata pointer that can be used to recognize different topologies by
storing a custom pointer. It may be manipulated with hwloc_topology_set_userdata() and
hwloc_topology_get_userdata().

16.3 Caveats

16.3.1 Why is hwloc slow?

Building a hwloc topology on a large machine may be slow because the discovery of hundreds of hardware
cores or threads takes time (especially when reading thousands of sysfs files on Linux). Ignoring some
objects (for instance caches) that aren’t useful to the current application may improve this overhead (see
I only need binding, why should I use hwloc ?). One should also consider using XML (see I do not want
hwloc to rediscover my enormous machine topology every time I rerun a process) to work around such
issues.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

68 Frequently Asked Questions

Additionally, lstopo enables most hwloc objects and discovery flags by default so that the output topology
is as precise as possible (while hwloc disables many of them by default). This includes I/O device discovery
through PCI libraries as well as external libraries such as NVML. To speed up lstopo, you may disable such
features with command-line options such as \--no-io.

When NVIDIA GPU probing is enabled with CUDA or NVML, one should make sure that the Persistent
mode is enabled (with nvidia-smi -pm 1) to avoid significant GPU initialization overhead.

When AMD GPU discovery is enabled with OpenCL and hwloc is used remotely over ssh, some spurious
round-trips on the network may significantly increase the discovery time. Forcing the DISPLAY environ-
ment variable to the remote X server display (usually :0) instead of only setting the COMPUTE variable
may avoid this.

Also remember that these components may be disabled at build-time with configure flags such as
\--disable-opencl, \--disable-cuda or \--disable-nvml, and at runtime with the envi-
ronment variable HWLOC_COMPONENTS=-opencl,-cuda,-nvml.

16.3.2 Does hwloc require privileged access?

hwloc discovers the topology by querying the operating system. Some minor features may require privi-
leged access to the operation system. For instance memory module discovery on Linux is reserved to root,
and the entire PCI discovery on Solaris and BSDs requires access to some special files that are usually
restricted to root (/dev/pci∗ or /devices/pci∗).

To workaround this limitation, it is recommended to export the topology as a XML file generated by the
administrator (with the lstopo program) and make it available to all users (see Importing and exporting
topologies from/to XML files). It will offer all discovery information to any application without requiring
any privileged access anymore. Only the necessary hardware characteristics will be exported, no sensitive
information will be disclosed through this XML export.

This XML-based model also has the advantage of speeding up the discovery because reading a XML
topology is usually much faster than querying the operating system again.

The utility hwloc-dump-hwdata is also involved in gathering privileged information at boot time and
making it available to non-privileged users (note that this may require a specific SELinux MLS policy
module). However, it only applies to Intel Xeon Phi processors for now (see Why do I need hwloc-
dump-hwdata for memory on Intel Xeon Phi processor?). See also HWLOC_DUMPED_HWDATA_DIR in
Environment Variables for details about the location of dumped files.

16.3.3 What should I do when hwloc reports "operating system" warnings?

When the operating system reports invalid locality information (because of either software or hardware
bugs), hwloc may fail to insert some objects in the topology because they cannot fit in the already built tree
of resources. If so, hwloc will report a warning like the following. The object causing this error is ignored,
the discovery continues but the resulting topology will miss some objects and may be asymmetric (see also
What happens if my topology is asymmetric?).

**
* hwloc received invalid information from the operating system.

*
* L3 (cpuset 0x000003f0) intersects with NUMANode (P#0 cpuset 0x0000003f) without inclusion!

* Error occurred in topology.c line 940

*
* Please report this error message to the hwloc user’s mailing list,

* along with the files generated by the hwloc-gather-topology script.

*
* hwloc will now ignore this invalid topology information and continue.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

16.3 Caveats 69

**

These errors are common on large AMD platforms because of BIOS and/or Linux kernel bugs causing
invalid L3 cache information. In the above example, the hardware reports a L3 cache that is shared by 2
cores in the first NUMA node and 4 cores in the second NUMA node. That’s wrong, it should actually be
shared by all 6 cores in a single NUMA node. The resulting topology will miss some L3 caches.

If your application does not care about cache sharing, or if you do not plan to request cache-aware binding in
your process launcher, you may likely ignore this error (and hide it by setting HWLOC_HIDE_ERRORS=1
in your environment).

Some platforms report similar warnings about conflicting Packages and NUMANodes.

On x86 hosts, passing HWLOC_COMPONENTS=x86 in the environment may workaround some of these
issues by switching to a different way to discover the topology.

Upgrading the BIOS and/or the operating system may help. Otherwise, as explained in the message,
reporting this issue to the hwloc developers (by sending the tarball that is generated by the hwloc-gather-
topology script on this platform) is a good way to make sure that this is a software (operating system) or
hardware bug (BIOS, etc).

See also Questions and Bugs. Opening an issue on GitHub automatically displays hints on what informa-
tion you should provide when reporting such bugs.

16.3.4 Why does Valgrind complain about hwloc memory leaks?

If you are debugging your application with Valgrind, you want to avoid memory leak reports that are caused
by hwloc and not by your program.

hwloc itself is often checked with Valgrind to make sure it does not leak memory. However, some global
variables in hwloc dependencies are never freed. For instance libz allocates its global state once at startup
and never frees it so that it may be reused later. Some libxml2 global state is also never freed because
hwloc does not know whether it can safely ask libxml2 to free it (the application may also be using libxml2
outside of hwloc).

These unfreed variables cause leak reports in Valgrind. hwloc installs a Valgrind suppressions file to hide
them. You should pass the following command-line option to Valgrind to use it:

--suppressions=/path/to/hwloc-valgrind.supp

16.3.5 How do I handle ABI breaks and API upgrades?

The hwloc interface is extended with every new major release. Any application using the hwloc API should
be prepared to check at compile-time whether some features are available in the currently installed hwloc
distribution.

For instance, to check whether the hwloc version is at least 2.0, you should use:

#include <hwloc.h>
#if HWLOC_API_VERSION >= 0x00020000
...
#endif

To check for the API of release X.Y.Z at build time, you may compare HWLOC_API_VERSION with
(X<<16)+(Y<<8)+Z.

For supporting older releases that do not have HWLOC_OBJ_NUMANODE and HWLOC_OBJ_PACKAGE
yet, you may use:

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

70 Frequently Asked Questions

#include <hwloc.h>
#if HWLOC_API_VERSION < 0x00010b00
#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
#endif

The hwloc interface was deeply modified in release 2.0 to fix several issues of the 1.x interface (see Up-
grading to the hwloc 2.0 API and the NEWS file in the source directory for details). The ABI was broken,
which means applications must be recompiled against the new 2.0 interface.

To check that you are not mixing old/recent headers with a recent/old runtime library, check the major
revision number in the API version:

#include <hwloc.h>
unsigned version = hwloc_get_api_version();
if ((version >> 16) != (HWLOC_API_VERSION >> 16)) {

fprintf(stderr,
"%s compiled for hwloc API 0x%x but running on library API 0x%x.\n"
"You may need to point LD_LIBRARY_PATH to the right hwloc library.\n"
"Aborting since the new ABI is not backward compatible.\n",
callname, HWLOC_API_VERSION, version);

exit(EXIT_FAILURE);
}

To specifically detect v2.0 issues:

#include <hwloc.h>
#if HWLOC_API_VERSION >= 0x00020000

/* headers are recent */
if (hwloc_get_api_version() < 0x20000)

... error out, the hwloc runtime library is older than 2.0 ...
#else

/* headers are pre-2.0 */
if (hwloc_get_api_version() >= 0x20000)

... error out, the hwloc runtime library is more recent than 2.0 ...
#endif

You should not try to remain compatible with very old releases such as 1.1.x or earlier because HWLOC_-
API_VERSIONwas added in 1.0.0 and hwloc_get_api_version() came only in 1.1.1. Also do not
use the old cpuset API since it was deprecated and superseded by the bitmap API in 1.1, and later removed
in 1.5.

If you ever need to look at the library version instead of the API version, you may want to use HWLOC_-
VERSION instead. Two stable releases of the same series usually have the same HWLOC_API_VERSION
even if their HWLOC_VERSION are different.

16.4 Platform-specific

16.4.1 How do I find the local MCDRAM NUMA node on Intel Xeon Phi proces-
sor?

Intel Xeon Phi processors introduced a new memory architecture by possibly having two distinct local
memories: some normal memory (DDR) and some high-bandwidth on-package memory (MCDRAM).
Processors can be configured in various clustering modes to have up to 4 Clusters. Moreover, each Clus-
ter (quarter, half or whole processor) of the processor may have its own local parts of the DDR and of
the MCDRAM. This memory and clustering configuration may be probed by looking at MemoryMode
and ClusterMode attributes, see Hardware Platform Information and doc/examples/get-knl-modes.c in the
source directory.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

16.4 Platform-specific 71

Starting with version 2.0, hwloc properly exposes this memory configuration. DDR and MCDRAM are
attached as two memory children of the same parent, DDR first, and MCDRAM second if any. Depending
on the processor configuration, that parent may be a Package, a Cache, or a Group object of type Cluster.

Hence cores may have one or two local NUMA nodes, listed by the core nodeset. An application may
allocate local memory from a core by using that nodeset. The operating system will actually allocate from
the DDR when possible, or fallback to the MCDRAM.

To allocate specifically on one of these memories, one should walk up the parent pointers until finding an
object with some memory children. Looking at these memory children will give the DDR first, then the
MCDRAM if any. Their nodeset may then be used for allocating or binding memory buffers.

One may also traverse the list of NUMA nodes until finding some whose cpuset matches the target core
or PUs. The MCDRAM NUMA nodes may be identified thanks to the subtype field which is set to
MCDRAM.

Command-line tools such as hwloc-bind may bind memory on the MCDRAM by using the hbm key-
word. For instance, to bind on the first MCDRAM NUMA node:

$ hwloc-bind --membind --hbm numa:0 -- myprogram
$ hwloc-bind --membind numa:0 -- myprogram

16.4.2 Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi proces-
sor?

Intel Xeon Phi processors may use the on-package memory (MCDRAM) as either memory or a memory-
side cache (currently reported as a L3 cache by hwloc). There are also several clustering modes that
significantly affect the memory organization (see How do I find the local MCDRAM NUMA node on Intel
Xeon Phi processor? for more information about these modes). Details about these are currently only
available to privileged users. Without them, hwloc relies on a heuristic for guessing the modes.

The hwloc-dump-hwdata utility may be used to dump this privileged binary information into human-
readable and world-accessible files that the hwloc library will later load. The utility should usually run
as root once during boot, in order to update dumped information (stored under /var/run/hwloc by default)
in case the MCDRAM or clustering configuration changed between reboots.

When SELinux MLS policy is enabled, a specific hwloc policy module may be re-
quired so that all users get access to the dumped files (in /var/run/hwloc by de-
fault). One may use hwloc policy files from the SELinux Reference Policy at
https://github.com/TresysTechnology/refpolicy-contrib (see also the documenta-
tion at https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted).

hwloc-dump-hwdata requires dmi-sysfs kernel module loaded.

The utility is currently unneeded on platforms without Intel Xeon Phi processors.

See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped
files.

16.4.3 How do I build for Intel Xeon Phi coprocessor?

Note:

This section does not apply to standalone Intel Xeon Phi processors (Knights Landing and Knights
Mill).

Intel Xeon Phi coprocessors (Knights Corner) usually runs a Linux environment but cross-compiling from
the host is required. hwloc uses standard autotools options for cross-compiling.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

https://github.com/TresysTechnology/refpolicy-contrib
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted

72 Frequently Asked Questions

If building with icc:

./configure CC="icc -mmic" --host=x86_64-k1om-linux --build=x86_64-unknown-linux-gnu

If building with the Xeon Phi-specific GCC that comes with the MPSS environment, for instance
/usr/linux-k1om-4.7/bin/x86_64-k1om-linux-gcc:

export PATH=$PATH:/usr/linux-k1om-4.7/bin/
./configure --host=x86_64-k1om-linux --build=x86_64-unknown-linux-gnu

16.4.4 How do I build hwloc for BlueGene/Q?

IBM BlueGene/Q machines run a standard Linux on the login/frontend nodes and a custom CNK (Compute
Node Kernel) on the compute nodes.

To discover the topology of a login/frontend node, hwloc should be configured as usual, without any
BlueGene/Q-specific option.

However, one would likely rather discover the topology of the compute nodes where parallel jobs are
actually running. If so, hwloc must be cross-compiled with the following configuration line:

./configure --host=powerpc64-bgq-linux --disable-shared --enable-static \
CPPFLAGS=’-I/bgsys/drivers/ppcfloor -I/bgsys/drivers/ppcfloor/spi/include/kernel/cnk/’

CPPFLAGS may have to be updated if your platform headers are installed in a different directory.

16.4.5 How do I build hwloc for Windows?

hwloc releases are available as pre-built ZIPs for Windows on both 32bits and 64bits x86 platforms. They
are built using MSYS2 and MinGW on a Windows host. Such an environment allows using the Unix-like
configure, make and make install steps without having to tweak too many variables or options.
One may look at contrib/ci.inria.fr/job-3-mingw.sh in the hwloc repository for an example
used for nightly testing.

hwloc releases also contain a basic Microsoft Visual Studio solution under contrib/windows/.

16.4.6 How to get useful topology information on NetBSD?

The NetBSD (and FreeBSD) backend uses x86-specific topology discovery (through the x86 component).
This implementation requires CPU binding so as to query topology information from each individual
logical processor. This means that hwloc cannot find any useful topology information unless user-level
process binding is allowed by the NetBSD kernel. The security.models.extensions.user_-
set_cpu_affinity sysctl variable must be set to 1 to do so. Otherwise, only the number of logical
processors will be detected.

16.4.7 Why does binding fail on AIX?

The AIX operating system requires specific user capabilities for attaching processes to resource sets
(CAP_NUMA_ATTACH). Otherwise functions such as hwloc_set_cpubind() fail (return -1 with errno set
to EPERM).

This capability must also be inherited (through the additional CAP_PROPAGATE capability) if you plan
to bind a process before forking another process, for instance with hwloc-bind.

These capabilities may be given by the administrator with:

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

16.4 Platform-specific 73

chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" <username>

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

74 Frequently Asked Questions

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 17

Upgrading to the hwloc 2.0 API

76 Upgrading to the hwloc 2.0 API

See How do I handle ABI breaks and API upgrades? for detecting the hwloc version that you are compiling
and/or running against.

17.1 New Organization of NUMA nodes and Memory

17.1.1 Memory children

In hwloc v1.x, NUMA nodes were inside the tree, for instance Packages contained 2 NUMA nodes which
contained a L3 and several cache.

Starting with hwloc v2.0, NUMA nodes are not in the main tree anymore. They are attached under objects
as Memory Children on the side of normal children. This memory children list starts at obj->memory_-
first_child and its size is obj->memory_arity. Hence there can now exist two local NUMA
nodes, for instance on Intel Xeon Phi processors.

The normal list of children (starting at obj->first_child, ending at obj->last_child, of size
obj->arity, and available as the array obj->children) now only contains CPU-side objects: PUs,
Cores, Packages, Caches, Groups, Machine and System. hwloc_get_next_child() may still be used to
iterate over all children of all lists.

Hence the CPU-side hierarchy is built using normal children, while memory is attached to that hierarchy
depending on its affinity.

17.1.2 Examples

• a UMA machine with 2 packages and a single NUMA node is now modeled as a "Machine" object
with two "Package" children and one "NUMANode" memory children (displayed first in lstopo
below):

Machine (1024MB total)
NUMANode L#0 (P#0 1024MB)
Package L#0
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)

Package L#1
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

• a machine with 2 packages with one NUMA node and 2 cores in each is now:

Machine (2048MB total)
Package L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)

Package L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

• if there are two NUMA nodes per package, a Group object may be added to keep cores together with
their local NUMA node:

Machine (4096MB total)
Package L#0
Group0 L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

17.1 New Organization of NUMA nodes and Memory 77

Group0 L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Package L#1
[...]

• if the platform has L3 caches whose localities are identical to NUMA nodes, Groups aren’t needed:

Machine (4096MB total)
Package L#0
L3 L#0 (16MB)
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)

L3 L#1 (16MB)
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Package L#1
[...]

17.1.3 NUMA level and depth

NUMA nodes are not in "main" tree of normal objects anymore. Hence, they don’t have a meaningful depth
anymore (like I/O and Misc objects). They have a virtual (negative) depth (HWLOC_TYPE_DEPTH_-
NUMANODE) so that functions manipulating depths and level still work, and so that we can still iterate
over the level of NUMA nodes just like for any other level.

For instance we can still use lines such as

int depth = hwloc_get_type_depth(topology, HWLOC_OBJ_NUMANODE);
hwloc_obj_t obj = hwloc_get_obj_by_type(topology, HWLOC_OBJ_NUMANODE, 4);
hwloc_obj_t node = hwloc_get_next_obj_by_depth(topology, HWLOC_TYPE_DEPTH_NUMANODE, prev);

The NUMA depth should not be compared with others. An unmodified code that still compares NUMA and
Package depths (to find out whether Packages contain NUMA or the contrary) would now always assume
Packages contain NUMA (because the NUMA depth is negative).

However, the depth of the Normal parents of NUMA nodes may be used instead. In the last example above,
NUMA nodes are attached to L3 caches, hence one may compare the depth of Packages and L3 to find out
that NUMA nodes are contained in Packages. This depth of parents may be retrieved with hwloc_get_-
memory_parents_depth(). However, this function may return HWLOC_TYPE_DEPTH_MULTIPLE on
future platforms if NUMA nodes are attached to different levels.

17.1.4 Finding Local NUMA nodes and looking at Children and Parents

Applications that walked up/down to find NUMANode parent/children must now be updated. Instead of
looking directly for a NUMA node, one should now look for an object that has some memory children.
NUMA node(s) will be be attached there. For instance, when looking for a NUMA node above a given
core core:

hwloc_obj_t parent = core->parent;
while (parent && !parent->memory_arity)

parent = parent->parent; /* no memory child, walk up */
if (parent)

/* use parent->memory_first_child (and its siblings if there are multiple local NUMA nodes) */

The list of local NUMA nodes (usually a single one) is also described by the nodeset attribute of each
object (which contains the physical indexes of these nodes). Iterating over the NUMA level is also an easy
way to find local NUMA nodes:

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

78 Upgrading to the hwloc 2.0 API

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_NUMANODE, tmp)) != NULL) {

if (hwloc_bitmap_isset(obj->nodeset, tmp->os_index))
/* tmp is a NUMA node local to obj, use it */

}

Similarly finding objects that are close to a given NUMA nodes should be updated too. Instead of looking
at the NUMA node parents/children, one should now find a Normal parent above that NUMA node, and
then look at its parents/children as usual:

hwloc_obj_t tmp = obj->parent;
while (hwloc_obj_type_is_memory(tmp))

tmp = tmp->parent;
/* now use tmp instead of obj */

To avoid such hwloc v2.x-specific and NUMA-specific cases in the code, a generic lookup for any kind of
object, including NUMA nodes, might also be implemented by iterating over a level. For instance finding
an object of type type which either contains or is included in object obj can be performed by traversing
the level of that type and comparing CPU sets:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type(topology, type, tmp)) != NULL) {

if (hwloc_bitmap_intersects(tmp->cpuset, obj->cpuset))
/* tmp matches, use it */

}

This generic lookup works whenever type or obj are Normal or Memory objects since both have
CPU sets. Moreover, it is compatible with the hwloc v1.x API.

17.2 4 Kinds of Objects and Children

17.2.1 I/O and Misc children

I/O children are not in the main object children list anymore either. They are in the list starting at
obj->io_first_child and whose size if obj->io_arity.

Misc children are not in the main object children list anymore. They are in the list starting at
obj->misc_first_child nd whose size if obj->misc_arity.

See hwloc_obj for details about children lists.

hwloc_get_next_child() may still be used to iterate over all children of all lists.

17.2.2 Kinds of objects

Given the above, objects may now be of 4 kinds:

• Normal (everything not listed below, including Machine, Package, Core, PU, CPU Caches, etc);

• Memory (currently only NUMA nodes), attached to parents as Memory children;

• I/O (Bridges, PCI and OS devices), attached to parents as I/O children;

• Misc objects, attached to parents as Misc children.

See hwloc_obj for details about children lists.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

17.3 HWLOC_OBJ_CACHE replaced 79

For a given object type, the kind may be found with hwloc_obj_type_is_normal(), hwloc_obj_type_is_-
memory(), hwloc_obj_type_is_normal(), or comparing with HWLOC_OBJ_MISC.

Normal and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc objects don’t
have any sets (they are NULL).

17.3 HWLOC_OBJ_CACHE replaced

Instead of a single HWLOC_OBJ_CACHE, there are now 8 types HWLOC_OBJ_L1CACHE, ...,
HWLOC_OBJ_L5CACHE, HWLOC_OBJ_L1ICACHE, ..., HWLOC_OBJ_L3ICACHE.

Cache object attributes are unchanged.

hwloc_get_cache_type_depth() is not needed to disambiguate cache types anymore since new types can be
passed to hwloc_get_type_depth() without ever getting HWLOC_TYPE_DEPTH_MULTIPLE anymore.

hwloc_obj_type_is_cache(), hwloc_obj_type_is_dcache() and hwloc_obj_type_is_icache() may be used to
check whether a given type is a cache, data/unified cache or instruction cache.

17.4 allowed_cpuset and allowed_nodeset only in the main topology

Objects do not have allowed_cpuset and allowed_nodeset anymore. They are only available
for the entire topology using hwloc_topology_get_allowed_cpuset() and hwloc_topology_get_allowed_-
nodeset().

As usual, those are only needed when the WHOLE_SYSTEM topology flag is given, which means dis-
allowed objects are kept in the topology. If so, one may find out whether some PUs inside an object is
allowed by checking

hwloc_bitmap_intersects(obj->cpuset, hwloc_topology_get_allowed_cpuset(topology))

Replace cpusets with nodesets for NUMA nodes. To find out which ones, replace intersects() with and() to
get the actual intersection.

17.5 Object depths are now signed int

obj->depth as well as depths given to functions such as hwloc_get_obj_by_depth() or returned by
hwloc_topology_get_depth() are now signed int.

Other depth such as cache-specific depth attribute are still unsigned.

17.6 Memory attributes become NUMANode-specific

Memory attributes such as obj->memory.local_memory are now only available in NUMANode-
specific attributes in obj->attr->numanode.local_memory.

obj->memory.total_memory is available in all objects as obj->total_memory.

See hwloc_obj_attr_u::hwloc_numanode_attr_s and hwloc_obj for details.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

80 Upgrading to the hwloc 2.0 API

17.7 Topology configuration changes

The old ignoring API as well as several configuration flags are replaced with the new filtering API, see
hwloc_topology_set_type_filter() and its variants, and hwloc_type_filter_e for details.

• hwloc_topology_ignore_type(), hwloc_topology_ignore_type_keep_structure() and hwloc_-
topology_ignore_all_keep_structure() are respectively superseded by

hwloc_topology_set_type_filter(topology, type, HWLOC_TYPE_FILTER_KEEP_NONE);
hwloc_topology_set_type_filter(topology, type, HWLOC_TYPE_FILTER_KEEP_STRUCTURE);
hwloc_topology_set_all_types_filter(topology, HWLOC_TYPE_FILTER_KEEP_STRUCTURE);

Also, the meaning of KEEP_STRUCTURE has changed (only entire levels may be ignored, instead
of single objects), the old behavior is not available anymore.

• HWLOC_TOPOLOGY_FLAG_ICACHES is superseded by

hwloc_topology_set_icache_types_filter(topology, HWLOC_TYPE_FILTER_KEEP_ALL);

• HWLOC_TOPOLOGY_FLAG_WHOLE_IO, HWLOC_TOPOLOGY_FLAG_IO_DEVICES and
HWLOC_TOPOLOGY_FLAG_IO_BRIDGES replaced.

To keep all I/O devices (PCI, Bridges, and OS devices), use:

hwloc_topology_set_io_types_filter(topology, HWLOC_TYPE_FILTER_KEEP_ALL);

To only keep important devices (Bridges with children, common PCI devices and OS devices):

hwloc_topology_set_io_types_filter(topology, HWLOC_TYPE_FILTER_KEEP_IMPORTANT);

17.8 XML changes

2.0 XML files are not compatible with 1.x

2.0 can load 1.x files, but only NUMA distances are imported. Other distance matrices are ignored (they
were never used by default anyway).

2.0 can export 1.x-compatible files, but only distances attached to the root object are exported (i.e. distances
that cover the entire machine). Other distance matrices are dropped (they were never used by default
anyway).

Users are advised to negociate hwloc versions between exporter and importer: If the importer isn’t
2.x, the exporter should export to 1.x. Otherwise, things should work by default.

Hence hwloc_topology_export_xml() and hwloc_topology_export_xmlbuffer() have a new flags argument.
to force a hwloc-1.x-compatible XML export.

• If both always support 2.0, don’t pass any flag.

• When the importer uses hwloc 1.x, export with HWLOC_TOPOLOGY_EXPORT_XML_FLAG_-
V1. Otherwise the importer will fail to import.

• When the exporter uses hwloc 1.x, it cannot pass any flag, and a 2.0 importer can import without
problem.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

17.9 Distances API totally rewritten 81

#if HWLOC_API_VERSION >= 0x20000
if (need 1.x compatible XML export)

hwloc_topology_export_xml(...., HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1);
else /* need 2.x compatible XML export */

hwloc_topology_export_xml(...., 0);
#else

hwloc_topology_export_xml(....);
#endif

Additionally, hwloc_topology_diff_load_xml(), hwloc_topology_diff_load_xmlbuffer(), hwloc_-
topology_diff_export_xml(), hwloc_topology_diff_export_xmlbuffer() and hwloc_topology_diff_-
destroy() lost the topology argument: The first argument (topology) isn’t needed anymore.

17.9 Distances API totally rewritten

The new distances API is in hwloc/distances.h.

Distances are not accessible directly from objects anymore. One should first call hwloc_distances_get() (or
a variant) to retrieve distances (possibly with one call to get the number of available distances structures,
and another call to actually get them). Then it may consult these structures, and finally release them.

The set of object involved in a distances structure is specified by an array of objects, it may not always
cover the entire machine or so.

17.10 Return values of functions

Bitmap functions (and a couple other functions) can return errors (in theory).

Most bitmap functions may have to reallocate the internal bitmap storage. In v1.x, they would silently crash
if realloc failed. In v2.0, they now return an int that can be negative on error. However, the preallocated
storage is 512 bits, hence realloc will not even be used unless you run hwloc on machines with larger PU
or NUMAnode indexes.

hwloc_obj_add_info(), hwloc_cpuset_from_nodeset() and hwloc_cpuset_from_nodeset() also return an
int, which would be -1 in case of allocation errors.

17.11 Misc API changes

• hwloc_type_sscanf() extends hwloc_obj_type_sscanf() by passing a union hwloc_obj_attr_u which
may receive Cache, Group, Bridge or OS device attributes.

• hwloc_type_sscanf_as_depth() is also added to directly return the corresponding level depth within
a topology.

• hwloc_topology_insert_misc_object_by_cpuset() is replaced with hwloc_topology_alloc_group_-
object() and hwloc_topology_insert_group_object().

• hwloc_topology_insert_misc_object_by_parent() is replaced with hwloc_topology_insert_misc_-
object().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

82 Upgrading to the hwloc 2.0 API

17.12 API removals and deprecations

• HWLOC_OBJ_SYSTEM removed: The root object is always HWLOC_OBJ_MACHINE

• _membind_nodeset() memory binding interfaces deprecated: One should use the variant without
_nodeset suffix and pass the HWLOC_MEMBIND_BYNODESET flag.

• HWLOC_MEMBIND_REPLICATE removed: no supported operating system supports it anymore.

• hwloc_obj_snprintf() removed because it was long-deprecated by hwloc_obj_type_snprintf() and
hwloc_obj_attr_snprintf().

• hwloc_obj_type_sscanf() deprecated, hwloc_obj_type_of_string() removed.

• hwloc_cpuset_from/to_nodeset_strict() deprecated: Now useless since all topologies are NUMA.
Use the variant without the _strict suffix

• hwloc_distribute() and hwloc_distributev() removed, deprecated by hwloc_distrib().

• The Custom interface (hwloc_topology_set_custom(), etc.) was removed, as well as the correspond-
ing command-line tools (hwloc-assembler, etc.). Topologies always start with object with valid
cpusets and nodesets.

• obj->online_cpuset removed: Offline PUs are simply listed in the complete_cpuset as
previously.

• obj->os_level removed.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 18

Network Locality (netloc)

84 Network Locality (netloc)

Portable abstraction of network topologies for high-performance computing.

The netloc documentation spans of these sections:

• Network Locality (netloc), this section below

• Netloc with Scotch

18.1 Netloc Summary

The Portable Network Locality (netloc) software package provides network topology discovery tools, and
an abstract representation of those networks topologies for a range of network types and configurations.
It is provided as a companion to the Portable Hardware Locality (hwloc) package. These two software
packages work together to provide a comprehensive view of the HPC system topology, spanning from the
processor cores in one server to the cores in another - including the complex network(s) in between.

Towards this end, netloc is divided into two sets of components. The first tools are for the admin to
extract the information about the topology of the machines with topology discovery tools for each network
type and discovery technique (called readers). The second set of tools is for the user to exploit the collected
information: to display the topology or create a topology-aware mapping of the processes of an application.

18.1.1 Supported Networks

For now, only InfiniBand (See Setup) is supported, but it is planned to be extended it very soon.

18.2 Netloc Installation

The generic installation procedure for both hwloc and netloc is described in Installation.

netloc is disabled by default in this release. It can be enabled by passing \--enable-netloc to the
configure command-line. Note that netloc is currently not supported on as many platforms as the original
hwloc project.

18.3 Setup

To use Netloc tools, we need two steps. The first step consists in getting information about network directly
from tools distributed by manufacturers. For Infiniband, for instance, this operation needs privileges to

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

18.3 Setup 85

access to the network device. For this step we have wrappers in Netloc that will call the right tools with the
right options.

The second step will transform the raw files generated by manufacturer tools, into files in a format readable
by Netloc tools, and that will not depend on network technologies.

To be clear, let’s take an example with Infiniband. This first step is handled by netloc_ib_gather_-
raw that will call ibnetdiscover and ibroutes tools to generate the necessary raw data files. The
step has to be run by an administrator, since the Infiniband tools need to access to the network device.

shell$ netloc_ib_gather_raw --help
Usage: netloc_ib_gather_raw [options] <outdir>

Dumps topology information to <outdir>/ib-raw/
Subnets are guessed from the <outdir>/hwloc/ directory where
the hwloc XML exports of some nodes are stored.

Options:
--sudo

Pass sudo to internal ibnetdiscover and ibroute invocations.
Useful when the entire script cannot run as root.

--hwloc-dir <dir>
Use <dir> instead of <outdir>/hwloc/ for hwloc XML exports.

--force-subnet [<subnet>:]<board>:<port> to force the discovery
Do not guess subnets from hwloc XML exports.
Force discovery on local board <board> port <port>
and optionally force the subnet id <subnet>
instead of reading it from the first GID.
Examples: --force-subnet mlx4_0:1

--force-subnet fe80:0000:0000:0000:mlx4_0:1
--ibnetdiscover /path/to/ibnetdiscover
--ibroute /path/to/ibroute

Specify exact location of programs. Default is /usr/bin/<program>
--sleep <n>

Sleep for <n> seconds between invocations of programs probing the network
--ignore-errors

Ignore errors from ibnetdiscover and ibroute, assume their outputs are ok
--force -f

Always rediscover to overwrite existing files without asking
--verbose -v

Add verbose messages
--dry-run

Do not actually run programs or modify anything
--help -h

Show this help

shell$./netloc_ib_gather_raw /home/netloc/data
WARNING: Not running as root.
Using /home/netloc/data/hwloc as hwloc lstopo XML directory.

Exporting local node hwloc XML...
Running lstopo-no-graphics...

Found 1 subnets in hwloc directory:
Subnet fe80:0000:0000:0000 is locally accessible from board qib0 port 1.

Looking at fe80:0000:0000:0000 (through local board qib0 port 1)...
Running ibnetdiscover...
Getting routes...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L112’ LID 18...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L108’ LID 20...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L102’ LID 23...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L104’ LID 25...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L106’ LID 24...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L114’ LID 22...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L116’ LID 21...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L109’ LID 12...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L111’ LID 11...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L107’ LID 13...

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

86 Network Locality (netloc)

Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L103’ LID 17...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L105’ LID 16...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L113’ LID 15...

The second step, that can be done by a regular user, is done by the tool netloc_ib_extract_dats.

shell$ netloc_ib_extract_dats --help
Usage: netloc_ib_extract_dats <path to input raw data files> <output path> [--hwloc-dir
<hwloc xml path>]

hwloc-dir can be an absolute path or a relative path from output path

shell$ netloc_ib_extract_dats /home/netloc/data/ib-raw /home/netloc/data/netloc \
--hwloc-dir ../hwloc

Read subnet: fe80:0000:0000:0000
2 partitions found

’node’
’admin’

18.4 Topology display

Netloc provides a tool, netloc_draw.html, that displays a topology in a web browser, by using a
JSON file.

18.4.1 Generate the JSON file

In order to display a topology, Netloc needs to generate a JSON file corresponding to a topology. For this
operation, the user must run netloc_draw_to_json.

shell$ netloc_draw_to_json --help
Usage: netloc_draw_to_json <path to topology directory>

shell$ netloc_draw_to_json /home/netloc/data/netloc

The netloc_draw_to_json command will write a JSON file for each topology file found in the input
directory. The output files, written also in the input directory, can be open by netloc_draw.html in a
web browser.

18.4.2 Using netloc_draw

Once the JSON file is opened, the rendering is generated by the Javascript vis library for computing the
position of the nodes. From the interface, it is possible to search for a specific node, to color the nodes, to
expand merged switches, to show statistics, to export as an image... The user can interact with the nodes
by moving them. For now, there are bugs and other nodes might move too.

The placement of the nodes is done statically if the topology is detected as a tree. If not, vis.js will use
physics to find good positions, and it can be very time consuming.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

18.4 Topology display 87

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

88 Network Locality (netloc)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 19

Netloc with Scotch

90 Netloc with Scotch

Scotch is a toolbox for graph partitioning [XXX], that can do mapping between a communication graph
and an architecture. Netloc interfaces with Scotch, by getting the topology of the machine and building the
Scotch architecture. It is also possible to directly build a mapping file that can be given to mpirun.

19.1 Introduction

Scotch is able to deal architectures to represent the topology of a complete machine. Scotch handles several
types of topologies: complete graphs, hypercubes, fat trees, meshes, torus, and random graphs. Moreover,
Scotch is able to manage parts of architectures that are called sub-architectures. Thus, from a complete
architecture, we can create a sub-architecture that will represent the available resources of the complete
machine.

19.2 Setup

The first step in order to use Netloc tools is to discover the network. For this task, we provide tools called
netloc_gather that are wrappers to the dedicated tools provided by the manufacturer of the network, that
generate the raw data given by the devices. This task needs privileges to access to the network devices.
Once, this task is completed, the raw data is converted in a generic format independent to the fabric by
extract_dats. Figure 1 shows how the different modules of Netloc are linked, and what are the tools pro-
vided by Netloc.

19.3 Tools and API

When the machine is discovered and all the needed files are generated as seen previously, a user can call
the netlocscotch functions from the API and interact with Scotch.

19.3.1 Build Scotch architectures

Netloc provides a function to export the built topology into the Scotch format. That will give the possibility
to the user to play with the topology in Scotch. Since Netloc matches the discovered topology with known
topologies, the Scotch architecture won’t be random graphs but known topologies also in Scotch that will
lead to optimized graph algorithms. This function is called netlocscotch_build_arch.

When the network topology is a tree, the topology converted by netlocscotch is the complete topology of
the machine containing intranode topologies from hwloc. In this case, merging the two levels results in a
bigger tree. For other network topologies, the global graph created for Scotch is a generic graph since it
not not (at this moment) possible to create nested known architectures.

19.3.2 Build Scotch sub-architectures

Most of the time, the user does not have access to the complete machine. He uses a resource manager to
run his application and he will gain access only to a set of nodes. In this case getting the Scotch architecture
of the complete machine is not relevant. Fortunately, Netloc is also able to build a Scotch sub-architecture
that will contain only the available nodes. For this operation the user needs to run a specific program,
netloc_get_resources, that will record in a file, the lists of available nodes and available cores by using MPI
and hwloc. From this file, the function netlocscotch_build_subarch will build the Scotch sub-architecture.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

19.3 Tools and API 91

19.3.3 Mapping of processes

A main goal in having all these data about the network topology, especially in Scotch structures, is to help
the process placement. For that, we use the mapping of a process graph to the architecture provided by
Scotch. As we have seen previously, Netloc is able to detect the structure of the topology and will build the
adapted Scotch architecture that will be more efficient than a random structure.

In case, the network topology is not a tree, netlocscotch converts the complete topology into a generic
graph. The drawback in that is the Scotch graph algorithms are less efficient. To overcome that, netloc-
scotch does two steps of mapping: first it maps the processes to the nodes, and then for each node maps
the processes to the cores. We have to conduct tests to check if the method gives better results than using a
generic graph directly.

The other input needed in Scotch is the process graph. Since we want to optimize the placement to decrease
the communication time, a good metric for building the application graph is the amount of communications
between all pairs of processes. Studies still have to be done to choose, in the most efficient way, what we
take into account to define the amount of communications between the number of messages, the size of
messages... This information will be transformed into a process graph.

Once we have a good mapping computed by Scotch, we can give it to the user, or Netloc can even generate
the corresponding rank file useful to MPI.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

92 Netloc with Scotch

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 20

Module Index

20.1 Modules

Here is a list of all modules:

API version . 97
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) . 99
Object Types . 100
Object Structure and Attributes . 104
Topology Creation and Destruction . 105
Object levels, depths and types . 108
Converting between Object Types and Attributes, and Strings 112
Consulting and Adding Key-Value Info Attributes . 114
CPU binding . 115
Memory binding . 119
Changing the Source of Topology Discovery . 126
Topology Detection Configuration and Query . 128
Modifying a loaded Topology . 133
Finding Objects inside a CPU set . 136
Finding Objects covering at least CPU set . 139
Looking at Ancestor and Child Objects . 141
Kinds of object Type . 143
Looking at Cache Objects . 145
Finding objects, miscellaneous helpers . 146
Distributing items over a topology . 148
CPU and node sets of entire topologies . 149
Converting between CPU sets and node sets . 152
Finding I/O objects . 153
The bitmap API . 155
Exporting Topologies to XML . 165
Exporting Topologies to Synthetic . 169
Retrieve distances between objects . 171
Helpers for consulting distance matrices . 173
Add or remove distances between objects . 174
Linux-specific helpers . 176
Interoperability with Linux libnuma unsigned long masks . 178
Interoperability with Linux libnuma bitmask . 180
Interoperability with glibc sched affinity . 182

94 Module Index

Interoperability with OpenCL . 183
Interoperability with the CUDA Driver API . 185
Interoperability with the CUDA Runtime API . 187
Interoperability with the NVIDIA Management Library . 189
Interoperability with OpenGL displays . 191
Interoperability with Intel Xeon Phi (MIC) . 193
Interoperability with OpenFabrics . 194
Topology differences . 196
Sharing topologies between processes . 201
Components and Plugins: Discovery components . 203
Components and Plugins: Discovery backends . 204
Components and Plugins: Generic components . 205
Components and Plugins: Core functions to be used by components 206
Components and Plugins: Filtering objects . 209
Components and Plugins: helpers for PCI discovery . 210
Components and Plugins: finding PCI objects during other discoveries 212
Netloc API . 213

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 21

Data Structure Index

21.1 Data Structures

Here are the data structures with brief descriptions:

hwloc_backend (Discovery backend structure) . 215
hwloc_obj_attr_u::hwloc_bridge_attr_s (Bridge specific Object Attribues) 217
hwloc_obj_attr_u::hwloc_cache_attr_s (Cache-specific Object Attributes) 219
hwloc_component (Generic component structure) . 220
hwloc_disc_component (Discovery component structure) . 222
hwloc_distances_s (Matrix of distances between a set of objects) 224
hwloc_obj_attr_u::hwloc_group_attr_s (Group-specific Object Attributes) 225
hwloc_info_s (Object info) . 226
hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s (Array of local mem-

ory page types, NULL if no local memory and page_types is 0) 227
hwloc_obj_attr_u::hwloc_numanode_attr_s (NUMA node-specific Object Attributes) 228
hwloc_obj (Structure of a topology object) . 229
hwloc_obj_attr_u (Object type-specific Attributes) . 235
hwloc_obj_attr_u::hwloc_osdev_attr_s (OS Device specific Object Attributes) 237
hwloc_obj_attr_u::hwloc_pcidev_attr_s (PCI Device specific Object Attributes) 238
hwloc_topology_cpubind_support (Flags describing actual PU binding support for this topology) 239
hwloc_topology_diff_u::hwloc_topology_diff_generic_s . 241
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s 242
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s . 243
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s (String attribute modi-

fication with an optional name) . 244
hwloc_topology_diff_obj_attr_u (One object attribute difference) 245
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s (Integer attribute

modification with an optional index) . 246
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s 247
hwloc_topology_diff_u (One element of a difference list between two topologies) 248
hwloc_topology_discovery_support (Flags describing actual discovery support for this topology) 249
hwloc_topology_membind_support (Flags describing actual memory binding support for this

topology) . 250
hwloc_topology_support (Set of flags describing actual support for this topology) 252

96 Data Structure Index

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 22

Module Documentation

22.1 API version

Defines

• #define HWLOC_API_VERSION 0x00020000

• #define HWLOC_COMPONENT_ABI 5

Functions

• unsigned hwloc_get_api_version (void)

22.1.1 Define Documentation

22.1.1.1 #define HWLOC_API_VERSION 0x00020000

Indicate at build time which hwloc API version is being used. This number is updated to
(X<<16)+(Y<<8)+Z when a new release X.Y.Z actually modifies the API.

Users may check for available features at build time using this number (see How do I handle ABI breaks
and API upgrades?).

Note:

This should not be confused with HWLOC_VERSION, the library version. Two stable releases of the
same series usually have the same HWLOC_API_VERSION even if their HWLOC_VERSION are
different.

22.1.1.2 #define HWLOC_COMPONENT_ABI 5

Current component and plugin ABI version (see hwloc/plugins.h).

98 Module Documentation

22.1.2 Function Documentation

22.1.2.1 unsigned hwloc_get_api_version (void)

Indicate at runtime which hwloc API version was used at build time. Should be HWLOC_API_VERSION
if running on the same version.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.2 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) 99

22.2 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)

Typedefs

• typedef hwloc_bitmap_t hwloc_cpuset_t
• typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
• typedef hwloc_bitmap_t hwloc_nodeset_t
• typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

22.2.1 Detailed Description

Hwloc uses bitmaps to represent two distinct kinds of object sets: CPU sets (hwloc_cpuset_t) and NUMA
node sets (hwloc_nodeset_t). These types are both typedefs to a common back end type (hwloc_bitmap_t),
and therefore all the hwloc bitmap functions are applicable to both hwloc_cpuset_t and hwloc_nodeset_t
(see The bitmap API).

The rationale for having two different types is that even though the actions one wants to perform on these
types are the same (e.g., enable and disable individual items in the set/mask), they’re used in very different
contexts: one for specifying which processors to use and one for specifying which NUMA nodes to use.
Hence, the name difference is really just to reflect the intent of where the type is used.

22.2.2 Typedef Documentation

22.2.2.1 typedef hwloc_const_bitmap_t hwloc_const_cpuset_t

A non-modifiable hwloc_cpuset_t.

22.2.2.2 typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

A non-modifiable hwloc_nodeset_t.

22.2.2.3 typedef hwloc_bitmap_t hwloc_cpuset_t

A CPU set is a bitmap whose bits are set according to CPU physical OS indexes. It may be consulted and
modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).

Each bit may be converted into a PU object using hwloc_get_pu_obj_by_os_index().

22.2.2.4 typedef hwloc_bitmap_t hwloc_nodeset_t

A node set is a bitmap whose bits are set according to NUMA memory node physical OS indexes. It may
be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h). Each bit may
be converted into a NUMA node object using hwloc_get_numanode_obj_by_os_index().

When binding memory on a system without any NUMA node, the single main memory bank is considered
as NUMA node #0.

See also Converting between CPU sets and node sets.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

100 Module Documentation

22.3 Object Types

Defines

• #define HWLOC_OBJ_TYPE_MIN HWLOC_OBJ_MACHINE

Typedefs

• typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t
• typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t
• typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Enumerations

• enum hwloc_obj_type_t {

HWLOC_OBJ_MACHINE, HWLOC_OBJ_PACKAGE, HWLOC_OBJ_CORE, HWLOC_OBJ_-
PU,

HWLOC_OBJ_L1CACHE, HWLOC_OBJ_L2CACHE, HWLOC_OBJ_L3CACHE, HWLOC_-
OBJ_L4CACHE,

HWLOC_OBJ_L5CACHE, HWLOC_OBJ_L1ICACHE, HWLOC_OBJ_L2ICACHE, HWLOC_-
OBJ_L3ICACHE,

HWLOC_OBJ_GROUP, HWLOC_OBJ_NUMANODE, HWLOC_OBJ_BRIDGE, HWLOC_-
OBJ_PCI_DEVICE,

HWLOC_OBJ_OS_DEVICE, HWLOC_OBJ_MISC, HWLOC_OBJ_TYPE_MAX }
• enum hwloc_obj_cache_type_e { HWLOC_OBJ_CACHE_UNIFIED, HWLOC_OBJ_CACHE_-

DATA, HWLOC_OBJ_CACHE_INSTRUCTION }
• enum hwloc_obj_bridge_type_e { HWLOC_OBJ_BRIDGE_HOST, HWLOC_OBJ_BRIDGE_PCI

}
• enum hwloc_obj_osdev_type_e {

HWLOC_OBJ_OSDEV_BLOCK, HWLOC_OBJ_OSDEV_GPU, HWLOC_OBJ_OSDEV_-
NETWORK, HWLOC_OBJ_OSDEV_OPENFABRICS,

HWLOC_OBJ_OSDEV_DMA, HWLOC_OBJ_OSDEV_COPROC }
• enum hwloc_compare_types_e { HWLOC_TYPE_UNORDERED }

Functions

• int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2)

22.3.1 Define Documentation

22.3.1.1 #define HWLOC_OBJ_TYPE_MIN HWLOC_OBJ_MACHINE

Type of topology object.

Note:

Do not rely on the ordering or completeness of the values as new ones may be defined in the future! If
you need to compare types, use hwloc_compare_types() instead. Sentinel value

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.3 Object Types 101

22.3.2 Typedef Documentation

22.3.2.1 typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t

Type of one side (upstream or downstream) of an I/O bridge.

22.3.2.2 typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t

Cache type.

22.3.2.3 typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Type of a OS device.

22.3.3 Enumeration Type Documentation

22.3.3.1 enum hwloc_compare_types_e

Enumerator:

HWLOC_TYPE_UNORDERED Value returned by hwloc_compare_types() when types can not be
compared.

22.3.3.2 enum hwloc_obj_bridge_type_e

Type of one side (upstream or downstream) of an I/O bridge.

Enumerator:

HWLOC_OBJ_BRIDGE_HOST Host-side of a bridge, only possible upstream.

HWLOC_OBJ_BRIDGE_PCI PCI-side of a bridge.

22.3.3.3 enum hwloc_obj_cache_type_e

Cache type.

Enumerator:

HWLOC_OBJ_CACHE_UNIFIED Unified cache.

HWLOC_OBJ_CACHE_DATA Data cache.

HWLOC_OBJ_CACHE_INSTRUCTION Instruction cache (filtered out by default).

22.3.3.4 enum hwloc_obj_osdev_type_e

Type of a OS device.

Enumerator:

HWLOC_OBJ_OSDEV_BLOCK Operating system block device. For instance "sda" on Linux.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

102 Module Documentation

HWLOC_OBJ_OSDEV_GPU Operating system GPU device. For instance ":0.0" for a GL display,
"card0" for a Linux DRM device.

HWLOC_OBJ_OSDEV_NETWORK Operating system network device. For instance the "eth0"
interface on Linux.

HWLOC_OBJ_OSDEV_OPENFABRICS Operating system openfabrics device. For instance the
"mlx4_0" InfiniBand HCA, or "hfi1_0" Omni-Path interface on Linux.

HWLOC_OBJ_OSDEV_DMA Operating system dma engine device. For instance the "dma0chan0"
DMA channel on Linux.

HWLOC_OBJ_OSDEV_COPROC Operating system co-processor device. For instance "mic0" for
a Xeon Phi (MIC) on Linux, "opencl0d0" for a OpenCL device, "cuda0" for a CUDA device.

22.3.3.5 enum hwloc_obj_type_t

Enumerator:

HWLOC_OBJ_MACHINE Machine. A set of processors and memory with cache coherency. This
type is always used for the root object of a topology, and never used anywhere else. Hence its
parent is always NULL.

HWLOC_OBJ_PACKAGE Physical package. The physical package that usually gets inserted into a
socket on the motherboard. A processor package usually contains multiple cores.

HWLOC_OBJ_CORE Core. A computation unit (may be shared by several logical processors).

HWLOC_OBJ_PU Processing Unit, or (Logical) Processor. An execution unit (may share a core
with some other logical processors, e.g. in the case of an SMT core). This is the smallest object
representing CPU resources, it cannot have any child except Misc objects.
Objects of this kind are always reported and can thus be used as fallback when others are not.

HWLOC_OBJ_L1CACHE Level 1 Data (or Unified) Cache.

HWLOC_OBJ_L2CACHE Level 2 Data (or Unified) Cache.

HWLOC_OBJ_L3CACHE Level 3 Data (or Unified) Cache.

HWLOC_OBJ_L4CACHE Level 4 Data (or Unified) Cache.

HWLOC_OBJ_L5CACHE Level 5 Data (or Unified) Cache.

HWLOC_OBJ_L1ICACHE Level 1 instruction Cache (filtered out by default).

HWLOC_OBJ_L2ICACHE Level 2 instruction Cache (filtered out by default).

HWLOC_OBJ_L3ICACHE Level 3 instruction Cache (filtered out by default).

HWLOC_OBJ_GROUP Group objects. Objects which do not fit in the above but are detected by
hwloc and are useful to take into account for affinity. For instance, some operating systems
expose their arbitrary processors aggregation this way. And hwloc may insert such objects to
group NUMA nodes according to their distances. See also What are these Group objects in my
topology?. These objects are removed when they do not bring any structure (see HWLOC_-
TYPE_FILTER_KEEP_STRUCTURE).

HWLOC_OBJ_NUMANODE NUMA node. An object that contains memory that is directly and
byte-accessible to the host processors. It is usually close to some cores (the corresponding objects
are descendants of the NUMA node object in the hwloc tree). There is always at least one such
object in the topology even if the machine is not NUMA.
Memory objects are not listed in the main children list, but rather in the dedicated Memory
children list.
NUMA nodes have a special depth HWLOC_TYPE_DEPTH_NUMANODE instead of a normal
depth just like other objects in the main tree.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.3 Object Types 103

HWLOC_OBJ_BRIDGE Bridge (filtered out by default). Any bridge that connects the host or an
I/O bus, to another I/O bus. They are not added to the topology unless I/O discovery is enabled
with hwloc_topology_set_flags(). I/O objects are not listed in the main children list, but rather in
the dedicated io children list. I/O objects have NULL CPU and node sets.

HWLOC_OBJ_PCI_DEVICE PCI device (filtered out by default). They are not added to the topol-
ogy unless I/O discovery is enabled with hwloc_topology_set_flags(). I/O objects are not listed
in the main children list, but rather in the dedicated io children list. I/O objects have NULL CPU
and node sets.

HWLOC_OBJ_OS_DEVICE Operating system device (filtered out by default). They are not added
to the topology unless I/O discovery is enabled with hwloc_topology_set_flags(). I/O objects are
not listed in the main children list, but rather in the dedicated io children list. I/O objects have
NULL CPU and node sets.

HWLOC_OBJ_MISC Miscellaneous objects (filtered out by default). Objects without particular
meaning, that can e.g. be added by the application for its own use, or by hwloc for miscellaneous
objects such as MemoryModule (DIMMs). These objects are not listed in the main children
list, but rather in the dedicated misc children list. Misc objects may only have Misc objects as
children, and those are in the dedicated misc children list as well. Misc objects have NULL CPU
and node sets.

HWLOC_OBJ_TYPE_MAX Sentinel value

22.3.4 Function Documentation

22.3.4.1 int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2)

Compare the depth of two object types. Types shouldn’t be compared as they are, since newer ones may
be added in the future. This function returns less than, equal to, or greater than zero respectively if type1
objects usually include type2 objects, are the same as type2 objects, or are included in type2 objects.
If the types can not be compared (because neither is usually contained in the other), HWLOC_TYPE_-
UNORDERED is returned. Object types containing CPUs can always be compared (usually, a system
contains machines which contain nodes which contain packages which contain caches, which contain cores,
which contain processors).

Note:

HWLOC_OBJ_PU will always be the deepest, while HWLOC_OBJ_MACHINE is always the highest.
This does not mean that the actual topology will respect that order: e.g. as of today cores may also con-
tain caches, and packages may also contain nodes. This is thus just to be seen as a fallback comparison
method.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

104 Module Documentation

22.4 Object Structure and Attributes

Data Structures

• struct hwloc_obj
Structure of a topology object.

• union hwloc_obj_attr_u
Object type-specific Attributes.

• struct hwloc_info_s
Object info.

Typedefs

• typedef struct hwloc_obj ∗ hwloc_obj_t

22.4.1 Typedef Documentation

22.4.1.1 typedef struct hwloc_obj∗ hwloc_obj_t

Convenience typedef; a pointer to a struct hwloc_obj.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.5 Topology Creation and Destruction 105

22.5 Topology Creation and Destruction

Typedefs

• typedef struct hwloc_topology ∗ hwloc_topology_t

Functions

• int hwloc_topology_init (hwloc_topology_t ∗topologyp)
• int hwloc_topology_load (hwloc_topology_t topology)
• void hwloc_topology_destroy (hwloc_topology_t topology)
• int hwloc_topology_dup (hwloc_topology_t ∗newtopology, hwloc_topology_t oldtopology)
• int hwloc_topology_abi_check (hwloc_topology_t topology)
• void hwloc_topology_check (hwloc_topology_t topology)

22.5.1 Typedef Documentation

22.5.1.1 typedef struct hwloc_topology∗ hwloc_topology_t

Topology context. To be initialized with hwloc_topology_init() and built with hwloc_topology_load().

22.5.2 Function Documentation

22.5.2.1 int hwloc_topology_abi_check (hwloc_topology_t topology)

Verify that the topology is compatible with the current hwloc library. This is useful when using the same
topology structure (in memory) in different libraries that may use different hwloc installations (for instance
if one library embeds a specific version of hwloc, while another library uses a default system-wide hwloc
installation).

If all libraries/programs use the same hwloc installation, this function always returns success.

Returns:

0 on success.
-1 with errno set to EINVAL if incompatible.

Note:

If sharing between processes with hwloc_shmem_topology_write(), the relevant check is already per-
formed inside hwloc_shmem_topology_adopt().

22.5.2.2 void hwloc_topology_check (hwloc_topology_t topology)

Run internal checks on a topology structure. The program aborts if an inconsistency is detected in the given
topology.

Parameters:

topology is the topology to be checked

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

106 Module Documentation

Note:

This routine is only useful to developers.
The input topology should have been previously loaded with hwloc_topology_load().

22.5.2.3 void hwloc_topology_destroy (hwloc_topology_t topology)

Terminate and free a topology context.

Parameters:

topology is the topology to be freed

22.5.2.4 int hwloc_topology_dup (hwloc_topology_t ∗ newtopology, hwloc_topology_t oldtopology)

Duplicate a topology. The entire topology structure as well as its objects are duplicated into a new one.

This is useful for keeping a backup while modifying a topology.

Note:

Object userdata is not duplicated since hwloc does not know what it point to. The objects of both old
and new topologies will point to the same userdata.

22.5.2.5 int hwloc_topology_init (hwloc_topology_t ∗ topologyp)

Allocate a topology context.

Parameters:

→ topologyp is assigned a pointer to the new allocated context.

Returns:

0 on success, -1 on error.

22.5.2.6 int hwloc_topology_load (hwloc_topology_t topology)

Build the actual topology. Build the actual topology once initialized with hwloc_topology_init() and tuned
with Topology Detection Configuration and Query and Changing the Source of Topology Discovery rou-
tines. No other routine may be called earlier using this topology context.

Parameters:

topology is the topology to be loaded with objects.

Returns:

0 on success, -1 on error.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.5 Topology Creation and Destruction 107

Note:

On failure, the topology is reinitialized. It should be either destroyed with hwloc_topology_destroy()
or configured and loaded again.
This function may be called only once per topology.
The binding of the current thread or process may temporarily change during this call but it will be
restored before it returns.

See also:

Topology Detection Configuration and Query and Changing the Source of Topology Discovery

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

108 Module Documentation

22.6 Object levels, depths and types

Enumerations

• enum hwloc_get_type_depth_e {

HWLOC_TYPE_DEPTH_UNKNOWN, HWLOC_TYPE_DEPTH_MULTIPLE, HWLOC_-
TYPE_DEPTH_NUMANODE, HWLOC_TYPE_DEPTH_BRIDGE,

HWLOC_TYPE_DEPTH_PCI_DEVICE, HWLOC_TYPE_DEPTH_OS_DEVICE, HWLOC_-
TYPE_DEPTH_MISC }

Functions

• int hwloc_topology_get_depth (hwloc_topology_t restrict topology)
• int hwloc_get_type_depth (hwloc_topology_t topology, hwloc_obj_type_t type)
• int hwloc_get_memory_parents_depth (hwloc_topology_t topology)
• static int hwloc_get_type_or_below_depth (hwloc_topology_t topology, hwloc_obj_type_t type)
• static int hwloc_get_type_or_above_depth (hwloc_topology_t topology, hwloc_obj_type_t type)
• hwloc_obj_type_t hwloc_get_depth_type (hwloc_topology_t topology, int depth)
• unsigned hwloc_get_nbobjs_by_depth (hwloc_topology_t topology, int depth)
• static int hwloc_get_nbobjs_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)
• static hwloc_obj_t hwloc_get_root_obj (hwloc_topology_t topology)
• hwloc_obj_t hwloc_get_obj_by_depth (hwloc_topology_t topology, int depth, unsigned idx)
• static hwloc_obj_t hwloc_get_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type,

unsigned idx)
• static hwloc_obj_t hwloc_get_next_obj_by_depth (hwloc_topology_t topology, int depth, hwloc_-

obj_t prev)
• static hwloc_obj_t hwloc_get_next_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_-

t type, hwloc_obj_t prev)

22.6.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer
caches than its peers.

22.6.2 Enumeration Type Documentation

22.6.2.1 enum hwloc_get_type_depth_e

Enumerator:

HWLOC_TYPE_DEPTH_UNKNOWN No object of given type exists in the topology.

HWLOC_TYPE_DEPTH_MULTIPLE Objects of given type exist at different depth in the topology
(only for Groups).

HWLOC_TYPE_DEPTH_NUMANODE Virtual depth for NUMA nodes.

HWLOC_TYPE_DEPTH_BRIDGE Virtual depth for bridge object level.

HWLOC_TYPE_DEPTH_PCI_DEVICE Virtual depth for PCI device object level.

HWLOC_TYPE_DEPTH_OS_DEVICE Virtual depth for software device object level.

HWLOC_TYPE_DEPTH_MISC Virtual depth for Misc object.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.6 Object levels, depths and types 109

22.6.3 Function Documentation

22.6.3.1 hwloc_obj_type_t hwloc_get_depth_type (hwloc_topology_t topology, int depth)

Returns the type of objects at depth depth. depth should between 0 and hwloc_topology_get_depth()-1.

Returns:

(hwloc_obj_type_t)-1 if depth depth does not exist.

22.6.3.2 int hwloc_get_memory_parents_depth (hwloc_topology_t topology)

Return the depth of parents where memory objects are attached. Memory objects have virtual negative
depths because they are not part of the main CPU-side hierarchy of objects. This depth should not be
compared with other level depths.

If all Memory objects are attached to Normal parents at the same depth, this parent depth may be compared
to other as usual, for instance for knowing whether NUMA nodes is attached above or below Packages.

Returns:

The depth of Normal parents of all memory children if all these parents have the same depth. For
instance the depth of the Package level if all NUMA nodes are attached to Package objects.
HWLOC_TYPE_DEPTH_MULTIPLE if Normal parents of all memory children do not have the same
depth. For instance if some NUMA nodes are attached to Packages while others are attached to Groups.

22.6.3.3 unsigned hwloc_get_nbobjs_by_depth (hwloc_topology_t topology, int depth)

Returns the width of level at depth depth.

22.6.3.4 static int hwloc_get_nbobjs_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)
[inline, static]

Returns the width of level type type. If no object for that type exists, 0 is returned. If there are several
levels with objects of that type, -1 is returned.

22.6.3.5 static hwloc_obj_t hwloc_get_next_obj_by_depth (hwloc_topology_t topology, int depth,
hwloc_obj_t prev) [inline, static]

Returns the next object at depth depth. If prev is NULL, return the first object at depth depth.

22.6.3.6 static hwloc_obj_t hwloc_get_next_obj_by_type (hwloc_topology_t topology,
hwloc_obj_type_t type, hwloc_obj_t prev) [inline, static]

Returns the next object of type type. If prev is NULL, return the first object at type type. If there are
multiple or no depth for given type, return NULL and let the caller fallback to hwloc_get_next_obj_by_-
depth().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

110 Module Documentation

22.6.3.7 hwloc_obj_t hwloc_get_obj_by_depth (hwloc_topology_t topology, int depth, unsigned
idx)

Returns the topology object at logical index idx from depth depth.

22.6.3.8 static hwloc_obj_t hwloc_get_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t
type, unsigned idx) [inline, static]

Returns the topology object at logical index idx with type type. If no object for that type exists, NULL is
returned. If there are several levels with objects of that type (HWLOC_OBJ_GROUP), NULL is returned
and the caller may fallback to hwloc_get_obj_by_depth().

22.6.3.9 static hwloc_obj_t hwloc_get_root_obj (hwloc_topology_t topology) [inline,
static]

Returns the top-object of the topology-tree. Its type is HWLOC_OBJ_MACHINE.

22.6.3.10 int hwloc_get_type_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

Returns the depth of objects of type type. If no object of this type is present on the underlying architecture,
or if the OS doesn’t provide this kind of information, the function returns HWLOC_TYPE_DEPTH_-
UNKNOWN.

If type is absent but a similar type is acceptable, see also hwloc_get_type_or_below_depth() and hwloc_-
get_type_or_above_depth().

If HWLOC_OBJ_GROUP is given, the function may return HWLOC_TYPE_DEPTH_MULTIPLE if mul-
tiple levels of Groups exist.

If a NUMA node, I/O or Misc object type is given, the function returns a virtual value because these
objects are stored in special levels that are not CPU-related. This virtual depth may be passed to other
hwloc functions such as hwloc_get_obj_by_depth() but it should not be considered as an actual depth by
the application. In particular, it should not be compared with any other object depth or with the entire
topology depth.

See also:

hwloc_get_memory_parents_depth().
hwloc_type_sscanf_as_depth() for returning the depth of objects whose type is given as a string.

22.6.3.11 static int hwloc_get_type_or_above_depth (hwloc_topology_t topology,
hwloc_obj_type_t type) [inline, static]

Returns the depth of objects of type type or above. If no object of this type is present on the underlying
architecture, the function returns the depth of the first "present" object typically containing type.

This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given,
the corresponding virtual depth is always returned (see hwloc_get_type_depth()).

May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_-
depth().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.6 Object levels, depths and types 111

22.6.3.12 static int hwloc_get_type_or_below_depth (hwloc_topology_t topology,
hwloc_obj_type_t type) [inline, static]

Returns the depth of objects of type type or below. If no object of this type is present on the underlying
architecture, the function returns the depth of the first "present" object typically found inside type.

This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given,
the corresponding virtual depth is always returned (see hwloc_get_type_depth()).

May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_-
depth().

22.6.3.13 int hwloc_topology_get_depth (hwloc_topology_t restrict topology)

Get the depth of the hierarchical tree of objects. This is the depth of HWLOC_OBJ_PU objects plus one.

Note:

NUMA nodes, I/O and Misc objects are ignored when computing the depth of the tree (they are placed
on special levels).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

112 Module Documentation

22.7 Converting between Object Types and Attributes, and Strings

Functions

• const char ∗ hwloc_obj_type_string (hwloc_obj_type_t type)
• int hwloc_obj_type_snprintf (char ∗restrict string, size_t size, hwloc_obj_t obj, int verbose)
• int hwloc_obj_attr_snprintf (char ∗restrict string, size_t size, hwloc_obj_t obj, const char ∗restrict

separator, int verbose)
• int hwloc_type_sscanf (const char ∗string, hwloc_obj_type_t ∗typep, union hwloc_obj_attr_u ∗attrp,

size_t attrsize)
• int hwloc_type_sscanf_as_depth (const char ∗string, hwloc_obj_type_t ∗typep, hwloc_topology_t

topology, int ∗depthp)

22.7.1 Function Documentation

22.7.1.1 int hwloc_obj_attr_snprintf (char ∗restrict string, size_t size, hwloc_obj_t obj, const
char ∗restrict separator, int verbose)

Stringify the attributes of a given topology object into a human-readable form. Attribute values are sepa-
rated by separator.

Only the major attributes are printed in non-verbose mode.

If size is 0, string may safely be NULL.

Returns:

the number of character that were actually written if not truncating, or that would have been written
(not including the ending \0).

22.7.1.2 int hwloc_obj_type_snprintf (char ∗restrict string, size_t size, hwloc_obj_t obj, int
verbose)

Stringify the type of a given topology object into a human-readable form. Contrary to hwloc_obj_type_-
string(), this function includes object-specific attributes (such as the Group depth, the Bridge type, or OS
device type) in the output, and it requires the caller to provide the output buffer.

The output is guaranteed to be the same for all objects of a same topology level.

If verbose is 1, longer type names are used, e.g. L1Cache instead of L1.

The output string may be parsed back by hwloc_type_sscanf().

If size is 0, string may safely be NULL.

Returns:

the number of character that were actually written if not truncating, or that would have been written
(not including the ending \0).

22.7.1.3 const char∗ hwloc_obj_type_string (hwloc_obj_type_t type)

Return a constant stringified object type. This function is the basic way to convert a generic type into a
string. The output string may be parsed back by hwloc_type_sscanf().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.7 Converting between Object Types and Attributes, and Strings 113

hwloc_obj_type_snprintf() may return a more precise output for a specific object, but it requires the caller
to provide the output buffer.

22.7.1.4 int hwloc_type_sscanf (const char ∗ string, hwloc_obj_type_t ∗ typep, union
hwloc_obj_attr_u ∗ attrp, size_t attrsize)

Return an object type and attributes from a type string. Convert strings such as "Package" or "L1iCache"
into the corresponding types. Matching is case-insensitive, and only the first letters are actually required to
match.

The matched object type is set in typep (which cannot be NULL).

Type-specific attributes, for instance Cache type, Cache depth, Group depth, Bridge type or OS Device type
may be returned in attrp. Attributes that are not specified in the string (for instance "Group" without a
depth, or "L2Cache" without a cache type) are set to -1.

attrp is only filled if not NULL and if its size specified in attrsize is large enough. It should be at
least as large as union hwloc_obj_attr_u.

Returns:

0 if a type was correctly identified, otherwise -1.

Note:

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_-
type_snprintf().
This is an extended version of the now deprecated hwloc_obj_type_sscanf().

22.7.1.5 int hwloc_type_sscanf_as_depth (const char ∗ string, hwloc_obj_type_t ∗ typep,
hwloc_topology_t topology, int ∗ depthp)

Return an object type and its level depth from a type string. Convert strings such as "Package" or
"L1iCache" into the corresponding types and return in depthp the depth of the corresponding level in
the topology topology.

If no object of this type is present on the underlying architecture, HWLOC_TYPE_DEPTH_UNKNOWN
is returned.

If multiple such levels exist (for instance if giving Group without any depth), the function may return
HWLOC_TYPE_DEPTH_MULTIPLE instead.

The matched object type is set in typep if typep is non NULL.

Note:

This function is similar to hwloc_type_sscanf() followed by hwloc_get_type_depth() but it also auto-
matically disambiguates multiple group levels etc.
This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_-
type_snprintf().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

114 Module Documentation

22.8 Consulting and Adding Key-Value Info Attributes

Functions

• static const char ∗ hwloc_obj_get_info_by_name (hwloc_obj_t obj, const char ∗name)
• int hwloc_obj_add_info (hwloc_obj_t obj, const char ∗name, const char ∗value)

22.8.1 Function Documentation

22.8.1.1 int hwloc_obj_add_info (hwloc_obj_t obj, const char ∗ name, const char ∗ value)

Add the given info name and value pair to the given object. The info is appended to the existing info array
even if another key with the same name already exists.

The input strings are copied before being added in the object infos.

Returns:

0 on success, -1 on error.

Note:

This function may be used to enforce object colors in the lstopo graphical output by using "lstopoStyle"
as a name and "Background=#rrggbb" as a value. See CUSTOM COLORS in the lstopo(1) manpage
for details.
If value contains some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

22.8.1.2 static const char∗ hwloc_obj_get_info_by_name (hwloc_obj_t obj, const char ∗ name)
[inline, static]

Search the given key name in object infos and return the corresponding value. If multiple keys match the
given name, only the first one is returned.

Returns:

NULL if no such key exists.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.9 CPU binding 115

22.9 CPU binding

Enumerations

• enum hwloc_cpubind_flags_t { HWLOC_CPUBIND_PROCESS, HWLOC_CPUBIND_THREAD,
HWLOC_CPUBIND_STRICT, HWLOC_CPUBIND_NOMEMBIND }

Functions

• int hwloc_set_cpubind (hwloc_topology_t topology, hwloc_const_cpuset_t set, int flags)
• int hwloc_get_cpubind (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)
• int hwloc_set_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t

set, int flags)
• int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int

flags)
• int hwloc_set_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_const_-

cpuset_t set, int flags)
• int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_cpuset_t

set, int flags)
• int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)
• int hwloc_get_proc_last_cpu_location (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_-

cpuset_t set, int flags)

22.9.1 Detailed Description

Some operating systems only support binding threads or processes to a single PU. Others allow binding
to larger sets such as entire Cores or Packages or even random sets of invididual PUs. In such operating
system, the scheduler is free to run the task on one of these PU, then migrate it to another PU, etc. It is
often useful to call hwloc_bitmap_singlify() on the target CPU set before passing it to the binding function
to avoid these expensive migrations. See the documentation of hwloc_bitmap_singlify() for details.

Some operating systems do not provide all hwloc-supported mechanisms to bind processes, threads, etc.
hwloc_topology_get_support() may be used to query about the actual CPU binding support in the currently
used operating system.

When the requested binding operation is not available and the HWLOC_CPUBIND_STRICT flag was
passed, the function returns -1. errno is set to ENOSYS when it is not possible to bind the requested kind
of object processes/threads. errno is set to EXDEV when the requested cpuset can not be enforced (e.g.
some systems only allow one CPU, and some other systems only allow one NUMA node).

If HWLOC_CPUBIND_STRICT was not passed, the function may fail as well, or the operating system
may use a slightly different operation (with side-effects, smaller binding set, etc.) when the requested
operation is not exactly supported.

The most portable version that should be preferred over the others, whenever possible, is the following one
which just binds the current program, assuming it is single-threaded:

hwloc_set_cpubind(topology, set, 0),

If the program may be multithreaded, the following one should be preferred to only bind the current thread:

hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD),

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

116 Module Documentation

See also:

Some example codes are available under doc/examples/ in the source tree.

Note:

To unbind, just call the binding function with either a full cpuset or a cpuset equal to the system cpuset.
On some operating systems, CPU binding may have effects on memory binding, see HWLOC_-
CPUBIND_NOMEMBIND
Running lstopo \--top or hwloc-ps can be a very convenient tool to check how binding actually hap-
pened.

22.9.2 Enumeration Type Documentation

22.9.2.1 enum hwloc_cpubind_flags_t

Process/Thread binding flags. These bit flags can be used to refine the binding policy.

The default (0) is to bind the current process, assumed to be single-threaded, in a non-strict way. This is
the most portable way to bind as all operating systems usually provide it.

Note:

Not all systems support all kinds of binding. See the "Detailed Description" section of CPU binding
for a description of errors that can occur.

Enumerator:

HWLOC_CPUBIND_PROCESS Bind all threads of the current (possibly) multithreaded process.

HWLOC_CPUBIND_THREAD Bind current thread of current process.

HWLOC_CPUBIND_STRICT Request for strict binding from the OS. By default, when the desig-
nated CPUs are all busy while other CPUs are idle, operating systems may execute the thread/pro-
cess on those other CPUs instead of the designated CPUs, to let them progress anyway. Strict
binding means that the thread/process will _never_ execute on other cpus than the designated
CPUs, even when those are busy with other tasks and other CPUs are idle.

Note:

Depending on the operating system, strict binding may not be possible (e.g., the OS does not
implement it) or not allowed (e.g., for an administrative reasons), and the function will fail
in that case.

When retrieving the binding of a process, this flag checks whether all its threads actually have
the same binding. If the flag is not given, the binding of each thread will be accumulated.

Note:

This flag is meaningless when retrieving the binding of a thread.

HWLOC_CPUBIND_NOMEMBIND Avoid any effect on memory binding. On some operating
systems, some CPU binding function would also bind the memory on the corresponding NUMA
node. It is often not a problem for the application, but if it is, setting this flag will make hwloc
avoid using OS functions that would also bind memory. This will however reduce the support of
CPU bindings, i.e. potentially return -1 with errno set to ENOSYS in some cases.
This flag is only meaningful when used with functions that set the CPU binding. It is ignored
when used with functions that get CPU binding information.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.9 CPU binding 117

22.9.3 Function Documentation

22.9.3.1 int hwloc_get_cpubind (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

Get current process or thread binding. Writes into set the physical cpuset which the process or thread
(according to flags) was last bound to.

22.9.3.2 int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int
flags)

Get the last physical CPU where the current process or thread ran. The operating system may move some
tasks from one processor to another at any time according to their binding, so this function may return
something that is already outdated.

flags can include either HWLOC_CPUBIND_PROCESS or HWLOC_CPUBIND_THREAD to specify
whether the query should be for the whole process (union of all CPUs on which all threads are running), or
only the current thread. If the process is single-threaded, flags can be set to zero to let hwloc use whichever
method is available on the underlying OS.

22.9.3.3 int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid,
hwloc_cpuset_t set, int flags)

Get the current physical binding of process pid.

Note:

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.
As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_-
CPUBIND_THREAD is passed in flags, the binding for that specific thread is returned.
On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in flags.

22.9.3.4 int hwloc_get_proc_last_cpu_location (hwloc_topology_t topology, hwloc_pid_t pid,
hwloc_cpuset_t set, int flags)

Get the last physical CPU where a process ran. The operating system may move some tasks from one
processor to another at any time according to their binding, so this function may return something that is
already outdated.

Note:

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.
As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_-
CPUBIND_THREAD is passed in flags, the last CPU location of that specific thread is returned.
On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in flags.

22.9.3.5 int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread,
hwloc_cpuset_t set, int flags)

Get the current physical binding of thread tid.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

118 Module Documentation

Note:

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in flags.

22.9.3.6 int hwloc_set_cpubind (hwloc_topology_t topology, hwloc_const_cpuset_t set, int flags)

Bind current process or thread on cpus given in physical bitmap set.

Returns:

-1 with errno set to ENOSYS if the action is not supported
-1 with errno set to EXDEV if the binding cannot be enforced

22.9.3.7 int hwloc_set_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid,
hwloc_const_cpuset_t set, int flags)

Bind a process pid on cpus given in physical bitmap set.

Note:

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.
As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_-
CPUBIND_THREAD is passed in flags, the binding is applied to that specific thread.
On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in flags.

22.9.3.8 int hwloc_set_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread,
hwloc_const_cpuset_t set, int flags)

Bind a thread thread on cpus given in physical bitmap set.

Note:

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in flags.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.10 Memory binding 119

22.10 Memory binding

Enumerations

• enum hwloc_membind_policy_t {

HWLOC_MEMBIND_DEFAULT, HWLOC_MEMBIND_FIRSTTOUCH, HWLOC_-
MEMBIND_BIND, HWLOC_MEMBIND_INTERLEAVE,

HWLOC_MEMBIND_NEXTTOUCH, HWLOC_MEMBIND_MIXED }
• enum hwloc_membind_flags_t {

HWLOC_MEMBIND_PROCESS, HWLOC_MEMBIND_THREAD, HWLOC_MEMBIND_-
STRICT, HWLOC_MEMBIND_MIGRATE,

HWLOC_MEMBIND_NOCPUBIND, HWLOC_MEMBIND_BYNODESET }

Functions

• int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_bitmap_t set, hwloc_membind_-
policy_t policy, int flags)

• int hwloc_get_membind (hwloc_topology_t topology, hwloc_bitmap_t set, hwloc_membind_-
policy_t ∗policy, int flags)

• int hwloc_set_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_bitmap_t
set, hwloc_membind_policy_t policy, int flags)

• int hwloc_get_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_bitmap_t set,
hwloc_membind_policy_t ∗policy, int flags)

• int hwloc_set_area_membind (hwloc_topology_t topology, const void ∗addr, size_t len, hwloc_-
const_bitmap_t set, hwloc_membind_policy_t policy, int flags)

• int hwloc_get_area_membind (hwloc_topology_t topology, const void ∗addr, size_t len, hwloc_-
bitmap_t set, hwloc_membind_policy_t ∗policy, int flags)

• int hwloc_get_area_memlocation (hwloc_topology_t topology, const void ∗addr, size_t len, hwloc_-
bitmap_t set, int flags)

• void ∗ hwloc_alloc (hwloc_topology_t topology, size_t len)
• void ∗ hwloc_alloc_membind (hwloc_topology_t topology, size_t len, hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy, int flags)
• static void ∗ hwloc_alloc_membind_policy (hwloc_topology_t topology, size_t len, hwloc_const_-

bitmap_t set, hwloc_membind_policy_t policy, int flags)
• int hwloc_free (hwloc_topology_t topology, void ∗addr, size_t len)

22.10.1 Detailed Description

Memory binding can be done three ways:

• explicit memory allocation thanks to hwloc_alloc_membind() and friends: the binding will have
effect on the memory allocated by these functions.

• implicit memory binding through binding policy: hwloc_set_membind() and friends only define the
current policy of the process, which will be applied to the subsequent calls to malloc() and friends.

• migration of existing memory ranges, thanks to hwloc_set_area_membind() and friends, which move
already-allocated data.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

120 Module Documentation

Not all operating systems support all three ways. hwloc_topology_get_support() may be used to query
about the actual memory binding support in the currently used operating system.

When the requested binding operation is not available and the HWLOC_MEMBIND_STRICT flag was
passed, the function returns -1. errno will be set to ENOSYS when the system does support the specified
action or policy (e.g., some systems only allow binding memory on a per-thread basis, whereas other
systems only allow binding memory for all threads in a process). errno will be set to EXDEV when
the requested set can not be enforced (e.g., some systems only allow binding memory to a single NUMA
node).

If HWLOC_MEMBIND_STRICT was not passed, the function may fail as well, or the operating system
may use a slightly different operation (with side-effects, smaller binding set, etc.) when the requested
operation is not exactly supported.

The most portable form that should be preferred over the others whenever possible is as follows. It allocates
some memory hopefully bound to the specified set. To do so, hwloc will possibly have to change the current
memory binding policy in order to actually get the memory bound, if the OS does not provide any other
way to simply allocate bound memory without changing the policy for all allocations. That is the difference
with hwloc_alloc_membind(), which will never change the current memory binding policy.

hwloc_alloc_membind_policy(topology, size, set,
HWLOC_MEMBIND_BIND, 0);

Each hwloc memory binding function takes a bitmap argument that is a CPU set by default, or a NUMA
memory node set if the flag HWLOC_MEMBIND_BYNODESET is specified. See Object Sets (hwloc_-
cpuset_t and hwloc_nodeset_t) and The bitmap API for a discussion of CPU sets and NUMA memory
node sets. It is also possible to convert between CPU set and node set using hwloc_cpuset_to_nodeset() or
hwloc_cpuset_from_nodeset().

Memory binding by CPU set cannot work for CPU-less NUMA memory nodes. Binding by nodeset should
therefore be preferred whenever possible.

See also:

Some example codes are available under doc/examples/ in the source tree.

Note:

On some operating systems, memory binding affects the CPU binding; see HWLOC_MEMBIND_-
NOCPUBIND

22.10.2 Enumeration Type Documentation

22.10.2.1 enum hwloc_membind_flags_t

Memory binding flags. These flags can be used to refine the binding policy. All flags can be logically OR’ed
together with the exception of HWLOC_MEMBIND_PROCESS and HWLOC_MEMBIND_THREAD;
these two flags are mutually exclusive.

Not all systems support all kinds of binding. hwloc_topology_get_support() may be used to query about
the actual memory binding support in the currently used operating system. See the "Detailed Description"
section of Memory binding for a description of errors that can occur.

Enumerator:

HWLOC_MEMBIND_PROCESS Set policy for all threads of the specified (possibly multi-
threaded) process. This flag is mutually exclusive with HWLOC_MEMBIND_THREAD.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.10 Memory binding 121

HWLOC_MEMBIND_THREAD Set policy for a specific thread of the current process. This flag is
mutually exclusive with HWLOC_MEMBIND_PROCESS.

HWLOC_MEMBIND_STRICT Request strict binding from the OS. The function will fail if the
binding can not be guaranteed / completely enforced.
This flag has slightly different meanings depending on which function it is used with.

HWLOC_MEMBIND_MIGRATE Migrate existing allocated memory. If the memory cannot be
migrated and the HWLOC_MEMBIND_STRICT flag is passed, an error will be returned.

HWLOC_MEMBIND_NOCPUBIND Avoid any effect on CPU binding. On some operating sys-
tems, some underlying memory binding functions also bind the application to the corresponding
CPU(s). Using this flag will cause hwloc to avoid using OS functions that could potentially af-
fect CPU bindings. Note, however, that using NOCPUBIND may reduce hwloc’s overall memory
binding support. Specifically: some of hwloc’s memory binding functions may fail with errno
set to ENOSYS when used with NOCPUBIND.

HWLOC_MEMBIND_BYNODESET Consider the bitmap argument as a nodeset. The bitmap ar-
gument is considered a nodeset if this flag is given, or a cpuset otherwise by default.
Memory binding by CPU set cannot work for CPU-less NUMA memory nodes. Binding by
nodeset should therefore be preferred whenever possible.

22.10.2.2 enum hwloc_membind_policy_t

Memory binding policy. These constants can be used to choose the binding policy. Only one policy can be
used at a time (i.e., the values cannot be OR’ed together).

Not all systems support all kinds of binding. hwloc_topology_get_support() may be used to query about
the actual memory binding policy support in the currently used operating system. See the "Detailed De-
scription" section of Memory binding for a description of errors that can occur.

Enumerator:

HWLOC_MEMBIND_DEFAULT Reset the memory allocation policy to the system default. De-
pending on the operating system, this may correspond to HWLOC_MEMBIND_FIRSTTOUCH
(Linux), or HWLOC_MEMBIND_BIND (AIX, HP-UX, Solaris, Windows). This policy is never
returned by get membind functions. The nodeset argument is ignored.

HWLOC_MEMBIND_FIRSTTOUCH Allocate each memory page individually on the local
NUMA node of the thread that touches it. The given nodeset should usually be hwloc_topology_-
get_topology_nodeset() so that the touching thread may run and allocate on any node in the
system.
On AIX, if the nodeset is smaller, pages are allocated locally (if the local node is in the nodeset)
or from a random non-local node (otherwise).

HWLOC_MEMBIND_BIND Allocate memory on the specified nodes.
HWLOC_MEMBIND_INTERLEAVE Allocate memory on the given nodes in an interleaved /

round-robin manner. The precise layout of the memory across multiple NUMA nodes is OS-
/system specific. Interleaving can be useful when threads distributed across the specified NUMA
nodes will all be accessing the whole memory range concurrently, since the interleave will then
balance the memory references.

HWLOC_MEMBIND_NEXTTOUCH For each page bound with this policy, by next time it is
touched (and next time only), it is moved from its current location to the local NUMA node
of the thread where the memory reference occurred (if it needs to be moved at all).

HWLOC_MEMBIND_MIXED Returned by get_membind() functions when multiple threads or
parts of a memory area have differing memory binding policies. Also returned when binding
is unknown because binding hooks are empty when the topology is loaded from XML without
HWLOC_THISSYSTEM=1, etc.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

122 Module Documentation

22.10.3 Function Documentation

22.10.3.1 void∗ hwloc_alloc (hwloc_topology_t topology, size_t len)

Allocate some memory. This is equivalent to malloc(), except that it tries to allocate page-aligned memory
from the OS.

Note:

The allocated memory should be freed with hwloc_free().

22.10.3.2 void∗ hwloc_alloc_membind (hwloc_topology_t topology, size_t len,
hwloc_const_bitmap_t set, hwloc_membind_policy_t policy, int flags)

Allocate some memory on NUMA memory nodes specified by set.

Returns:

NULL with errno set to ENOSYS if the action is not supported and HWLOC_MEMBIND_STRICT
is given
NULL with errno set to EXDEV if the binding cannot be enforced and HWLOC_MEMBIND_-
STRICT is given
NULL with errno set to ENOMEM if the memory allocation failed even before trying to bind.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a cpuset.

Note:

The allocated memory should be freed with hwloc_free().

22.10.3.3 static void∗ hwloc_alloc_membind_policy (hwloc_topology_t topology, size_t len,
hwloc_const_bitmap_t set, hwloc_membind_policy_t policy, int flags) [inline,
static]

Allocate some memory on NUMA memory nodes specified by set. This is similar to hwloc_alloc_-
membind_nodeset() except that it is allowed to change the current memory binding policy, thus providing
more binding support, at the expense of changing the current state.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a cpuset.

22.10.3.4 int hwloc_free (hwloc_topology_t topology, void ∗ addr, size_t len)

Free memory that was previously allocated by hwloc_alloc() or hwloc_alloc_membind().

22.10.3.5 int hwloc_get_area_membind (hwloc_topology_t topology, const void ∗ addr, size_t len,
hwloc_bitmap_t set, hwloc_membind_policy_t ∗ policy, int flags)

Query the CPUs near the physical NUMA node(s) and binding policy of the memory identified by (addr,
len). This function has two output parameters: set and policy. The values returned in these param-
eters depend on both the flags passed in and the memory binding policies and nodesets of the pages in
the address range.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.10 Memory binding 123

If HWLOC_MEMBIND_STRICT is specified, the target pages are first checked to see if they all have the
same memory binding policy and nodeset. If they do not, -1 is returned and errno is set to EXDEV. If they
are identical across all pages, the set and policy are returned in set and policy, respectively.

If HWLOC_MEMBIND_STRICT is not specified, the union of all NUMA node(s) containing pages in
the address range is calculated. If all pages in the target have the same policy, it is returned in policy.
Otherwise, policy is set to HWLOC_MEMBIND_MIXED.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

If len is 0, -1 is returned and errno is set to EINVAL.

22.10.3.6 int hwloc_get_area_memlocation (hwloc_topology_t topology, const void ∗ addr, size_t
len, hwloc_bitmap_t set, int flags)

Get the NUMA nodes where memory identified by (addr, len) is physically allocated. Fills set ac-
cording to the NUMA nodes where the memory area pages are physically allocated. If no page is actually
allocated yet, set may be empty.

If pages spread to multiple nodes, it is not specified whether they spread equitably, or whether most of them
are on a single node, etc.

The operating system may move memory pages from one processor to another at any time according to
their binding, so this function may return something that is already outdated.

If HWLOC_MEMBIND_BYNODESET is specified in flags, set is considered a nodeset. Otherwise it’s
a cpuset.

If len is 0, set is emptied.

22.10.3.7 int hwloc_get_membind (hwloc_topology_t topology, hwloc_bitmap_t set,
hwloc_membind_policy_t ∗ policy, int flags)

Query the default memory binding policy and physical locality of the current process or thread. This
function has two output parameters: set and policy. The values returned in these parameters depend
on both the flags passed in and the current memory binding policies and nodesets in the queried target.

Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and
nodesets for all the threads in the current process. Passing HWLOC_MEMBIND_THREAD specifies that
the query target is the current policy and nodeset for only the thread invoking this function.

If neither of these flags are passed (which is the most portable method), the process is assumed to be
single threaded. This allows hwloc to use either process-based OS functions or thread-based OS functions,
depending on which are available.

HWLOC_MEMBIND_STRICT is only meaningful when HWLOC_MEMBIND_PROCESS is also speci-
fied. In this case, hwloc will check the default memory policies and nodesets for all threads in the process.
If they are not identical, -1 is returned and errno is set to EXDEV. If they are identical, the values are
returned in set and policy.

Otherwise, if HWLOC_MEMBIND_PROCESS is specified (and HWLOC_MEMBIND_STRICT is not
specified), the default set from each thread is logically OR’ed together. If all threads’ default policies are
the same, policy is set to that policy. If they are different, policy is set to HWLOC_MEMBIND_-
MIXED.

In the HWLOC_MEMBIND_THREAD case (or when neither HWLOC_MEMBIND_PROCESS or
HWLOC_MEMBIND_THREAD is specified), there is only one set and policy; they are returned in set

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

124 Module Documentation

and policy, respectively.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

22.10.3.8 int hwloc_get_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid,
hwloc_bitmap_t set, hwloc_membind_policy_t ∗ policy, int flags)

Query the default memory binding policy and physical locality of the specified process. This function has
two output parameters: set and policy. The values returned in these parameters depend on both the
flags passed in and the current memory binding policies and nodesets in the queried target.

Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and
nodesets for all the threads in the specified process. If HWLOC_MEMBIND_PROCESS is not specified
(which is the most portable method), the process is assumed to be single threaded. This allows hwloc to
use either process-based OS functions or thread-based OS functions, depending on which are available.

Note that it does not make sense to pass HWLOC_MEMBIND_THREAD to this function.

If HWLOC_MEMBIND_STRICT is specified, hwloc will check the default memory policies and nodesets
for all threads in the specified process. If they are not identical, -1 is returned and errno is set to EXDEV.
If they are identical, the values are returned in set and policy.

Otherwise, set is set to the logical OR of all threads’ default set. If all threads’ default policies are the
same, policy is set to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

Note:

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

22.10.3.9 int hwloc_set_area_membind (hwloc_topology_t topology, const void ∗ addr, size_t len,
hwloc_const_bitmap_t set, hwloc_membind_policy_t policy, int flags)

Bind the already-allocated memory identified by (addr, len) to the NUMA node(s) specified by set. If
HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a cpuset.

Returns:

0 if len is 0.
-1 with errno set to ENOSYS if the action is not supported
-1 with errno set to EXDEV if the binding cannot be enforced

22.10.3.10 int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)

Set the default memory binding policy of the current process or thread to prefer the NUMA node(s) spec-
ified by set. If neither HWLOC_MEMBIND_PROCESS nor HWLOC_MEMBIND_THREAD is spec-
ified, the current process is assumed to be single-threaded. This is the most portable form as it permits
hwloc to use either process-based OS functions or thread-based OS functions, depending on which are
available.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a cpuset.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.10 Memory binding 125

Returns:

-1 with errno set to ENOSYS if the action is not supported
-1 with errno set to EXDEV if the binding cannot be enforced

22.10.3.11 int hwloc_set_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid,
hwloc_const_bitmap_t set, hwloc_membind_policy_t policy, int flags)

Set the default memory binding policy of the specified process to prefer the NUMA node(s) specified by
set. If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it’s a
cpuset.

Returns:

-1 with errno set to ENOSYS if the action is not supported
-1 with errno set to EXDEV if the binding cannot be enforced

Note:

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

126 Module Documentation

22.11 Changing the Source of Topology Discovery

Functions

• int hwloc_topology_set_pid (hwloc_topology_t restrict topology, hwloc_pid_t pid)
• int hwloc_topology_set_synthetic (hwloc_topology_t restrict topology, const char ∗restrict descrip-

tion)
• int hwloc_topology_set_xml (hwloc_topology_t restrict topology, const char ∗restrict xmlpath)
• int hwloc_topology_set_xmlbuffer (hwloc_topology_t restrict topology, const char ∗restrict buffer,

int size)

22.11.1 Detailed Description

If none of the functions below is called, the default is to detect all the objects of the machine that the caller
is allowed to access.

This default behavior may also be modified through environment variables if the application did not modify
it already. Setting HWLOC_XMLFILE in the environment enforces the discovery from a XML file as if
hwloc_topology_set_xml() had been called. Setting HWLOC_SYNTHETIC enforces a synthetic topology
as if hwloc_topology_set_synthetic() had been called.

Finally, HWLOC_THISSYSTEM enforces the return value of hwloc_topology_is_thissystem().

22.11.2 Function Documentation

22.11.2.1 int hwloc_topology_set_pid (hwloc_topology_t restrict topology, hwloc_pid_t pid)

Change which process the topology is viewed from. On some systems, processes may have different views
of the machine, for instance the set of allowed CPUs. By default, hwloc exposes the view from the current
process. Calling hwloc_topology_set_pid() permits to make it expose the topology of the machine from
the point of view of another process.

Note:

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.
-1 is returned and errno is set to ENOSYS on platforms that do not support this feature.

22.11.2.2 int hwloc_topology_set_synthetic (hwloc_topology_t restrict topology, const char
∗restrict description)

Enable synthetic topology. Gather topology information from the given description, a space-separated
string of <type:number> describing the object type and arity at each level. All types may be omitted
(space-separated string of numbers) so that hwloc chooses all types according to usual topologies. See also
the Synthetic topologies.

Setting the environment variable HWLOC_SYNTHETIC may also result in this behavior.

If description was properly parsed and describes a valid topology configuration, this function returns
0. Otherwise -1 is returned and errno is set to EINVAL.

Note that this function does not actually load topology information; it just tells hwloc where to load it from.
You’ll still need to invoke hwloc_topology_load() to actually load the topology information.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.11 Changing the Source of Topology Discovery 127

Note:

For convenience, this backend provides empty binding hooks which just return success.
On success, the synthetic component replaces the previously enabled component (if any), but the
topology is not actually modified until hwloc_topology_load().

22.11.2.3 int hwloc_topology_set_xml (hwloc_topology_t restrict topology, const char ∗restrict
xmlpath)

Enable XML-file based topology. Gather topology information from the XML file given at xmlpath.
Setting the environment variable HWLOC_XMLFILE may also result in this behavior. This file may have
been generated earlier with hwloc_topology_export_xml() in hwloc/export.h, or lstopo file.xml.

Note that this function does not actually load topology information; it just tells hwloc where to load it from.
You’ll still need to invoke hwloc_topology_load() to actually load the topology information.

Returns:

-1 with errno set to EINVAL on failure to read the XML file.

Note:

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object
userdata.
For convenience, this backend provides empty binding hooks which just return success. To have hwloc
still actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be
set to assert that the loaded file is really the underlying system.
On success, the XML component replaces the previously enabled component (if any), but the topology
is not actually modified until hwloc_topology_load().

22.11.2.4 int hwloc_topology_set_xmlbuffer (hwloc_topology_t restrict topology, const char
∗restrict buffer, int size)

Enable XML based topology using a memory buffer (instead of a file, as with hwloc_topology_set_xml()).
Gather topology information from the XML memory buffer given at buffer and of length size. This
buffer may have been filled earlier with hwloc_topology_export_xmlbuffer() in hwloc/export.h.

Note that this function does not actually load topology information; it just tells hwloc where to load it from.
You’ll still need to invoke hwloc_topology_load() to actually load the topology information.

Returns:

-1 with errno set to EINVAL on failure to read the XML buffer.

Note:

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object
userdata.
For convenience, this backend provides empty binding hooks which just return success. To have hwloc
still actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be
set to assert that the loaded file is really the underlying system.
On success, the XML component replaces the previously enabled component (if any), but the topology
is not actually modified until hwloc_topology_load().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

128 Module Documentation

22.12 Topology Detection Configuration and Query

Data Structures

• struct hwloc_topology_discovery_support

Flags describing actual discovery support for this topology.

• struct hwloc_topology_cpubind_support

Flags describing actual PU binding support for this topology.

• struct hwloc_topology_membind_support

Flags describing actual memory binding support for this topology.

• struct hwloc_topology_support

Set of flags describing actual support for this topology.

Enumerations

• enum hwloc_topology_flags_e { HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM, HWLOC_-
TOPOLOGY_FLAG_IS_THISSYSTEM, HWLOC_TOPOLOGY_FLAG_THISSYSTEM_-
ALLOWED_RESOURCES }

• enum hwloc_type_filter_e { HWLOC_TYPE_FILTER_KEEP_ALL, HWLOC_TYPE_FILTER_-
KEEP_NONE, HWLOC_TYPE_FILTER_KEEP_STRUCTURE, HWLOC_TYPE_FILTER_-
KEEP_IMPORTANT }

Functions

• int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)
• unsigned long hwloc_topology_get_flags (hwloc_topology_t topology)
• int hwloc_topology_is_thissystem (hwloc_topology_t restrict topology)
• struct hwloc_topology_support ∗ hwloc_topology_get_support (hwloc_topology_t restrict topology)
• int hwloc_topology_set_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum

hwloc_type_filter_e filter)
• int hwloc_topology_get_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum

hwloc_type_filter_e ∗filter)
• int hwloc_topology_set_all_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e fil-

ter)
• int hwloc_topology_set_cache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e

filter)
• int hwloc_topology_set_icache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e

filter)
• int hwloc_topology_set_io_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e fil-

ter)
• void hwloc_topology_set_userdata (hwloc_topology_t topology, const void ∗userdata)
• void ∗ hwloc_topology_get_userdata (hwloc_topology_t topology)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.12 Topology Detection Configuration and Query 129

22.12.1 Detailed Description

Several functions can optionally be called between hwloc_topology_init() and hwloc_topology_load() to
configure how the detection should be performed, e.g. to ignore some objects types, define a synthetic
topology, etc.

22.12.2 Enumeration Type Documentation

22.12.2.1 enum hwloc_topology_flags_e

Flags to be set onto a topology context before load. Flags should be given to hwloc_topology_set_flags().
They may also be returned by hwloc_topology_get_flags().

Enumerator:

HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM Detect the whole system, ignore reservations.
Gather all resources, even if some were disabled by the administrator. For instance, ignore Linux
Cgroup/Cpusets and gather all processors and memory nodes.
When this flag is not set, PUs and NUMA nodes that are disallowed are not added to the topology.
Parent objects (package, core, cache, etc.) are added only if some of their children are allowed.
When this flag is set, the actual sets of allowed PUs and NUMA nodes are given by hwloc_-
topology_get_allowed_cpuset() and hwloc_topology_get_allowed_nodeset(). They may be
smaller than the root object cpuset and nodeset.
When this flag is not set, all existing PUs and NUMA nodes in the topology are allowed.
hwloc_topology_get_allowed_cpuset() and hwloc_topology_get_allowed_nodeset() are equal to
the root object cpuset and nodeset.
If the current topology is exported to XML and reimported later, this flag should be set again in
the reimported topology so that disallowed resources are reimported as well.

HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM Assume that the selected backend provides the
topology for the system on which we are running. This forces hwloc_topology_is_thissystem() to
return 1, i.e. makes hwloc assume that the selected backend provides the topology for the system
on which we are running, even if it is not the OS-specific backend but the XML backend for
instance. This means making the binding functions actually call the OS-specific system calls and
really do binding, while the XML backend would otherwise provide empty hooks just returning
success.
Setting the environment variable HWLOC_THISSYSTEM may also result in the same behavior.
This can be used for efficiency reasons to first detect the topology once, save it to an XML file,
and quickly reload it later through the XML backend, but still having binding functions actually
do bind.

HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES Get the set of allowed
resources from the local operating system even if the topology was loaded from XML or synthetic
description. If the topology was loaded from XML or from a synthetic string, restrict it by
applying the current process restrictions such as Linux Cgroup/Cpuset.
This is useful when the topology is not loaded directly from the local machine (e.g. for perfor-
mance reason) and it comes with all resources, while the running process is restricted to only
parts of the machine.
This flag is ignored unless HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM is also set since
the loaded topology must match the underlying machine where restrictions will be gathered from.
Setting the environment variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES would
result in the same behavior.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

130 Module Documentation

22.12.2.2 enum hwloc_type_filter_e

Type filtering flags. By default, most objects are kept (HWLOC_TYPE_FILTER_KEEP_ALL). Instruction
caches, I/O and Misc objects are ignored by default (HWLOC_TYPE_FILTER_KEEP_NONE). Group
levels are ignored unless they bring structure (HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

Note that group objects are also ignored individually (without the entire level) when they do not bring
structure.

Enumerator:

HWLOC_TYPE_FILTER_KEEP_ALL Keep all objects of this type. Cannot be set for HWLOC_-
OBJ_GROUP (groups are designed only to add more structure to the topology).

HWLOC_TYPE_FILTER_KEEP_NONE Ignore all objects of this type. The bottom-level type
HWLOC_OBJ_PU, the HWLOC_OBJ_NUMANODE type, and the top-level type HWLOC_-
OBJ_MACHINE may not be ignored.

HWLOC_TYPE_FILTER_KEEP_STRUCTURE Only ignore objects if their entire level does not
bring any structure. Keep the entire level of objects if at least one of these objects adds structure
to the topology. An object brings structure when it has multiple children and it is not the only
child of its parent.
If all objects in the level are the only child of their parent, and if none of them has multiple
children, the entire level is removed.
Cannot be set for I/O and Misc objects since the topology structure does not matter there.

HWLOC_TYPE_FILTER_KEEP_IMPORTANT Only keep likely-important objects of the given
type. It is only useful for I/O object types. For HWLOC_OBJ_PCI_DEVICE and HWLOC_-
OBJ_OS_DEVICE, it means that only objects of major/common kinds are kept (storage, net-
work, OpenFabrics, Intel MICs, CUDA, OpenCL, NVML, and displays). Also, only OS devices
directly attached on PCI (e.g. no USB) are reported. For HWLOC_OBJ_BRIDGE, it means that
bridges are kept only if they have children.
This flag equivalent to HWLOC_TYPE_FILTER_KEEP_ALL for Normal, Memory and Misc
types since they are likely important.

22.12.3 Function Documentation

22.12.3.1 unsigned long hwloc_topology_get_flags (hwloc_topology_t topology)

Get OR’ed flags of a topology. Get the OR’ed set of hwloc_topology_flags_e of a topology.

Returns:

the flags previously set with hwloc_topology_set_flags().

22.12.3.2 struct hwloc_topology_support∗ hwloc_topology_get_support (hwloc_topology_t restrict
topology) [read]

Retrieve the topology support. Each flag indicates whether a feature is supported. If set to 0, the feature is
not supported. If set to 1, the feature is supported, but the corresponding call may still fail in some corner
cases.

These features are also listed by hwloc-info \--support

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.12 Topology Detection Configuration and Query 131

22.12.3.3 int hwloc_topology_get_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type,
enum hwloc_type_filter_e ∗ filter)

Get the current filtering for the given object type.

22.12.3.4 void∗ hwloc_topology_get_userdata (hwloc_topology_t topology)

Retrieve the topology-specific userdata pointer. Retrieve the application-given private data pointer that was
previously set with hwloc_topology_set_userdata().

22.12.3.5 int hwloc_topology_is_thissystem (hwloc_topology_t restrict topology)

Does the topology context come from this system?

Returns:

1 if this topology context was built using the system running this program.
0 instead (for instance if using another file-system root, a XML topology file, or a synthetic topology).

22.12.3.6 int hwloc_topology_set_all_types_filter (hwloc_topology_t topology, enum
hwloc_type_filter_e filter)

Set the filtering for all object types. If some types do not support this filtering, they are silently ignored.

22.12.3.7 int hwloc_topology_set_cache_types_filter (hwloc_topology_t topology, enum
hwloc_type_filter_e filter)

Set the filtering for all cache object types.

22.12.3.8 int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)

Set OR’ed flags to non-yet-loaded topology. Set a OR’ed set of hwloc_topology_flags_e onto a topology
that was not yet loaded.

If this function is called multiple times, the last invokation will erase and replace the set of flags that was
previously set.

The flags set in a topology may be retrieved with hwloc_topology_get_flags()

22.12.3.9 int hwloc_topology_set_icache_types_filter (hwloc_topology_t topology, enum
hwloc_type_filter_e filter)

Set the filtering for all instruction cache object types.

22.12.3.10 int hwloc_topology_set_io_types_filter (hwloc_topology_t topology, enum
hwloc_type_filter_e filter)

Set the filtering for all I/O object types.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

132 Module Documentation

22.12.3.11 int hwloc_topology_set_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type,
enum hwloc_type_filter_e filter)

Set the filtering for the given object type.

22.12.3.12 void hwloc_topology_set_userdata (hwloc_topology_t topology, const void ∗ userdata)

Set the topology-specific userdata pointer. Each topology may store one application-given private data
pointer. It is initialized to NULL. hwloc will never modify it.

Use it as you wish, after hwloc_topology_init() and until hwloc_topolog_destroy().

This pointer is not exported to XML.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.13 Modifying a loaded Topology 133

22.13 Modifying a loaded Topology

Enumerations

• enum hwloc_restrict_flags_e { HWLOC_RESTRICT_FLAG_REMOVE_CPULESS, HWLOC_-
RESTRICT_FLAG_ADAPT_MISC, HWLOC_RESTRICT_FLAG_ADAPT_IO }

Functions

• int hwloc_topology_restrict (hwloc_topology_t restrict topology, hwloc_const_cpuset_t cpuset, un-
signed long flags)

• hwloc_obj_t hwloc_topology_insert_misc_object (hwloc_topology_t topology, hwloc_obj_t parent,
const char ∗name)

• hwloc_obj_t hwloc_topology_alloc_group_object (hwloc_topology_t topology)
• hwloc_obj_t hwloc_topology_insert_group_object (hwloc_topology_t topology, hwloc_obj_-

t group)
• int hwloc_obj_add_other_obj_sets (hwloc_obj_t dst, hwloc_obj_t src)

22.13.1 Enumeration Type Documentation

22.13.1.1 enum hwloc_restrict_flags_e

Flags to be given to hwloc_topology_restrict().

Enumerator:

HWLOC_RESTRICT_FLAG_REMOVE_CPULESS Remove all objects that became CPU-less.
By default, only objects that contain no PU and no memory are removed.

HWLOC_RESTRICT_FLAG_ADAPT_MISC Move Misc objects to ancestors if their parents are
removed during restriction. If this flag is not set, Misc objects are removed when their parents
are removed.

HWLOC_RESTRICT_FLAG_ADAPT_IO Move I/O objects to ancestors if their parents are re-
moved during restriction. If this flag is not set, I/O devices and bridges are removed when their
parents are removed.

22.13.2 Function Documentation

22.13.2.1 int hwloc_obj_add_other_obj_sets (hwloc_obj_t dst, hwloc_obj_t src)

Setup object cpusets/nodesets by OR’ing another object’s sets. For each defined cpuset or nodeset in src,
allocate the corresponding set in dst and add src to it by OR’ing sets.

This function is convenient between hwloc_topology_alloc_group_object() and hwloc_topology_insert_-
group_object(). It builds the sets of the new Group that will be inserted as a new intermediate parent of
several objects.

22.13.2.2 hwloc_obj_t hwloc_topology_alloc_group_object (hwloc_topology_t topology)

Allocate a Group object to insert later with hwloc_topology_insert_group_object(). This function returns
a new Group object. The caller should (at least) initialize its sets before inserting the object. See hwloc_-
topology_insert_group_object().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

134 Module Documentation

The subtype object attribute may be set to display something else than "Group" as the type name for this
object in lstopo. Custom name/value info pairs may be added with hwloc_obj_add_info() after insertion.

The kind group attribute should be 0. The subkind group attribute may be set to identify multiple
Groups of the same level.

It is recommended not to set any other object attribute before insertion, since the Group may get discarded
during insertion.

The object will be destroyed if passed to hwloc_topology_insert_group_object() without any set defined.

22.13.2.3 hwloc_obj_t hwloc_topology_insert_group_object (hwloc_topology_t topology,
hwloc_obj_t group)

Add more structure to the topology by adding an intermediate Group. The caller should first allocate a new
Group object with hwloc_topology_alloc_group_object(). Then it must setup at least one of its CPU or
node sets to specify the final location of the Group in the topology. Then the object can be passed to this
function for actual insertion in the topology.

Either the cpuset or nodeset field (or both, if compatible) must be set to a non-empty bitmap. The
complete_cpuset or complete_nodeset may be set instead if inserting with respect to the complete topology
(including disallowed, offline or unknown objects).

It grouping several objects, hwloc_obj_add_other_obj_sets() is an easy way to build the Group sets itera-
tively.

These sets cannot be larger than the current topology, or they would get restricted silently.

The core will setup the other sets after actual insertion.

Returns:

The inserted object if it was properly inserted.
An existing object if the Group was discarded because the topology already contained an object at the
same location (the Group did not add any locality information). Any name/info key pair set before
inserting is appended to the existing object.
NULL if the insertion failed because of conflicting sets in topology tree.
NULL if Group objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).
NULL if the object was discarded because no set was initialized in the Group before insert, or all of
them were empty.

22.13.2.4 hwloc_obj_t hwloc_topology_insert_misc_object (hwloc_topology_t topology,
hwloc_obj_t parent, const char ∗ name)

Add a MISC object as a leaf of the topology. A new MISC object will be created and inserted into the
topology at the position given by parent. It is appended to the list of existing Misc children, without
ever adding any intermediate hierarchy level. This is useful for annotating the topology without actually
changing the hierarchy.

name is supposed to be unique across all Misc objects in the topology. It will be duplicated to setup the
new object attributes.

The new leaf object will not have any cpuset.

Returns:

the newly-created object

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.13 Modifying a loaded Topology 135

NULL on error.
NULL if Misc objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).

Note:

If name contains some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

22.13.2.5 int hwloc_topology_restrict (hwloc_topology_t restrict topology, hwloc_const_cpuset_t
cpuset, unsigned long flags)

Restrict the topology to the given CPU set. Topology topology is modified so as to remove all objects
that are not included (or partially included) in the CPU set cpuset. All objects CPU and node sets are
restricted accordingly.

flags is a OR’ed set of hwloc_restrict_flags_e.

Note:

This call may not be reverted by restricting back to a larger cpuset. Once dropped during restriction,
objects may not be brought back, except by loading another topology with hwloc_topology_load().

Returns:

0 on success.
-1 with errno set to EINVAL if the input cpuset is invalid. The topology is not modified in this case.
-1 with errno set to ENOMEM on failure to allocate internal data. The topology is reinitialized in this
case. It should be either destroyed with hwloc_topology_destroy() or configured and loaded again.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

136 Module Documentation

22.14 Finding Objects inside a CPU set

Functions

• static hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (hwloc_topology_t topology, hwloc_-
const_cpuset_t set)

• int hwloc_get_largest_objs_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_t ∗restrict objs, int max)

• static hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology_t topology,
hwloc_const_cpuset_t set, int depth, hwloc_obj_t prev)

• static hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (hwloc_topology_t topology,
hwloc_const_cpuset_t set, hwloc_obj_type_t type, hwloc_obj_t prev)

• static hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_-
const_cpuset_t set, int depth, unsigned idx)

• static hwloc_obj_t hwloc_get_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_-
const_cpuset_t set, hwloc_obj_type_t type, unsigned idx)

• static unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_-
const_cpuset_t set, int depth)

• static int hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_-
cpuset_t set, hwloc_obj_type_t type)

• static int hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t
set, hwloc_obj_t obj)

22.14.1 Function Documentation

22.14.1.1 static hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (hwloc_topology_t
topology, hwloc_const_cpuset_t set) [inline, static]

Get the first largest object included in the given cpuset set.

Returns:

the first object that is included in set and whose parent is not.

This is convenient for iterating over all largest objects within a CPU set by doing a loop getting the first
largest object and clearing its CPU set from the remaining CPU set.

22.14.1.2 int hwloc_get_largest_objs_inside_cpuset (hwloc_topology_t topology,
hwloc_const_cpuset_t set, hwloc_obj_t ∗restrict objs, int max)

Get the set of largest objects covering exactly a given cpuset set.

Returns:

the number of objects returned in objs.

22.14.1.3 static unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (hwloc_topology_t topology,
hwloc_const_cpuset_t set, int depth) [inline, static]

Return the number of objects at depth depth included in CPU set set.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.14 Finding Objects inside a CPU set 137

Note:

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given
set).
This function cannot work if objects at the given depth do not have CPU sets (I/O or Misc objects).

22.14.1.4 static int hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_topology_t topology,
hwloc_const_cpuset_t set, hwloc_obj_type_t type) [inline, static]

Return the number of objects of type type included in CPU set set. If no object for that type exists inside
CPU set set, 0 is returned. If there are several levels with objects of that type inside CPU set set, -1 is
returned.

Note:

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given
set).
This function cannot work if objects of the given type do not have CPU sets (I/O objects).

22.14.1.5 static hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology_t
topology, hwloc_const_cpuset_t set, int depth, hwloc_obj_t prev) [inline,
static]

Return the next object at depth depth included in CPU set set. If prev is NULL, return the first object
at depth depth included in set. The next invokation should pass the previous return value in prev so as
to obtain the next object in set.

Note:

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given
set).
This function cannot work if objects at the given depth do not have CPU sets (I/O or Misc objects).

22.14.1.6 static hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (hwloc_topology_t
topology, hwloc_const_cpuset_t set, hwloc_obj_type_t type, hwloc_obj_t prev)
[inline, static]

Return the next object of type type included in CPU set set. If there are multiple or no depth for given
type, return NULL and let the caller fallback to hwloc_get_next_obj_inside_cpuset_by_depth().

Note:

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given
set).
This function cannot work if objects of the given type do not have CPU sets (I/O or Misc objects).

22.14.1.7 static int hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology,
hwloc_const_cpuset_t set, hwloc_obj_t obj) [inline, static]

Return the logical index among the objects included in CPU set set. Consult all objects in the same level
as obj and inside CPU set set in the logical order, and return the index of obj within them. If set

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

138 Module Documentation

covers the entire topology, this is the logical index of obj. Otherwise, this is similar to a logical index
within the part of the topology defined by CPU set set.

Note:

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given
set).
This function cannot work if obj does not have CPU sets (I/O objects).

22.14.1.8 static hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology,
hwloc_const_cpuset_t set, int depth, unsigned idx) [inline, static]

Return the (logically) idx -th object at depth depth included in CPU set set.

Note:

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given
set).
This function cannot work if objects at the given depth do not have CPU sets (I/O or Misc objects).

22.14.1.9 static hwloc_obj_t hwloc_get_obj_inside_cpuset_by_type (hwloc_topology_t topology,
hwloc_const_cpuset_t set, hwloc_obj_type_t type, unsigned idx) [inline, static]

Return the idx -th object of type type included in CPU set set. If there are multiple or no depth for
given type, return NULL and let the caller fallback to hwloc_get_obj_inside_cpuset_by_depth().

Note:

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given
set).
This function cannot work if objects of the given type do not have CPU sets (I/O or Misc objects).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.15 Finding Objects covering at least CPU set 139

22.15 Finding Objects covering at least CPU set

Functions

• static hwloc_obj_t hwloc_get_child_covering_cpuset (hwloc_topology_t topology, hwloc_const_-
cpuset_t set, hwloc_obj_t parent)

• static hwloc_obj_t hwloc_get_obj_covering_cpuset (hwloc_topology_t topology, hwloc_const_-
cpuset_t set)

• static hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (hwloc_topology_t topology,
hwloc_const_cpuset_t set, int depth, hwloc_obj_t prev)

• static hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_type (hwloc_topology_t topology,
hwloc_const_cpuset_t set, hwloc_obj_type_t type, hwloc_obj_t prev)

22.15.1 Function Documentation

22.15.1.1 static hwloc_obj_t hwloc_get_child_covering_cpuset (hwloc_topology_t topology,
hwloc_const_cpuset_t set, hwloc_obj_t parent) [inline, static]

Get the child covering at least CPU set set.

Returns:

NULL if no child matches or if set is empty.

Note:

This function cannot work if parent does not have a CPU set (I/O or Misc objects).

22.15.1.2 static hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (hwloc_topology_t
topology, hwloc_const_cpuset_t set, int depth, hwloc_obj_t prev) [inline,
static]

Iterate through same-depth objects covering at least CPU set set. If object prev is NULL, return the first
object at depth depth covering at least part of CPU set set. The next invokation should pass the previous
return value in prev so as to obtain the next object covering at least another part of set.

Note:

This function cannot work if objects at the given depth do not have CPU sets (I/O or Misc objects).

22.15.1.3 static hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_type (hwloc_topology_t
topology, hwloc_const_cpuset_t set, hwloc_obj_type_t type, hwloc_obj_t prev)
[inline, static]

Iterate through same-type objects covering at least CPU set set. If object prev is NULL, return the first
object of type type covering at least part of CPU set set. The next invokation should pass the previous
return value in prev so as to obtain the next object of type type covering at least another part of set.

If there are no or multiple depths for type type, NULL is returned. The caller may fallback to hwloc_-
get_next_obj_covering_cpuset_by_depth() for each depth.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

140 Module Documentation

Note:

This function cannot work if objects of the given type do not have CPU sets (I/O or Misc objects).

22.15.1.4 static hwloc_obj_t hwloc_get_obj_covering_cpuset (hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline, static]

Get the lowest object covering at least CPU set set.

Returns:

NULL if no object matches or if set is empty.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.16 Looking at Ancestor and Child Objects 141

22.16 Looking at Ancestor and Child Objects

Functions

• static hwloc_obj_t hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology, int depth,
hwloc_obj_t obj)

• static hwloc_obj_t hwloc_get_ancestor_obj_by_type (hwloc_topology_t topology, hwloc_obj_-
type_t type, hwloc_obj_t obj)

• static hwloc_obj_t hwloc_get_common_ancestor_obj (hwloc_topology_t topology, hwloc_obj_-
t obj1, hwloc_obj_t obj2)

• static int hwloc_obj_is_in_subtree (hwloc_topology_t topology, hwloc_obj_t obj, hwloc_obj_-
t subtree_root)

• static hwloc_obj_t hwloc_get_next_child (hwloc_topology_t topology, hwloc_obj_t parent, hwloc_-
obj_t prev)

22.16.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer
caches than its peers.

22.16.2 Function Documentation

22.16.2.1 static hwloc_obj_t hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology, int
depth, hwloc_obj_t obj) [inline, static]

Returns the ancestor object of obj at depth depth.

Note:

depth should not be the depth of PU or NUMA objects since they are ancestors of no objects (except
Misc or I/O). This function rather expects an intermediate level depth, such as the depth of Packages,
Cores, or Caches.

22.16.2.2 static hwloc_obj_t hwloc_get_ancestor_obj_by_type (hwloc_topology_t topology,
hwloc_obj_type_t type, hwloc_obj_t obj) [inline, static]

Returns the ancestor object of obj with type type.

Note:

type should not be HWLOC_OBJ_PU or HWLOC_OBJ_NUMANODE since these objects are an-
cestors of no objects (except Misc or I/O). This function rather expects an intermediate object type,
such as HWLOC_OBJ_PACKAGE, HWLOC_OBJ_CORE, etc.

22.16.2.3 static hwloc_obj_t hwloc_get_common_ancestor_obj (hwloc_topology_t topology,
hwloc_obj_t obj1, hwloc_obj_t obj2) [inline, static]

Returns the common parent object to objects obj1 and obj2.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

142 Module Documentation

22.16.2.4 static hwloc_obj_t hwloc_get_next_child (hwloc_topology_t topology, hwloc_obj_t
parent, hwloc_obj_t prev) [inline, static]

Return the next child. Return the next child among the normal children list, then among the memory
children list, then among the I/O children list, then among the Misc children list.

If prev is NULL, return the first child.

Return NULL when there is no next child.

22.16.2.5 static int hwloc_obj_is_in_subtree (hwloc_topology_t topology, hwloc_obj_t obj,
hwloc_obj_t subtree_root) [inline, static]

Returns true if obj is inside the subtree beginning with ancestor object subtree_root.

Note:

This function cannot work if obj and subtree_root objects do not have CPU sets (I/O or Misc
objects).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.17 Kinds of object Type 143

22.17 Kinds of object Type

Functions

• int hwloc_obj_type_is_normal (hwloc_obj_type_t type)
• int hwloc_obj_type_is_io (hwloc_obj_type_t type)
• int hwloc_obj_type_is_memory (hwloc_obj_type_t type)
• int hwloc_obj_type_is_cache (hwloc_obj_type_t type)
• int hwloc_obj_type_is_dcache (hwloc_obj_type_t type)
• int hwloc_obj_type_is_icache (hwloc_obj_type_t type)

22.17.1 Detailed Description

Each object type is either Normal (i.e. hwloc_obj_type_is_normal() returns 1), or Memory (i.e. hwloc_-
obj_type_is_memory() returns 1) or I/O (i.e. hwloc_obj_type_is_io() returns 1) or Misc (i.e. equal to
HWLOC_OBJ_MISC). It cannot be of more than one of these kinds.

22.17.2 Function Documentation

22.17.2.1 int hwloc_obj_type_is_cache (hwloc_obj_type_t type)

Check whether an object type is a Cache (Data, Unified or Instruction).

Returns:

1 if an object of type type is a Cache, 0 otherwise.

22.17.2.2 int hwloc_obj_type_is_dcache (hwloc_obj_type_t type)

Check whether an object type is a Data or Unified Cache.

Returns:

1 if an object of type type is a Data or Unified Cache, 0 otherwise.

22.17.2.3 int hwloc_obj_type_is_icache (hwloc_obj_type_t type)

Check whether an object type is a Instruction Cache,.

Returns:

1 if an object of type type is a Instruction Cache, 0 otherwise.

22.17.2.4 int hwloc_obj_type_is_io (hwloc_obj_type_t type)

Check whether an object type is I/O. I/O objects are objects attached to their parents in the I/O children
list. This current includes Bridges, PCI and OS devices.

Returns:

1 if an object of type type is a I/O object, 0 otherwise.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

144 Module Documentation

22.17.2.5 int hwloc_obj_type_is_memory (hwloc_obj_type_t type)

Check whether an object type is Memory. Memory objects are objects attached to their parents in the
Memory children list. This current only includes NUMA nodes.

Returns:

1 if an object of type type is a Memory object, 0 otherwise.

22.17.2.6 int hwloc_obj_type_is_normal (hwloc_obj_type_t type)

Check whether an object type is Normal. Normal objects are objects of the main CPU hierarchy (Machine,
Package, Core, PU, CPU caches, etc.), but they are not NUMA nodes, I/O devices or Misc objects.

They are attached to parent as Normal children, not as Memory, I/O or Misc children.

Returns:

1 if an object of type type is a Normal object, 0 otherwise.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.18 Looking at Cache Objects 145

22.18 Looking at Cache Objects

Functions

• static int hwloc_get_cache_type_depth (hwloc_topology_t topology, unsigned cachelevel, hwloc_-
obj_cache_type_t cachetype)

• static hwloc_obj_t hwloc_get_cache_covering_cpuset (hwloc_topology_t topology, hwloc_const_-
cpuset_t set)

• static hwloc_obj_t hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology, hwloc_-
obj_t obj)

22.18.1 Function Documentation

22.18.1.1 static hwloc_obj_t hwloc_get_cache_covering_cpuset (hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline, static]

Get the first data (or unified) cache covering a cpuset set.

Returns:

NULL if no cache matches.

22.18.1.2 static int hwloc_get_cache_type_depth (hwloc_topology_t topology, unsigned cachelevel,
hwloc_obj_cache_type_t cachetype) [inline, static]

Find the depth of cache objects matching cache level and type. Return the depth of the topology level that
contains cache objects whose attributes match cachelevel and cachetype.

This function is identical to calling hwloc_get_type_depth() with the corresponding type such as
HWLOC_OBJ_L1ICACHE, except that it may also return a Unified cache when looking for an instruction
cache.

If no cache level matches, HWLOC_TYPE_DEPTH_UNKNOWN is returned.

If cachetype is HWLOC_OBJ_CACHE_UNIFIED, the depth of the unique matching unified cache
level is returned.

If cachetype is HWLOC_OBJ_CACHE_DATA or HWLOC_OBJ_CACHE_INSTRUCTION, either a
matching cache, or a unified cache is returned.

If cachetype is -1, it is ignored and multiple levels may match. The function returns either the depth of
a uniquely matching level or HWLOC_TYPE_DEPTH_MULTIPLE.

22.18.1.3 static hwloc_obj_t hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology,
hwloc_obj_t obj) [inline, static]

Get the first data (or unified) cache shared between an object and somebody else.

Returns:

NULL if no cache matches or if an invalid object is given.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

146 Module Documentation

22.19 Finding objects, miscellaneous helpers

Functions

• static hwloc_obj_t hwloc_get_pu_obj_by_os_index (hwloc_topology_t topology, unsigned os_-
index)

• static hwloc_obj_t hwloc_get_numanode_obj_by_os_index (hwloc_topology_t topology, unsigned
os_index)

• unsigned hwloc_get_closest_objs (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_-
t ∗restrict objs, unsigned max)

• static hwloc_obj_t hwloc_get_obj_below_by_type (hwloc_topology_t topology, hwloc_obj_type_t
type1, unsigned idx1, hwloc_obj_type_t type2, unsigned idx2)

• static hwloc_obj_t hwloc_get_obj_below_array_by_type (hwloc_topology_t topology, int nr,
hwloc_obj_type_t ∗typev, unsigned ∗idxv)

22.19.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer
caches than its peers.

22.19.2 Function Documentation

22.19.2.1 unsigned hwloc_get_closest_objs (hwloc_topology_t topology, hwloc_obj_t src,
hwloc_obj_t ∗restrict objs, unsigned max)

Do a depth-first traversal of the topology to find and sort. all objects that are at the same depth than src.
Report in objs up to max physically closest ones to src.

Returns:

the number of objects returned in objs.
0 if src is an I/O object.

Note:

This function requires the src object to have a CPU set.

22.19.2.2 static hwloc_obj_t hwloc_get_numanode_obj_by_os_index (hwloc_topology_t topology,
unsigned os_index) [inline, static]

Returns the object of type HWLOC_OBJ_NUMANODE with os_index. This function is useful for
converting a nodeset into the NUMA node objects it contains. When retrieving the current binding (e.g.
with hwloc_get_membind() with HWLOC_MEMBIND_BYNODESET), one may iterate over the bits of
the resulting nodeset with hwloc_bitmap_foreach_begin(), and find the corresponding NUMA nodes with
this function.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.19 Finding objects, miscellaneous helpers 147

22.19.2.3 static hwloc_obj_t hwloc_get_obj_below_array_by_type (hwloc_topology_t topology, int
nr, hwloc_obj_type_t ∗ typev, unsigned ∗ idxv) [inline, static]

Find an object below a chain of objects specified by types and indexes. This is a generalized version of
hwloc_get_obj_below_by_type().

Arrays typev and idxv must contain nr types and indexes.

Start from the top system object and walk the arrays typev and idxv. For each type and logical index
couple in the arrays, look under the previously found object to find the index-th object of the given type.
Indexes are specified within the parent, not withing the entire system.

For instance, if nr is 3, typev contains NODE, PACKAGE and CORE, and idxv contains 0, 1 and 2, return
the third core object below the second package below the first NUMA node.

Note:

This function requires all these objects and the root object to have a CPU set.

22.19.2.4 static hwloc_obj_t hwloc_get_obj_below_by_type (hwloc_topology_t topology,
hwloc_obj_type_t type1, unsigned idx1, hwloc_obj_type_t type2, unsigned idx2)
[inline, static]

Find an object below another object, both specified by types and indexes. Start from the top system object
and find object of type type1 and logical index idx1. Then look below this object and find another
object of type type2 and logical index idx2. Indexes are specified within the parent, not withing the
entire system.

For instance, if type1 is PACKAGE, idx1 is 2, type2 is CORE and idx2 is 3, return the fourth core object
below the third package.

Note:

This function requires these objects to have a CPU set.

22.19.2.5 static hwloc_obj_t hwloc_get_pu_obj_by_os_index (hwloc_topology_t topology,
unsigned os_index) [inline, static]

Returns the object of type HWLOC_OBJ_PU with os_index. This function is useful for converting
a CPU set into the PU objects it contains. When retrieving the current binding (e.g. with hwloc_get_-
cpubind()), one may iterate over the bits of the resulting CPU set with hwloc_bitmap_foreach_begin(), and
find the corresponding PUs with this function.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

148 Module Documentation

22.20 Distributing items over a topology

Enumerations

• enum hwloc_distrib_flags_e { HWLOC_DISTRIB_FLAG_REVERSE }

Functions

• static int hwloc_distrib (hwloc_topology_t topology, hwloc_obj_t ∗roots, unsigned n_roots, hwloc_-
cpuset_t ∗set, unsigned n, int until, unsigned long flags)

22.20.1 Enumeration Type Documentation

22.20.1.1 enum hwloc_distrib_flags_e

Flags to be given to hwloc_distrib().

Enumerator:

HWLOC_DISTRIB_FLAG_REVERSE Distrib in reverse order, starting from the last objects.

22.20.2 Function Documentation

22.20.2.1 static int hwloc_distrib (hwloc_topology_t topology, hwloc_obj_t ∗ roots, unsigned
n_roots, hwloc_cpuset_t ∗ set, unsigned n, int until, unsigned long flags) [inline,
static]

Distribute n items over the topology under roots. Array set will be filled with n cpusets recursively
distributed linearly over the topology under objects roots, down to depth until (which can be INT_-
MAX to distribute down to the finest level).

n_roots is usually 1 and roots only contains the topology root object so as to distribute over the entire
topology.

This is typically useful when an application wants to distribute n threads over a machine, giving each of
them as much private cache as possible and keeping them locally in number order.

The caller may typically want to also call hwloc_bitmap_singlify() before binding a thread so that it does
not move at all.

flags should be 0 or a OR’ed set of hwloc_distrib_flags_e.

Note:

This function requires the roots objects to have a CPU set.
This function replaces the now deprecated hwloc_distribute() and hwloc_distributev() functions.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.21 CPU and node sets of entire topologies 149

22.21 CPU and node sets of entire topologies

Functions

• hwloc_const_cpuset_t hwloc_topology_get_complete_cpuset (hwloc_topology_t topology)
• hwloc_const_cpuset_t hwloc_topology_get_topology_cpuset (hwloc_topology_t topology)
• hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (hwloc_topology_t topology)
• hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (hwloc_topology_t topology)
• hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (hwloc_topology_t topology)
• hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (hwloc_topology_t topology)

22.21.1 Function Documentation

22.21.1.1 hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (hwloc_topology_t topology)

Get allowed CPU set.

Returns:

the CPU set of allowed logical processors of the system.

Note:

If the topology flag HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM was not set, this is identical
to hwloc_topology_get_topology_cpuset(), which means all PUs are allowed.
If HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM was set, applying hwloc_bitmap_intersects()
on the result of this function and on an object cpuset checks whether there are allowed PUs inside that
object. Applying hwloc_bitmap_and() returns the list of these allowed PUs.
The returned cpuset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_-
dup() must be used to obtain a local copy.

22.21.1.2 hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (hwloc_topology_t
topology)

Get allowed node set.

Returns:

the node set of allowed memory of the system.

Note:

If the topology flag HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM was not set, this is identical
to hwloc_topology_get_topology_nodeset(), which means all NUMA nodes are allowed.
If HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM was set, applying hwloc_bitmap_intersects()
on the result of this function and on an object nodeset checks whether there are allowed NUMA nodes
inside that object. Applying hwloc_bitmap_and() returns the list of these allowed NUMA nodes.
The returned nodeset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_-
dup() must be used to obtain a local copy.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

150 Module Documentation

22.21.1.3 hwloc_const_cpuset_t hwloc_topology_get_complete_cpuset (hwloc_topology_t topology)

Get complete CPU set.

Returns:

the complete CPU set of logical processors of the system.

Note:

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_-
dup() must be used to obtain a local copy.
This is equivalent to retrieving the root object complete CPU-set.

22.21.1.4 hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (hwloc_topology_t
topology)

Get complete node set.

Returns:

the complete node set of memory of the system.

Note:

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_-
dup() must be used to obtain a local copy.
This is equivalent to retrieving the root object complete CPU-set.

22.21.1.5 hwloc_const_cpuset_t hwloc_topology_get_topology_cpuset (hwloc_topology_t topology)

Get topology CPU set.

Returns:

the CPU set of logical processors of the system for which hwloc provides topology information. This
is equivalent to the cpuset of the system object.

Note:

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_-
dup() must be used to obtain a local copy.
This is equivalent to retrieving the root object complete CPU-set.

22.21.1.6 hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (hwloc_topology_t
topology)

Get topology node set.

Returns:

the node set of memory of the system for which hwloc provides topology information. This is equiva-
lent to the nodeset of the system object.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.21 CPU and node sets of entire topologies 151

Note:

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_-
dup() must be used to obtain a local copy.
This is equivalent to retrieving the root object complete CPU-set.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

152 Module Documentation

22.22 Converting between CPU sets and node sets

Functions

• static int hwloc_cpuset_to_nodeset (hwloc_topology_t topology, hwloc_const_cpuset_t _cpuset,
hwloc_nodeset_t nodeset)

• static int hwloc_cpuset_from_nodeset (hwloc_topology_t topology, hwloc_cpuset_t _cpuset,
hwloc_const_nodeset_t nodeset)

22.22.1 Function Documentation

22.22.1.1 static int hwloc_cpuset_from_nodeset (hwloc_topology_t topology, hwloc_cpuset_t
_cpuset, hwloc_const_nodeset_t nodeset) [inline, static]

Convert a NUMA node set into a CPU set and handle non-NUMA cases. If the topology contains no
NUMA nodes, the machine is considered as a single memory node, and the following behavior is used: If
nodeset is empty, cpuset will be emptied as well. Otherwise cpuset will be entirely filled. This is
useful for manipulating memory binding sets.

22.22.1.2 static int hwloc_cpuset_to_nodeset (hwloc_topology_t topology, hwloc_const_cpuset_t
_cpuset, hwloc_nodeset_t nodeset) [inline, static]

Convert a CPU set into a NUMA node set and handle non-NUMA cases. If some NUMA nodes have no
CPUs at all, this function never sets their indexes in the output node set, even if a full CPU set is given in
input.

If the topology contains no NUMA nodes, the machine is considered as a single memory node, and the
following behavior is used: If cpuset is empty, nodeset will be emptied as well. Otherwise nodeset
will be entirely filled.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.23 Finding I/O objects 153

22.23 Finding I/O objects

Functions

• static hwloc_obj_t hwloc_get_non_io_ancestor_obj (hwloc_topology_t topology, hwloc_obj_-
t ioobj)

• static hwloc_obj_t hwloc_get_next_pcidev (hwloc_topology_t topology, hwloc_obj_t prev)

• static hwloc_obj_t hwloc_get_pcidev_by_busid (hwloc_topology_t topology, unsigned domain, un-
signed bus, unsigned dev, unsigned func)

• static hwloc_obj_t hwloc_get_pcidev_by_busidstring (hwloc_topology_t topology, const char
∗busid)

• static hwloc_obj_t hwloc_get_next_osdev (hwloc_topology_t topology, hwloc_obj_t prev)

• static hwloc_obj_t hwloc_get_next_bridge (hwloc_topology_t topology, hwloc_obj_t prev)

• static int hwloc_bridge_covers_pcibus (hwloc_obj_t bridge, unsigned domain, unsigned bus)

22.23.1 Function Documentation

22.23.1.1 static int hwloc_bridge_covers_pcibus (hwloc_obj_t bridge, unsigned domain, unsigned
bus) [inline, static]

22.23.1.2 static hwloc_obj_t hwloc_get_next_bridge (hwloc_topology_t topology, hwloc_obj_t
prev) [inline, static]

Get the next bridge in the system.

Returns:

the first bridge if prev is NULL.

22.23.1.3 static hwloc_obj_t hwloc_get_next_osdev (hwloc_topology_t topology, hwloc_obj_t prev)
[inline, static]

Get the next OS device in the system.

Returns:

the first OS device if prev is NULL.

22.23.1.4 static hwloc_obj_t hwloc_get_next_pcidev (hwloc_topology_t topology, hwloc_obj_t
prev) [inline, static]

Get the next PCI device in the system.

Returns:

the first PCI device if prev is NULL.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

154 Module Documentation

22.23.1.5 static hwloc_obj_t hwloc_get_non_io_ancestor_obj (hwloc_topology_t topology,
hwloc_obj_t ioobj) [inline, static]

Get the first non-I/O ancestor object. Given the I/O object ioobj, find the smallest non-I/O ancestor
object. This object (normal or memory) may then be used for binding because it has non-NULL CPU and
node sets and because its locality is the same as ioobj.

Note:

The resulting object is usually a normal object but it could also be a memory object (e.g. NUMA node)
in future platforms if I/O objects ever get attached to memory instead of CPUs.

22.23.1.6 static hwloc_obj_t hwloc_get_pcidev_by_busid (hwloc_topology_t topology, unsigned
domain, unsigned bus, unsigned dev, unsigned func) [inline, static]

Find the PCI device object matching the PCI bus id given domain, bus device and function PCI bus id.

22.23.1.7 static hwloc_obj_t hwloc_get_pcidev_by_busidstring (hwloc_topology_t topology, const
char ∗ busid) [inline, static]

Find the PCI device object matching the PCI bus id given as a string xxxx:yy:zz.t or yy:zz.t.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.24 The bitmap API 155

22.24 The bitmap API

Defines

• #define hwloc_bitmap_foreach_begin(id, bitmap)
• #define hwloc_bitmap_foreach_end()

Typedefs

• typedef struct hwloc_bitmap_s ∗ hwloc_bitmap_t
• typedef struct hwloc_bitmap_s ∗ hwloc_const_bitmap_t

Functions

• hwloc_bitmap_t hwloc_bitmap_alloc (void)
• hwloc_bitmap_t hwloc_bitmap_alloc_full (void)
• void hwloc_bitmap_free (hwloc_bitmap_t bitmap)
• hwloc_bitmap_t hwloc_bitmap_dup (hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_copy (hwloc_bitmap_t dst, hwloc_const_bitmap_t src)
• int hwloc_bitmap_snprintf (char ∗restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_asprintf (char ∗∗strp, hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_sscanf (hwloc_bitmap_t bitmap, const char ∗restrict string)
• int hwloc_bitmap_list_snprintf (char ∗restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_list_asprintf (char ∗∗strp, hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_list_sscanf (hwloc_bitmap_t bitmap, const char ∗restrict string)
• int hwloc_bitmap_taskset_snprintf (char ∗restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_taskset_asprintf (char ∗∗strp, hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_taskset_sscanf (hwloc_bitmap_t bitmap, const char ∗restrict string)
• void hwloc_bitmap_zero (hwloc_bitmap_t bitmap)
• void hwloc_bitmap_fill (hwloc_bitmap_t bitmap)
• int hwloc_bitmap_only (hwloc_bitmap_t bitmap, unsigned id)
• int hwloc_bitmap_allbut (hwloc_bitmap_t bitmap, unsigned id)
• int hwloc_bitmap_from_ulong (hwloc_bitmap_t bitmap, unsigned long mask)
• int hwloc_bitmap_from_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)
• int hwloc_bitmap_set (hwloc_bitmap_t bitmap, unsigned id)
• int hwloc_bitmap_set_range (hwloc_bitmap_t bitmap, unsigned begin, int end)
• int hwloc_bitmap_set_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)
• int hwloc_bitmap_clr (hwloc_bitmap_t bitmap, unsigned id)
• int hwloc_bitmap_clr_range (hwloc_bitmap_t bitmap, unsigned begin, int end)
• int hwloc_bitmap_singlify (hwloc_bitmap_t bitmap)
• unsigned long hwloc_bitmap_to_ulong (hwloc_const_bitmap_t bitmap)
• unsigned long hwloc_bitmap_to_ith_ulong (hwloc_const_bitmap_t bitmap, unsigned i)
• int hwloc_bitmap_isset (hwloc_const_bitmap_t bitmap, unsigned id)
• int hwloc_bitmap_iszero (hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_isfull (hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_first (hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_next (hwloc_const_bitmap_t bitmap, int prev)
• int hwloc_bitmap_last (hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_weight (hwloc_const_bitmap_t bitmap)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

156 Module Documentation

• int hwloc_bitmap_first_unset (hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_next_unset (hwloc_const_bitmap_t bitmap, int prev)
• int hwloc_bitmap_last_unset (hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_or (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t

bitmap2)
• int hwloc_bitmap_and (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t

bitmap2)
• int hwloc_bitmap_andnot (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_-

bitmap_t bitmap2)
• int hwloc_bitmap_xor (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t

bitmap2)
• int hwloc_bitmap_not (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap)
• int hwloc_bitmap_intersects (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
• int hwloc_bitmap_isincluded (hwloc_const_bitmap_t sub_bitmap, hwloc_const_bitmap_t super_-

bitmap)
• int hwloc_bitmap_isequal (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
• int hwloc_bitmap_compare_first (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
• int hwloc_bitmap_compare (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

22.24.1 Detailed Description

The hwloc_bitmap_t type represents a set of integers (positive or null). A bitmap may be of infinite size
(all bits are set after some point). A bitmap may even be full if all bits are set.

Bitmaps are used by hwloc for sets of OS processors (which may actually be hardware threads) as by
hwloc_cpuset_t (a typedef for hwloc_bitmap_t), or sets of NUMA memory nodes as hwloc_nodeset_t (also
a typedef for hwloc_bitmap_t). Those are used for cpuset and nodeset fields in the hwloc_obj structure,
see Object Sets (hwloc_cpuset_t and hwloc_nodeset_t).

Both CPU and node sets are always indexed by OS physical number. However users should usually not
build CPU and node sets manually (e.g. with hwloc_bitmap_set()). One should rather use existing object
sets and combine them with hwloc_bitmap_or(), etc. For instance, binding the current thread on a pair of
cores may be performed with:

hwloc_obj_t core1 = ... , core2 = ... ;
hwloc_bitmap_t set = hwloc_bitmap_alloc();
hwloc_bitmap_or(set, core1->cpuset, core2->cpuset);
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD);
hwloc_bitmap_free(set);

Note:

Most functions below return an int that may be negative in case of error. The usual error case would
be an internal failure to realloc/extend the storage of the bitmap (errno would be set to ENOMEM).
Several examples of using the bitmap API are available under the doc/examples/ directory in the source
tree. Regression tests such as tests/hwloc/hwloc_bitmap∗.c also make intensive use of this API.

22.24.2 Define Documentation

22.24.2.1 #define hwloc_bitmap_foreach_begin(id, bitmap)

Loop macro iterating on bitmap bitmap. The loop must start with hwloc_bitmap_foreach_begin() and
end with hwloc_bitmap_foreach_end() followed by a terminating ’;’.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.24 The bitmap API 157

index is the loop variable; it should be an unsigned int. The first iteration will set index to the lowest
index in the bitmap. Successive iterations will iterate through, in order, all remaining indexes set in the
bitmap. To be specific: each iteration will return a value for index such that hwloc_bitmap_isset(bitmap,
index) is true.

The assert prevents the loop from being infinite if the bitmap is infinitely set.

22.24.2.2 #define hwloc_bitmap_foreach_end()

End of loop macro iterating on a bitmap. Needs a terminating ’;’.

See also:

hwloc_bitmap_foreach_begin()

22.24.3 Typedef Documentation

22.24.3.1 typedef struct hwloc_bitmap_s∗ hwloc_bitmap_t

Set of bits represented as an opaque pointer to an internal bitmap.

22.24.3.2 typedef struct hwloc_bitmap_s∗ hwloc_const_bitmap_t

a non-modifiable hwloc_bitmap_t

22.24.4 Function Documentation

22.24.4.1 int hwloc_bitmap_allbut (hwloc_bitmap_t bitmap, unsigned id)

Fill the bitmap and clear the index id.

22.24.4.2 hwloc_bitmap_t hwloc_bitmap_alloc (void)

Allocate a new empty bitmap.

Returns:

A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

22.24.4.3 hwloc_bitmap_t hwloc_bitmap_alloc_full (void)

Allocate a new full bitmap.

22.24.4.4 int hwloc_bitmap_and (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1,
hwloc_const_bitmap_t bitmap2)

And bitmaps bitmap1 and bitmap2 and store the result in bitmap res. res can be the same as
bitmap1 or bitmap2

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

158 Module Documentation

22.24.4.5 int hwloc_bitmap_andnot (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1,
hwloc_const_bitmap_t bitmap2)

And bitmap bitmap1 and the negation of bitmap2 and store the result in bitmap res. res can be the
same as bitmap1 or bitmap2

22.24.4.6 int hwloc_bitmap_asprintf (char ∗∗ strp, hwloc_const_bitmap_t bitmap)

Stringify a bitmap into a newly allocated string.

Returns:

-1 on error.

22.24.4.7 int hwloc_bitmap_clr (hwloc_bitmap_t bitmap, unsigned id)

Remove index id from bitmap bitmap.

22.24.4.8 int hwloc_bitmap_clr_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

Remove indexes from begin to end in bitmap bitmap. If end is -1, the range is infinite.

22.24.4.9 int hwloc_bitmap_compare (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t
bitmap2)

Compare bitmaps bitmap1 and bitmap2 in lexicographic order. Lexicographic comparison of bitmaps,
starting for their highest indexes. Compare last indexes first, then second, etc. The empty bitmap is
considered lower than anything.

Returns:

-1 if bitmap1 is considered smaller than bitmap2.
1 if bitmap1 is considered larger than bitmap2.
0 if bitmaps are equal (contrary to hwloc_bitmap_compare_first()).

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than
0110). Comparing 00101 and 01010 returns -1 too.

Note:

This is different from the non-existing hwloc_bitmap_compare_last() which would only compare the
highest index of each bitmap.

22.24.4.10 int hwloc_bitmap_compare_first (hwloc_const_bitmap_t bitmap1,
hwloc_const_bitmap_t bitmap2)

Compare bitmaps bitmap1 and bitmap2 using their lowest index. A bitmap is considered smaller if
its least significant bit is smaller. The empty bitmap is considered higher than anything (because its least
significant bit does not exist).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.24 The bitmap API 159

Returns:

-1 if bitmap1 is considered smaller than bitmap2.
1 if bitmap1 is considered larger than bitmap2.

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than
0110) because least significant bit of 0011 (0001) is smaller than least significant bit of 0110 (0010).
Comparing 01001 and 00110 would also return -1 for the same reason.

Returns:

0 if bitmaps are considered equal, even if they are not strictly equal. They just need to have the same
least significant bit. For instance, comparing binary bitmaps 0010 and 0110 returns 0 because they
have the same least significant bit.

22.24.4.11 int hwloc_bitmap_copy (hwloc_bitmap_t dst, hwloc_const_bitmap_t src)

Copy the contents of bitmap src into the already allocated bitmap dst.

22.24.4.12 hwloc_bitmap_t hwloc_bitmap_dup (hwloc_const_bitmap_t bitmap)

Duplicate bitmap bitmap by allocating a new bitmap and copying bitmap contents. If bitmap is
NULL, NULL is returned.

22.24.4.13 void hwloc_bitmap_fill (hwloc_bitmap_t bitmap)

Fill bitmap bitmap with all possible indexes (even if those objects don’t exist or are otherwise unavail-
able).

22.24.4.14 int hwloc_bitmap_first (hwloc_const_bitmap_t bitmap)

Compute the first index (least significant bit) in bitmap bitmap.

Returns:

-1 if no index is set in bitmap.

22.24.4.15 int hwloc_bitmap_first_unset (hwloc_const_bitmap_t bitmap)

Compute the first unset index (least significant bit) in bitmap bitmap.

Returns:

-1 if no index is unset in bitmap.

22.24.4.16 void hwloc_bitmap_free (hwloc_bitmap_t bitmap)

Free bitmap bitmap. If bitmap is NULL, no operation is performed.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

160 Module Documentation

22.24.4.17 int hwloc_bitmap_from_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long
mask)

Setup bitmap bitmap from unsigned long mask used as i -th subset.

22.24.4.18 int hwloc_bitmap_from_ulong (hwloc_bitmap_t bitmap, unsigned long mask)

Setup bitmap bitmap from unsigned long mask.

22.24.4.19 int hwloc_bitmap_intersects (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t
bitmap2)

Test whether bitmaps bitmap1 and bitmap2 intersects.

Returns:

1 if bitmaps intersect, 0 otherwise.

22.24.4.20 int hwloc_bitmap_isequal (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t
bitmap2)

Test whether bitmap bitmap1 is equal to bitmap bitmap2.

Returns:

1 if bitmaps are equal, 0 otherwise.

22.24.4.21 int hwloc_bitmap_isfull (hwloc_const_bitmap_t bitmap)

Test whether bitmap bitmap is completely full.

Returns:

1 if bitmap is full, 0 otherwise.

Note:

A full bitmap is always infinitely set.

22.24.4.22 int hwloc_bitmap_isincluded (hwloc_const_bitmap_t sub_bitmap,
hwloc_const_bitmap_t super_bitmap)

Test whether bitmap sub_bitmap is part of bitmap super_bitmap.

Returns:

1 if sub_bitmap is included in super_bitmap, 0 otherwise.

Note:

The empty bitmap is considered included in any other bitmap.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.24 The bitmap API 161

22.24.4.23 int hwloc_bitmap_isset (hwloc_const_bitmap_t bitmap, unsigned id)

Test whether index id is part of bitmap bitmap.

Returns:

1 if the bit at index id is set in bitmap bitmap, 0 otherwise.

22.24.4.24 int hwloc_bitmap_iszero (hwloc_const_bitmap_t bitmap)

Test whether bitmap bitmap is empty.

Returns:

1 if bitmap is empty, 0 otherwise.

22.24.4.25 int hwloc_bitmap_last (hwloc_const_bitmap_t bitmap)

Compute the last index (most significant bit) in bitmap bitmap.

Returns:

-1 if no index is set in bitmap, or if bitmap is infinitely set.

22.24.4.26 int hwloc_bitmap_last_unset (hwloc_const_bitmap_t bitmap)

Compute the last unset index (most significant bit) in bitmap bitmap.

Returns:

-1 if no index is unset in bitmap, or if bitmap is infinitely set.

22.24.4.27 int hwloc_bitmap_list_asprintf (char ∗∗ strp, hwloc_const_bitmap_t bitmap)

Stringify a bitmap into a newly allocated list string.

Returns:

-1 on error.

22.24.4.28 int hwloc_bitmap_list_snprintf (char ∗restrict buf, size_t buflen, hwloc_const_bitmap_t
bitmap)

Stringify a bitmap in the list format. Lists are comma-separated indexes or ranges. Ranges are dash
separated indexes. The last range may not have an ending indexes if the bitmap is infinitely set.

Up to buflen characters may be written in buffer buf.

If buflen is 0, buf may safely be NULL.

Returns:

the number of character that were actually written if not truncating, or that would have been written
(not including the ending \0).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

162 Module Documentation

22.24.4.29 int hwloc_bitmap_list_sscanf (hwloc_bitmap_t bitmap, const char ∗restrict string)

Parse a list string and stores it in bitmap bitmap.

22.24.4.30 int hwloc_bitmap_next (hwloc_const_bitmap_t bitmap, int prev)

Compute the next index in bitmap bitmap which is after index prev. If prev is -1, the first index is
returned.

Returns:

-1 if no index with higher index is set in bitmap.

22.24.4.31 int hwloc_bitmap_next_unset (hwloc_const_bitmap_t bitmap, int prev)

Compute the next unset index in bitmap bitmap which is after index prev. If prev is -1, the first unset
index is returned.

Returns:

-1 if no index with higher index is unset in bitmap.

22.24.4.32 int hwloc_bitmap_not (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap)

Negate bitmap bitmap and store the result in bitmap res. res can be the same as bitmap

22.24.4.33 int hwloc_bitmap_only (hwloc_bitmap_t bitmap, unsigned id)

Empty the bitmap bitmap and add bit id.

22.24.4.34 int hwloc_bitmap_or (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1,
hwloc_const_bitmap_t bitmap2)

Or bitmaps bitmap1 and bitmap2 and store the result in bitmap res. res can be the same as
bitmap1 or bitmap2

22.24.4.35 int hwloc_bitmap_set (hwloc_bitmap_t bitmap, unsigned id)

Add index id in bitmap bitmap.

22.24.4.36 int hwloc_bitmap_set_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long
mask)

Replace i -th subset of bitmap bitmap with unsigned long mask.

22.24.4.37 int hwloc_bitmap_set_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

Add indexes from begin to end in bitmap bitmap. If end is -1, the range is infinite.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.24 The bitmap API 163

22.24.4.38 int hwloc_bitmap_singlify (hwloc_bitmap_t bitmap)

Keep a single index among those set in bitmap bitmap. May be useful before binding so that the process
does not have a chance of migrating between multiple logical CPUs in the original mask. Instead of running
the task on any PU inside the given CPU set, the operating system scheduler will be forced to run it on a
single of these PUs. It avoids a migration overhead and cache-line ping-pongs between PUs.

Note:

This function is NOT meant to distribute multiple processes within a single CPU set. It always return
the same single bit when called multiple times on the same input set. hwloc_distrib() may be used for
generating CPU sets to distribute multiple tasks below a single multi-PU object.
This function cannot be applied to an object set directly. It should be applied to a copy (which may be
obtained with hwloc_bitmap_dup()).

22.24.4.39 int hwloc_bitmap_snprintf (char ∗restrict buf, size_t buflen, hwloc_const_bitmap_t
bitmap)

Stringify a bitmap. Up to buflen characters may be written in buffer buf.

If buflen is 0, buf may safely be NULL.

Returns:

the number of character that were actually written if not truncating, or that would have been written
(not including the ending \0).

22.24.4.40 int hwloc_bitmap_sscanf (hwloc_bitmap_t bitmap, const char ∗restrict string)

Parse a bitmap string and stores it in bitmap bitmap.

22.24.4.41 int hwloc_bitmap_taskset_asprintf (char ∗∗ strp, hwloc_const_bitmap_t bitmap)

Stringify a bitmap into a newly allocated taskset-specific string.

Returns:

-1 on error.

22.24.4.42 int hwloc_bitmap_taskset_snprintf (char ∗restrict buf, size_t buflen,
hwloc_const_bitmap_t bitmap)

Stringify a bitmap in the taskset-specific format. The taskset command manipulates bitmap strings that
contain a single (possible very long) hexadecimal number starting with 0x.

Up to buflen characters may be written in buffer buf.

If buflen is 0, buf may safely be NULL.

Returns:

the number of character that were actually written if not truncating, or that would have been written
(not including the ending \0).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

164 Module Documentation

22.24.4.43 int hwloc_bitmap_taskset_sscanf (hwloc_bitmap_t bitmap, const char ∗restrict string)

Parse a taskset-specific bitmap string and stores it in bitmap bitmap.

22.24.4.44 unsigned long hwloc_bitmap_to_ith_ulong (hwloc_const_bitmap_t bitmap, unsigned i)

Convert the i -th subset of bitmap bitmap into unsigned long mask.

22.24.4.45 unsigned long hwloc_bitmap_to_ulong (hwloc_const_bitmap_t bitmap)

Convert the beginning part of bitmap bitmap into unsigned long mask.

22.24.4.46 int hwloc_bitmap_weight (hwloc_const_bitmap_t bitmap)

Compute the "weight" of bitmap bitmap (i.e., number of indexes that are in the bitmap).

Returns:

the number of indexes that are in the bitmap.
-1 if bitmap is infinitely set.

22.24.4.47 int hwloc_bitmap_xor (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1,
hwloc_const_bitmap_t bitmap2)

Xor bitmaps bitmap1 and bitmap2 and store the result in bitmap res. res can be the same as
bitmap1 or bitmap2

22.24.4.48 void hwloc_bitmap_zero (hwloc_bitmap_t bitmap)

Empty the bitmap bitmap.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.25 Exporting Topologies to XML 165

22.25 Exporting Topologies to XML

Enumerations

• enum hwloc_topology_export_xml_flags_e { HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1
}

Functions

• int hwloc_topology_export_xml (hwloc_topology_t topology, const char ∗xmlpath, unsigned long
flags)

• int hwloc_topology_export_xmlbuffer (hwloc_topology_t topology, char ∗∗xmlbuffer, int ∗buflen,
unsigned long flags)

• void hwloc_free_xmlbuffer (hwloc_topology_t topology, char ∗xmlbuffer)
• void hwloc_topology_set_userdata_export_callback (hwloc_topology_t topology, void(∗export_-

cb)(void ∗reserved, hwloc_topology_t topology, hwloc_obj_t obj))
• int hwloc_export_obj_userdata (void ∗reserved, hwloc_topology_t topology, hwloc_obj_t obj, const

char ∗name, const void ∗buffer, size_t length)
• int hwloc_export_obj_userdata_base64 (void ∗reserved, hwloc_topology_t topology, hwloc_obj_t

obj, const char ∗name, const void ∗buffer, size_t length)
• void hwloc_topology_set_userdata_import_callback (hwloc_topology_t topology, void(∗import_-

cb)(hwloc_topology_t topology, hwloc_obj_t obj, const char ∗name, const void ∗buffer, size_t
length))

22.25.1 Enumeration Type Documentation

22.25.1.1 enum hwloc_topology_export_xml_flags_e

Flags for exporting XML topologies. Flags to be given as a OR’ed set to hwloc_topology_export_xml().

Enumerator:

HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 Export XML that is loadable by hwloc v1.x.
However, the export may miss some details about the topology.

22.25.2 Function Documentation

22.25.2.1 int hwloc_export_obj_userdata (void ∗ reserved, hwloc_topology_t topology,
hwloc_obj_t obj, const char ∗ name, const void ∗ buffer, size_t length)

Export some object userdata to XML. This function may only be called from within the export() callback
passed to hwloc_topology_set_userdata_export_callback(). It may be invoked one of multiple times to
export some userdata to XML. The buffer content of length length is stored with optional name
name.

When importing this XML file, the import() callback (if set) will be called exactly as many times as hwloc_-
export_obj_userdata() was called during export(). It will receive the corresponding name, buffer and
length arguments.

reserved, topology and obj must be the first three parameters that were given to the export callback.

Only printable characters may be exported to XML string attributes. If a non-printable character is passed
in name or buffer, the function returns -1 with errno set to EINVAL.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

166 Module Documentation

If exporting binary data, the application should first encode into printable characters only (or use hwloc_-
export_obj_userdata_base64()). It should also take care of portability issues if the export may be reim-
ported on a different architecture.

22.25.2.2 int hwloc_export_obj_userdata_base64 (void ∗ reserved, hwloc_topology_t topology,
hwloc_obj_t obj, const char ∗ name, const void ∗ buffer, size_t length)

Encode and export some object userdata to XML. This function is similar to hwloc_export_obj_userdata()
but it encodes the input buffer into printable characters before exporting. On import, decoding is automat-
ically performed before the data is given to the import() callback if any.

This function may only be called from within the export() callback passed to hwloc_topology_set_-
userdata_export_callback().

The function does not take care of portability issues if the export may be reimported on a different archi-
tecture.

22.25.2.3 void hwloc_free_xmlbuffer (hwloc_topology_t topology, char ∗ xmlbuffer)

Free a buffer allocated by hwloc_topology_export_xmlbuffer().

22.25.2.4 int hwloc_topology_export_xml (hwloc_topology_t topology, const char ∗ xmlpath,
unsigned long flags)

Export the topology into an XML file. This file may be loaded later through hwloc_topology_set_xml().

By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be
able to import it. Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_-
EXPORT_XML_FLAG_V1 but it may miss some details about the topology. If there is any chance that
the exported file may ever be imported back by a process using hwloc 1.x, one should consider detecting it
at runtime and using the corresponding export format.

flags is a OR’ed set of hwloc_topology_export_xml_flags_e.

Returns:

-1 if a failure occured.

Note:

See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object
userdata.
The topology-specific userdata pointer is ignored when exporting to XML.
Only printable characters may be exported to XML string attributes. Any other character, especially
any non-ASCII character, will be silently dropped.
If name is "-", the XML output is sent to the standard output.

22.25.2.5 int hwloc_topology_export_xmlbuffer (hwloc_topology_t topology, char ∗∗ xmlbuffer,
int ∗ buflen, unsigned long flags)

Export the topology into a newly-allocated XML memory buffer. xmlbuffer is allocated by the callee
and should be freed with hwloc_free_xmlbuffer() later in the caller.

This memory buffer may be loaded later through hwloc_topology_set_xmlbuffer().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.25 Exporting Topologies to XML 167

By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be
able to import it. Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_-
EXPORT_XML_FLAG_V1 but it may miss some details about the topology. If there is any chance that
the exported buffer may ever be imported back by a process using hwloc 1.x, one should consider detecting
it at runtime and using the corresponding export format.

The returned buffer ends with a that is included in the returned length.

flags is a OR’ed set of hwloc_topology_export_xml_flags_e.

Returns:

-1 if a failure occured.

Note:

See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object
userdata.
The topology-specific userdata pointer is ignored when exporting to XML.
Only printable characters may be exported to XML string attributes. Any other character, especially
any non-ASCII character, will be silently dropped.

22.25.2.6 void hwloc_topology_set_userdata_export_callback (hwloc_topology_t topology,
void(∗)(void ∗reserved, hwloc_topology_t topology, hwloc_obj_t obj) export_cb)

Set the application-specific callback for exporting object userdata. The object userdata pointer is not ex-
ported to XML by default because hwloc does not know what it contains.

This function lets applications set export_cb to a callback function that converts this opaque userdata
into an exportable string.

export_cb is invoked during XML export for each object whose userdata pointer is not NULL. The
callback should use hwloc_export_obj_userdata() or hwloc_export_obj_userdata_base64() to actually ex-
port something to XML (possibly multiple times per object).

export_cb may be set to NULL if userdata should not be exported to XML.

Note:

The topology-specific userdata pointer is ignored when exporting to XML.

22.25.2.7 void hwloc_topology_set_userdata_import_callback (hwloc_topology_t topology,
void(∗)(hwloc_topology_t topology, hwloc_obj_t obj, const char ∗name, const void
∗buffer, size_t length) import_cb)

Set the application-specific callback for importing userdata. On XML import, userdata is ignored by default
because hwloc does not know how to store it in memory.

This function lets applications set import_cb to a callback function that will get the XML-stored userdata
and store it in the object as expected by the application.

import_cb is called during hwloc_topology_load() as many times as hwloc_export_obj_userdata() was
called during export. The topology is not entirely setup yet. Object attributes are ready to consult, but links
between objects are not.

import_cb may be NULL if userdata should be ignored during import.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

168 Module Documentation

Note:

buffer contains length characters followed by a null byte (”).
This function should be called before hwloc_topology_load().
The topology-specific userdata pointer is ignored when importing from XML.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.26 Exporting Topologies to Synthetic 169

22.26 Exporting Topologies to Synthetic

Enumerations

• enum hwloc_topology_export_synthetic_flags_e { HWLOC_TOPOLOGY_EXPORT_-
SYNTHETIC_FLAG_NO_EXTENDED_TYPES, HWLOC_TOPOLOGY_EXPORT_-
SYNTHETIC_FLAG_NO_ATTRS, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1,
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_MEMORY }

Functions

• int hwloc_topology_export_synthetic (hwloc_topology_t topology, char ∗buffer, size_t buflen, un-
signed long flags)

22.26.1 Enumeration Type Documentation

22.26.1.1 enum hwloc_topology_export_synthetic_flags_e

Flags for exporting synthetic topologies. Flags to be given as a OR’ed set to hwloc_topology_export_-
synthetic().

Enumerator:

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTENDED_TYPES Export ex-
tended types such as L2dcache as basic types such as Cache. This is required if loading the
synthetic description with hwloc < 1.9.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTRS Do not export level at-
tributes. Ignore level attributes such as memory/cache sizes or PU indexes. This is required
if loading the synthetic description with hwloc < 1.10.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1 Export the memory hierarchy as ex-
pected in hwloc 1.x. Instead of attaching memory children to levels, export single NUMA node
child as normal intermediate levels, when possible. This is required if loading the synthetic de-
scription with hwloc 1.x. However this may fail if some objects have multiple local NUMA
nodes.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_MEMORY Do not export
memory information. Only export the actual hierarchy of normal CPU-side objects and ignore
where memory is attached. This is useful for when the hierarchy of CPUs is what really matters,
but it behaves as if there was a single machine-wide NUMA node.

22.26.2 Function Documentation

22.26.2.1 int hwloc_topology_export_synthetic (hwloc_topology_t topology, char ∗ buffer, size_t
buflen, unsigned long flags)

Export the topology as a synthetic string. At most buflen characters will be written in buffer, including
the terminating .

This exported string may be given back to hwloc_topology_set_synthetic().

flags is a OR’ed set of hwloc_topology_export_synthetic_flags_e.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

170 Module Documentation

Returns:

The number of characters that were written, not including the terminating .
-1 if the topology could not be exported, for instance if it is not symmetric.

Note:

I/O and Misc children are ignored, the synthetic string only describes normal children.
A 1024-byte buffer should be large enough for exporting topologies in the vast majority of cases.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.27 Retrieve distances between objects 171

22.27 Retrieve distances between objects

Data Structures

• struct hwloc_distances_s

Matrix of distances between a set of objects.

Enumerations

• enum hwloc_distances_kind_e { HWLOC_DISTANCES_KIND_FROM_OS, HWLOC_-
DISTANCES_KIND_FROM_USER, HWLOC_DISTANCES_KIND_MEANS_LATENCY,
HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH }

Functions

• int hwloc_distances_get (hwloc_topology_t topology, unsigned ∗nr, struct hwloc_distances_s
∗∗distances, unsigned long kind, unsigned long flags)

• int hwloc_distances_get_by_depth (hwloc_topology_t topology, int depth, unsigned ∗nr, struct
hwloc_distances_s ∗∗distances, unsigned long kind, unsigned long flags)

• static int hwloc_distances_get_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, un-
signed ∗nr, struct hwloc_distances_s ∗∗distances, unsigned long kind, unsigned long flags)

• void hwloc_distances_release (hwloc_topology_t topology, struct hwloc_distances_s ∗distances)

22.27.1 Enumeration Type Documentation

22.27.1.1 enum hwloc_distances_kind_e

Kinds of distance matrices. The kind attribute of struct hwloc_distances_s is a OR’ed set of kinds.

A kind of format HWLOC_DISTANCES_KIND_FROM_∗ specifies where the distance information comes
from, if known.

A kind of format HWLOC_DISTANCES_KIND_MEANS_∗ specifies whether values are latencies or
bandwidths, if applicable.

Enumerator:

HWLOC_DISTANCES_KIND_FROM_OS These distances were obtained from the operating sys-
tem or hardware.

HWLOC_DISTANCES_KIND_FROM_USER These distances were provided by the user.

HWLOC_DISTANCES_KIND_MEANS_LATENCY Distance values are similar to latencies be-
tween objects. Values are smaller for closer objects, hence minimal on the diagonal of the matrix
(distance between an object and itself). It could also be the number of network hops between
objects, etc.

HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH Distance values are similar to bandwidths
between objects. Values are higher for closer objects, hence maximal on the diagonal of the
matrix (distance between an object and itself). Such values are currently ignored for distance-
based grouping.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

172 Module Documentation

22.27.2 Function Documentation

22.27.2.1 int hwloc_distances_get (hwloc_topology_t topology, unsigned ∗ nr, struct
hwloc_distances_s ∗∗ distances, unsigned long kind, unsigned long flags)

Retrieve distance matrices. Retrieve distance matrices from the topology into the distances array.

flags is currently unused, should be 0.

kind serves as a filter. If 0, all distance matrices are returned. If it contains some HWLOC_-
DISTANCES_KIND_FROM_∗, only distance matrices whose kind matches one of these are returned. If
it contains some HWLOC_DISTANCES_KIND_MEANS_∗, only distance matrices whose kind matches
one of these are returned.

On input, nr points to the number of distance matrices that may be stored in distances. On output,
nr points to the number of distance matrices that were actually found, even if some of them couldn’t be
stored in distances. Distance matrices that couldn’t be stored are ignored, but the function still returns
success (0). The caller may find out by comparing the value pointed by nr before and after the function
call.

Each distance matrix returned in the distances array should be released by the caller using hwloc_-
distances_release().

22.27.2.2 int hwloc_distances_get_by_depth (hwloc_topology_t topology, int depth, unsigned ∗ nr,
struct hwloc_distances_s ∗∗ distances, unsigned long kind, unsigned long flags)

Retrieve distance matrices for object at a specific depth in the topology. Identical to hwloc_distances_get()
with the additional depth filter.

22.27.2.3 static int hwloc_distances_get_by_type (hwloc_topology_t topology, hwloc_obj_type_t
type, unsigned ∗ nr, struct hwloc_distances_s ∗∗ distances, unsigned long kind,
unsigned long flags) [inline, static]

Retrieve distance matrices for object of a specific type. Identical to hwloc_distances_get() with the addi-
tional type filter.

22.27.2.4 void hwloc_distances_release (hwloc_topology_t topology, struct hwloc_distances_s ∗
distances)

Release a distance matrix structure previously returned by hwloc_distances_get().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.28 Helpers for consulting distance matrices 173

22.28 Helpers for consulting distance matrices

Functions

• static int hwloc_distances_obj_index (struct hwloc_distances_s ∗distances, hwloc_obj_t obj)
• static int hwloc_distances_obj_pair_values (struct hwloc_distances_s ∗distances, hwloc_obj_t obj1,

hwloc_obj_t obj2, hwloc_uint64_t ∗value1to2, hwloc_uint64_t ∗value2to1)

22.28.1 Function Documentation

22.28.1.1 static int hwloc_distances_obj_index (struct hwloc_distances_s ∗ distances, hwloc_obj_t
obj) [inline, static]

Find the index of an object in a distances structure.

Returns:

-1 if object obj is not involved in structure distances.

22.28.1.2 static int hwloc_distances_obj_pair_values (struct hwloc_distances_s ∗ distances,
hwloc_obj_t obj1, hwloc_obj_t obj2, hwloc_uint64_t ∗ value1to2, hwloc_uint64_t ∗
value2to1) [inline, static]

Find the values between two objects in a distance matrices. The distance from obj1 to obj2 is stored in
the value pointed by value1to2 and reciprocally.

Returns:

-1 if object obj1 or obj2 is not involved in structure distances.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

174 Module Documentation

22.29 Add or remove distances between objects

Enumerations

• enum hwloc_distances_add_flag_e { HWLOC_DISTANCES_ADD_FLAG_GROUP, HWLOC_-
DISTANCES_ADD_FLAG_GROUP_INACCURATE }

Functions

• int hwloc_distances_add (hwloc_topology_t topology, unsigned nbobjs, hwloc_obj_t ∗objs, hwloc_-
uint64_t ∗values, unsigned long kind, unsigned long flags)

• int hwloc_distances_remove (hwloc_topology_t topology)
• int hwloc_distances_remove_by_depth (hwloc_topology_t topology, int depth)
• static int hwloc_distances_remove_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)

22.29.1 Enumeration Type Documentation

22.29.1.1 enum hwloc_distances_add_flag_e

Flags for adding a new distances to a topology.

Enumerator:

HWLOC_DISTANCES_ADD_FLAG_GROUP Try to group objects based on the newly provided
distance information.

HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE If grouping, consider the distance
values as inaccurate and relax the comparisons during the grouping algorithms. The actual ac-
curacy may be modified through the HWLOC_GROUPING_ACCURACY environment variable
(see Environment Variables).

22.29.2 Function Documentation

22.29.2.1 int hwloc_distances_add (hwloc_topology_t topology, unsigned nbobjs, hwloc_obj_t ∗
objs, hwloc_uint64_t ∗ values, unsigned long kind, unsigned long flags)

Provide a new distance matrix. Provide the matrix of distances between a set of objects given by nbobjs
and the objs array. nbobjs must be at least 2. The distances are stored as a one-dimension array in
values. The distance from object i to object j is in slot i∗nbobjs+j.

kind specifies the kind of distance as a OR’ed set of hwloc_distances_kind_e.

flags configures the behavior of the function using an optional OR’ed set of hwloc_distances_add_flag_-
e.

Objects must be of the same type. They cannot be of type Group.

22.29.2.2 int hwloc_distances_remove (hwloc_topology_t topology)

Remove all distance matrices from a topology. Remove all distance matrices, either provided by the user
or gathered through the OS.

If these distances were used to group objects, these additional Group objects are not removed from the
topology.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.29 Add or remove distances between objects 175

22.29.2.3 int hwloc_distances_remove_by_depth (hwloc_topology_t topology, int depth)

Remove distance matrices for objects at a specific depth in the topology. Identical to hwloc_distances_-
remove() but only applies to one level of the topology.

22.29.2.4 static int hwloc_distances_remove_by_type (hwloc_topology_t topology,
hwloc_obj_type_t type) [inline, static]

Remove distance matrices for objects of a specific type in the topology. Identical to hwloc_distances_-
remove() but only applies to one level of the topology.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

176 Module Documentation

22.30 Linux-specific helpers

Functions

• int hwloc_linux_set_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_const_cpuset_t set)
• int hwloc_linux_get_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_cpuset_t set)
• int hwloc_linux_get_tid_last_cpu_location (hwloc_topology_t topology, pid_t tid, hwloc_bitmap_t

set)
• int hwloc_linux_read_path_as_cpumask (const char ∗path, hwloc_bitmap_t set)

22.30.1 Detailed Description

This includes helpers for manipulating Linux kernel cpumap files, and hwloc equivalents of the Linux
sched_setaffinity and sched_getaffinity system calls.

22.30.2 Function Documentation

22.30.2.1 int hwloc_linux_get_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_cpuset_t
set)

Get the current binding of thread tid. The behavior is exactly the same as the Linux sched_getaffinity
system call, but uses a hwloc cpuset.

Note:

This is equivalent to calling hwloc_get_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

22.30.2.2 int hwloc_linux_get_tid_last_cpu_location (hwloc_topology_t topology, pid_t tid,
hwloc_bitmap_t set)

Get the last physical CPU where thread tid ran.

Note:

This is equivalent to calling hwloc_get_proc_last_cpu_location() with HWLOC_CPUBIND_-
THREAD as flags.

22.30.2.3 int hwloc_linux_read_path_as_cpumask (const char ∗ path, hwloc_bitmap_t set)

Convert a linux kernel cpumask file path into a hwloc bitmap set. Might be used when reading CPU set
from sysfs attributes such as topology and caches for processors, or local_cpus for devices.

Note:

This function ignores the HWLOC_FSROOT environment variable.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.30 Linux-specific helpers 177

22.30.2.4 int hwloc_linux_set_tid_cpubind (hwloc_topology_t topology, pid_t tid,
hwloc_const_cpuset_t set)

Bind a thread tid on cpus given in cpuset set. The behavior is exactly the same as the Linux sched_-
setaffinity system call, but uses a hwloc cpuset.

Note:

This is equivalent to calling hwloc_set_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

178 Module Documentation

22.31 Interoperability with Linux libnuma unsigned long masks

Functions

• static int hwloc_cpuset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_-
cpuset_t cpuset, unsigned long ∗mask, unsigned long ∗maxnode)

• static int hwloc_nodeset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_-
nodeset_t nodeset, unsigned long ∗mask, unsigned long ∗maxnode)

• static int hwloc_cpuset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_cpuset_t
cpuset, const unsigned long ∗mask, unsigned long maxnode)

• static int hwloc_nodeset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_-
nodeset_t nodeset, const unsigned long ∗mask, unsigned long maxnode)

22.31.1 Detailed Description

This interface helps converting between Linux libnuma unsigned long masks and hwloc cpusets and node-
sets.

Note:

Topology topology must match the current machine.
The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is
not set in the kernel configuration). This helper and libnuma may thus not be strictly compatible in
this case, which may be detected by checking whether numa_available() returns -1.

22.31.2 Function Documentation

22.31.2.1 static int hwloc_cpuset_from_linux_libnuma_ulongs (hwloc_topology_t topology,
hwloc_cpuset_t cpuset, const unsigned long ∗ mask, unsigned long maxnode)
[inline, static]

Convert the array of unsigned long mask into hwloc CPU set. mask is a array of unsigned long that will
be read. maxnode contains the maximal node number that may be read in mask.

This function may be used after calling get_mempolicy or any other function that takes an array of unsigned
long as output parameter (and possibly a maximal node number as input parameter).

22.31.2.2 static int hwloc_cpuset_to_linux_libnuma_ulongs (hwloc_topology_t topology,
hwloc_const_cpuset_t cpuset, unsigned long ∗ mask, unsigned long ∗ maxnode)
[inline, static]

Convert hwloc CPU set cpuset into the array of unsigned long mask. mask is the array of unsigned long
that will be filled. maxnode contains the maximal node number that may be stored in mask. maxnode
will be set to the maximal node number that was found, plus one.

This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that
takes an array of unsigned long and a maximal node number as input parameter.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.31 Interoperability with Linux libnuma unsigned long masks 179

22.31.2.3 static int hwloc_nodeset_from_linux_libnuma_ulongs (hwloc_topology_t topology,
hwloc_nodeset_t nodeset, const unsigned long ∗ mask, unsigned long maxnode)
[inline, static]

Convert the array of unsigned long mask into hwloc NUMA node set. mask is a array of unsigned long
that will be read. maxnode contains the maximal node number that may be read in mask.

This function may be used after calling get_mempolicy or any other function that takes an array of unsigned
long as output parameter (and possibly a maximal node number as input parameter).

22.31.2.4 static int hwloc_nodeset_to_linux_libnuma_ulongs (hwloc_topology_t topology,
hwloc_const_nodeset_t nodeset, unsigned long ∗ mask, unsigned long ∗ maxnode)
[inline, static]

Convert hwloc NUMA node set nodeset into the array of unsigned long mask. mask is the array of
unsigned long that will be filled. maxnode contains the maximal node number that may be stored in
mask. maxnode will be set to the maximal node number that was found, plus one.

This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that
takes an array of unsigned long and a maximal node number as input parameter.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

180 Module Documentation

22.32 Interoperability with Linux libnuma bitmask

Functions

• static struct bitmask ∗ hwloc_cpuset_to_linux_libnuma_bitmask (hwloc_topology_t topology,
hwloc_const_cpuset_t cpuset)

• static struct bitmask ∗ hwloc_nodeset_to_linux_libnuma_bitmask (hwloc_topology_t topology,
hwloc_const_nodeset_t nodeset)

• static int hwloc_cpuset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_cpuset_t
cpuset, const struct bitmask ∗bitmask)

• static int hwloc_nodeset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_-
nodeset_t nodeset, const struct bitmask ∗bitmask)

22.32.1 Detailed Description

This interface helps converting between Linux libnuma bitmasks and hwloc cpusets and nodesets.

Note:

Topology topology must match the current machine.
The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is
not set in the kernel configuration). This helper and libnuma may thus not be strictly compatible in
this case, which may be detected by checking whether numa_available() returns -1.

22.32.2 Function Documentation

22.32.2.1 static int hwloc_cpuset_from_linux_libnuma_bitmask (hwloc_topology_t topology,
hwloc_cpuset_t cpuset, const struct bitmask ∗ bitmask) [inline, static]

Convert libnuma bitmask bitmask into hwloc CPU set cpuset. This function may be used after calling
many numa_ functions that use a struct bitmask as an output parameter.

22.32.2.2 static struct bitmask ∗ hwloc_cpuset_to_linux_libnuma_bitmask (hwloc_topology_t
topology, hwloc_const_cpuset_t cpuset) [static, read]

Convert hwloc CPU set cpuset into the returned libnuma bitmask. The returned bitmask should later be
freed with numa_bitmask_free.

This function may be used before calling many numa_ functions that use a struct bitmask as an input
parameter.

Returns:

newly allocated struct bitmask.

22.32.2.3 static int hwloc_nodeset_from_linux_libnuma_bitmask (hwloc_topology_t topology,
hwloc_nodeset_t nodeset, const struct bitmask ∗ bitmask) [inline, static]

Convert libnuma bitmask bitmask into hwloc NUMA node set nodeset. This function may be used
after calling many numa_ functions that use a struct bitmask as an output parameter.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.32 Interoperability with Linux libnuma bitmask 181

22.32.2.4 static struct bitmask ∗ hwloc_nodeset_to_linux_libnuma_bitmask (hwloc_topology_t
topology, hwloc_const_nodeset_t nodeset) [static, read]

Convert hwloc NUMA node set nodeset into the returned libnuma bitmask. The returned bitmask should
later be freed with numa_bitmask_free.

This function may be used before calling many numa_ functions that use a struct bitmask as an input
parameter.

Returns:

newly allocated struct bitmask.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

182 Module Documentation

22.33 Interoperability with glibc sched affinity

Functions

• static int hwloc_cpuset_to_glibc_sched_affinity (hwloc_topology_t topology, hwloc_const_cpuset_t
hwlocset, cpu_set_t ∗schedset, size_t schedsetsize)

• static int hwloc_cpuset_from_glibc_sched_affinity (hwloc_topology_t topology, hwloc_cpuset_-
t hwlocset, const cpu_set_t ∗schedset, size_t schedsetsize)

22.33.1 Detailed Description

This interface offers ways to convert between hwloc cpusets and glibc cpusets such as those manipulated
by sched_getaffinity() or pthread_attr_setaffinity_np().

Note:

Topology topology must match the current machine.

22.33.2 Function Documentation

22.33.2.1 static int hwloc_cpuset_from_glibc_sched_affinity (hwloc_topology_t topology,
hwloc_cpuset_t hwlocset, const cpu_set_t ∗ schedset, size_t schedsetsize) [inline,
static]

Convert glibc sched affinity CPU set schedset into hwloc CPU set. This function may be used before
calling sched_setaffinity or any other function that takes a cpu_set_t as input parameter.

schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_-
ALLOC

22.33.2.2 static int hwloc_cpuset_to_glibc_sched_affinity (hwloc_topology_t topology,
hwloc_const_cpuset_t hwlocset, cpu_set_t ∗ schedset, size_t schedsetsize) [inline,
static]

Convert hwloc CPU set toposet into glibc sched affinity CPU set schedset. This function may be
used before calling sched_setaffinity or any other function that takes a cpu_set_t as input parameter.

schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_-
ALLOC

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.34 Interoperability with OpenCL 183

22.34 Interoperability with OpenCL

Functions

• static int hwloc_opencl_get_device_cpuset (hwloc_topology_t topology, cl_device_id device,
hwloc_cpuset_t set)

• static hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (hwloc_topology_t topology, un-
signed platform_index, unsigned device_index)

• static hwloc_obj_t hwloc_opencl_get_device_osdev (hwloc_topology_t topology, cl_device_id de-
vice)

22.34.1 Detailed Description

This interface offers ways to retrieve topology information about OpenCL devices.

Only the AMD OpenCL interface currently offers useful locality information about its devices.

22.34.2 Function Documentation

22.34.2.1 static int hwloc_opencl_get_device_cpuset (hwloc_topology_t topology, cl_device_id
device, hwloc_cpuset_t set) [inline, static]

Get the CPU set of logical processors that are physically close to OpenCL device device. Return the
CPU set describing the locality of the OpenCL device device.

Topology topology and device device must match the local machine. I/O devices detection and the
OpenCL component are not needed in the topology.

The function only returns the locality of the device. If more information about the device is needed, OS
objects should be used instead, see hwloc_opencl_get_device_osdev() and hwloc_opencl_get_device_-
osdev_by_index().

This function is currently only implemented in a meaningful way for Linux with the AMD OpenCL imple-
mentation; other systems will simply get a full cpuset.

22.34.2.2 static hwloc_obj_t hwloc_opencl_get_device_osdev (hwloc_topology_t topology,
cl_device_id device) [inline, static]

Get the hwloc OS device object corresponding to OpenCL device deviceX. Use OpenCL device attributes
to find the corresponding hwloc OS device object. Return NULL if there is none or if useful attributes are
not available.

This function currently only works on AMD OpenCL devices that support the CL_DEVICE_-
TOPOLOGY_AMD extension. hwloc_opencl_get_device_osdev_by_index() should be preferred when-
ever possible, i.e. when platform and device index are known.

Topology topology and device device must match the local machine. I/O devices detection and the
OpenCL component must be enabled in the topology. If not, the locality of the object may still be found
using hwloc_opencl_get_device_cpuset().

Note:

This function cannot work if PCI devices are filtered out.
The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI
devices are filtered out).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

184 Module Documentation

22.34.2.3 static hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (hwloc_topology_t
topology, unsigned platform_index, unsigned device_index) [inline, static]

Get the hwloc OS device object corresponding to the OpenCL device for the given indexes. Return the
OS device object describing the OpenCL device whose platform index is platform_index, and whose
device index within this platform if device_index. Return NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection and the OpenCL component must be
enabled in the topology.

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless
PCI devices are filtered out).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.35 Interoperability with the CUDA Driver API 185

22.35 Interoperability with the CUDA Driver API

Functions

• static int hwloc_cuda_get_device_pci_ids (hwloc_topology_t topology, CUdevice cudevice, int
∗domain, int ∗bus, int ∗dev)

• static int hwloc_cuda_get_device_cpuset (hwloc_topology_t topology, CUdevice cudevice, hwloc_-
cpuset_t set)

• static hwloc_obj_t hwloc_cuda_get_device_pcidev (hwloc_topology_t topology, CUdevice cude-
vice)

• static hwloc_obj_t hwloc_cuda_get_device_osdev (hwloc_topology_t topology, CUdevice cudevice)
• static hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (hwloc_topology_t topology, unsigned

idx)

22.35.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA
Driver API.

22.35.2 Function Documentation

22.35.2.1 static int hwloc_cuda_get_device_cpuset (hwloc_topology_t topology, CUdevice
cudevice, hwloc_cpuset_t set) [inline, static]

Get the CPU set of logical processors that are physically close to device cudevice. Return the CPU set
describing the locality of the CUDA device cudevice.

Topology topology and device cudevice must match the local machine. I/O devices detection and the
CUDA component are not needed in the topology.

The function only returns the locality of the device. If more information about the device is needed, OS
objects should be used instead, see hwloc_cuda_get_device_osdev() and hwloc_cuda_get_device_osdev_-
by_index().

This function is currently only implemented in a meaningful way for Linux; other systems will simply get
a full cpuset.

22.35.2.2 static hwloc_obj_t hwloc_cuda_get_device_osdev (hwloc_topology_t topology, CUdevice
cudevice) [inline, static]

Get the hwloc OS device object corresponding to CUDA device cudevice. Return the hwloc OS device
object that describes the given CUDA device cudevice. Return NULL if there is none.

Topology topology and device cudevice must match the local machine. I/O devices detection and
the CUDA component must be enabled in the topology. If not, the locality of the object may still be found
using hwloc_cuda_get_device_cpuset().

Note:

This function cannot work if PCI devices are filtered out.
The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI
devices are filtered out).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

186 Module Documentation

22.35.2.3 static hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (hwloc_topology_t topology,
unsigned idx) [inline, static]

Get the hwloc OS device object corresponding to the CUDA device whose index is idx. Return the OS
device object describing the CUDA device whose index is idx. Return NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection and the CUDA component must be
enabled in the topology.

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless
PCI devices are filtered out).
This function is identical to hwloc_cudart_get_device_osdev_by_index().

22.35.2.4 static int hwloc_cuda_get_device_pci_ids (hwloc_topology_t topology, CUdevice
cudevice, int ∗ domain, int ∗ bus, int ∗ dev) [inline, static]

Return the domain, bus and device IDs of the CUDA device cudevice. Device cudevice must match
the local machine.

22.35.2.5 static hwloc_obj_t hwloc_cuda_get_device_pcidev (hwloc_topology_t topology,
CUdevice cudevice) [inline, static]

Get the hwloc PCI device object corresponding to the CUDA device cudevice. Return the PCI device
object describing the CUDA device cudevice. Return NULL if there is none.

Topology topology and device cudevice must match the local machine. I/O devices detection must
be enabled in topology topology. The CUDA component is not needed in the topology.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.36 Interoperability with the CUDA Runtime API 187

22.36 Interoperability with the CUDA Runtime API

Functions

• static int hwloc_cudart_get_device_pci_ids (hwloc_topology_t topology, int idx, int ∗domain, int
∗bus, int ∗dev)

• static int hwloc_cudart_get_device_cpuset (hwloc_topology_t topology, int idx, hwloc_cpuset_t set)

• static hwloc_obj_t hwloc_cudart_get_device_pcidev (hwloc_topology_t topology, int idx)

• static hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (hwloc_topology_t topology, un-
signed idx)

22.36.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA
Runtime API.

22.36.2 Function Documentation

22.36.2.1 static int hwloc_cudart_get_device_cpuset (hwloc_topology_t topology, int idx,
hwloc_cpuset_t set) [inline, static]

Get the CPU set of logical processors that are physically close to device idx. Return the CPU set describ-
ing the locality of the CUDA device whose index is idx.

Topology topology and device idx must match the local machine. I/O devices detection and the CUDA
component are not needed in the topology.

The function only returns the locality of the device. If more information about the device is needed, OS
objects should be used instead, see hwloc_cudart_get_device_osdev_by_index().

This function is currently only implemented in a meaningful way for Linux; other systems will simply get
a full cpuset.

22.36.2.2 static hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (hwloc_topology_t
topology, unsigned idx) [inline, static]

Get the hwloc OS device object corresponding to the CUDA device whose index is idx. Return the OS
device object describing the CUDA device whose index is idx. Return NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection and the CUDA component must be
enabled in the topology. If not, the locality of the object may still be found using hwloc_cudart_get_-
device_cpuset().

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless
PCI devices are filtered out).
This function is identical to hwloc_cuda_get_device_osdev_by_index().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

188 Module Documentation

22.36.2.3 static int hwloc_cudart_get_device_pci_ids (hwloc_topology_t topology, int idx, int ∗
domain, int ∗ bus, int ∗ dev) [inline, static]

Return the domain, bus and device IDs of the CUDA device whose index is idx. Device index idx must
match the local machine.

22.36.2.4 static hwloc_obj_t hwloc_cudart_get_device_pcidev (hwloc_topology_t topology, int idx)
[inline, static]

Get the hwloc PCI device object corresponding to the CUDA device whose index is idx. Return the PCI
device object describing the CUDA device whose index is idx. Return NULL if there is none.

Topology topology and device idx must match the local machine. I/O devices detection must be
enabled in topology topology. The CUDA component is not needed in the topology.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.37 Interoperability with the NVIDIA Management Library 189

22.37 Interoperability with the NVIDIA Management Library

Functions

• static int hwloc_nvml_get_device_cpuset (hwloc_topology_t topology, nvmlDevice_t device,
hwloc_cpuset_t set)

• static hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (hwloc_topology_t topology, unsigned
idx)

• static hwloc_obj_t hwloc_nvml_get_device_osdev (hwloc_topology_t topology, nvmlDevice_t de-
vice)

22.37.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the NVIDIA Man-
agement Library (NVML).

22.37.2 Function Documentation

22.37.2.1 static int hwloc_nvml_get_device_cpuset (hwloc_topology_t topology, nvmlDevice_t
device, hwloc_cpuset_t set) [inline, static]

Get the CPU set of logical processors that are physically close to NVML device device. Return the CPU
set describing the locality of the NVML device device.

Topology topology and device device must match the local machine. I/O devices detection and the
NVML component are not needed in the topology.

The function only returns the locality of the device. If more information about the device is needed, OS
objects should be used instead, see hwloc_nvml_get_device_osdev() and hwloc_nvml_get_device_osdev_-
by_index().

This function is currently only implemented in a meaningful way for Linux; other systems will simply get
a full cpuset.

22.37.2.2 static hwloc_obj_t hwloc_nvml_get_device_osdev (hwloc_topology_t topology,
nvmlDevice_t device) [inline, static]

Get the hwloc OS device object corresponding to NVML device device. Return the hwloc OS device
object that describes the given NVML device device. Return NULL if there is none.

Topology topology and device device must match the local machine. I/O devices detection and the
NVML component must be enabled in the topology. If not, the locality of the object may still be found
using hwloc_nvml_get_device_cpuset().

Note:

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCI
devices are filtered out).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

190 Module Documentation

22.37.2.3 static hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (hwloc_topology_t topology,
unsigned idx) [inline, static]

Get the hwloc OS device object corresponding to the NVML device whose index is idx. Return the OS
device object describing the NVML device whose index is idx. Returns NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection and the NVML component must be
enabled in the topology.

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless
PCI devices are filtered out).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.38 Interoperability with OpenGL displays 191

22.38 Interoperability with OpenGL displays

Functions

• static hwloc_obj_t hwloc_gl_get_display_osdev_by_port_device (hwloc_topology_t topology, un-
signed port, unsigned device)

• static hwloc_obj_t hwloc_gl_get_display_osdev_by_name (hwloc_topology_t topology, const char
∗name)

• static int hwloc_gl_get_display_by_osdev (hwloc_topology_t topology, hwloc_obj_t osdev, un-
signed ∗port, unsigned ∗device)

22.38.1 Detailed Description

This interface offers ways to retrieve topology information about OpenGL displays.

Only the NVIDIA display locality information is currently available, using the NV-CONTROL X11 exten-
sion and the NVCtrl library.

22.38.2 Function Documentation

22.38.2.1 static int hwloc_gl_get_display_by_osdev (hwloc_topology_t topology, hwloc_obj_t
osdev, unsigned ∗ port, unsigned ∗ device) [inline, static]

Get the OpenGL display port and device corresponding to the given hwloc OS object. Return the OpenGL
display port (server) in port and device (screen) in screen that correspond to the given hwloc OS device
object. Return -1 if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection and the GL component must be enabled
in the topology.

22.38.2.2 static hwloc_obj_t hwloc_gl_get_display_osdev_by_name (hwloc_topology_t topology,
const char ∗ name) [inline, static]

Get the hwloc OS device object corresponding to the OpenGL display given by name. Return the OS
device object describing the OpenGL display whose name is name, built as ":port.device" such as ":0.0" .
Return NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection and the GL component must be enabled
in the topology.

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless
PCI devices are filtered out).

22.38.2.3 static hwloc_obj_t hwloc_gl_get_display_osdev_by_port_device (hwloc_topology_t
topology, unsigned port, unsigned device) [inline, static]

Get the hwloc OS device object corresponding to the OpenGL display given by port and device index. Re-
turn the OS device object describing the OpenGL display whose port (server) is port and device (screen)

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

192 Module Documentation

is device. Return NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection and the GL component must be enabled
in the topology.

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless
PCI devices are filtered out).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.39 Interoperability with Intel Xeon Phi (MIC) 193

22.39 Interoperability with Intel Xeon Phi (MIC)

Functions

• static int hwloc_intel_mic_get_device_cpuset (hwloc_topology_t topology, int idx, hwloc_cpuset_t
set)

• static hwloc_obj_t hwloc_intel_mic_get_device_osdev_by_index (hwloc_topology_t topology, un-
signed idx)

22.39.1 Detailed Description

This interface offers ways to retrieve topology information about Intel Xeon Phi (MIC) devices.

22.39.2 Function Documentation

22.39.2.1 static int hwloc_intel_mic_get_device_cpuset (hwloc_topology_t topology, int idx,
hwloc_cpuset_t set) [inline, static]

Get the CPU set of logical processors that are physically close to MIC device whose index is idx. Return
the CPU set describing the locality of the MIC device whose index is idx.

Topology topology and device index idx must match the local machine. I/O devices detection is not
needed in the topology.

The function only returns the locality of the device. If more information about the device is needed, OS
objects should be used instead, see hwloc_intel_mic_get_device_osdev_by_index().

This function is currently only implemented in a meaningful way for Linux; other systems will simply get
a full cpuset.

22.39.2.2 static hwloc_obj_t hwloc_intel_mic_get_device_osdev_by_index (hwloc_topology_t
topology, unsigned idx) [inline, static]

Get the hwloc OS device object corresponding to the MIC device for the given index. Return the OS device
object describing the MIC device whose index is idx. Return NULL if there is none.

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection must be enabled in the topology.

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

194 Module Documentation

22.40 Interoperability with OpenFabrics

Functions

• static int hwloc_ibv_get_device_cpuset (hwloc_topology_t topology, struct ibv_device ∗ibdev,
hwloc_cpuset_t set)

• static hwloc_obj_t hwloc_ibv_get_device_osdev_by_name (hwloc_topology_t topology, const char
∗ibname)

• static hwloc_obj_t hwloc_ibv_get_device_osdev (hwloc_topology_t topology, struct ibv_device
∗ibdev)

22.40.1 Detailed Description

This interface offers ways to retrieve topology information about OpenFabrics devices (InfiniBand, Omni-
Path, usNIC, etc).

22.40.2 Function Documentation

22.40.2.1 static int hwloc_ibv_get_device_cpuset (hwloc_topology_t topology, struct ibv_device ∗
ibdev, hwloc_cpuset_t set) [inline, static]

Get the CPU set of logical processors that are physically close to device ibdev. Return the CPU set
describing the locality of the OpenFabrics device ibdev (InfiniBand, etc).

Topology topology and device ibdev must match the local machine. I/O devices detection is not
needed in the topology.

The function only returns the locality of the device. If more information about the device is needed, OS
objects should be used instead, see hwloc_ibv_get_device_osdev() and hwloc_ibv_get_device_osdev_by_-
name().

This function is currently only implemented in a meaningful way for Linux; other systems will simply get
a full cpuset.

22.40.2.2 static hwloc_obj_t hwloc_ibv_get_device_osdev (hwloc_topology_t topology, struct
ibv_device ∗ ibdev) [inline, static]

Get the hwloc OS device object corresponding to the OpenFabrics device ibdev. Return the OS device
object describing the OpenFabrics device ibdev (InfiniBand, etc). Returns NULL if there is none.

Topology topology and device ibdev must match the local machine. I/O devices detection must be
enabled in the topology. If not, the locality of the object may still be found using hwloc_ibv_get_device_-
cpuset().

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object.

22.40.2.3 static hwloc_obj_t hwloc_ibv_get_device_osdev_by_name (hwloc_topology_t topology,
const char ∗ ibname) [inline, static]

Get the hwloc OS device object corresponding to the OpenFabrics device named ibname. Return the
OS device object describing the OpenFabrics device (InfiniBand, Omni-Path, usNIC, etc) whose name is

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.40 Interoperability with OpenFabrics 195

ibname (mlx5_0, hfi1_0, usnic_0, qib0, etc). Returns NULL if there is none. The name ibname is
usually obtained from ibv_get_device_name().

The topology topology does not necessarily have to match the current machine. For instance the topol-
ogy may be an XML import of a remote host. I/O devices detection must be enabled in the topology.

Note:

The corresponding PCI device object can be obtained by looking at the OS device parent object.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

196 Module Documentation

22.41 Topology differences

Data Structures

• union hwloc_topology_diff_obj_attr_u

One object attribute difference.

• union hwloc_topology_diff_u

One element of a difference list between two topologies.

Typedefs

• typedef enum hwloc_topology_diff_obj_attr_type_e hwloc_topology_diff_obj_attr_type_t
• typedef enum hwloc_topology_diff_type_e hwloc_topology_diff_type_t
• typedef union hwloc_topology_diff_u ∗ hwloc_topology_diff_t

Enumerations

• enum hwloc_topology_diff_obj_attr_type_e { HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE,
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME, HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_-
INFO }

• enum hwloc_topology_diff_type_e { HWLOC_TOPOLOGY_DIFF_OBJ_ATTR, HWLOC_-
TOPOLOGY_DIFF_TOO_COMPLEX }

• enum hwloc_topology_diff_apply_flags_e { HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE }

Functions

• int hwloc_topology_diff_build (hwloc_topology_t topology, hwloc_topology_t newtopology, un-
signed long flags, hwloc_topology_diff_t ∗diff)

• int hwloc_topology_diff_apply (hwloc_topology_t topology, hwloc_topology_diff_t diff, unsigned
long flags)

• int hwloc_topology_diff_destroy (hwloc_topology_diff_t diff)
• int hwloc_topology_diff_load_xml (const char ∗xmlpath, hwloc_topology_diff_t ∗diff, char
∗∗refname)

• int hwloc_topology_diff_export_xml (hwloc_topology_diff_t diff, const char ∗refname, const char
∗xmlpath)

• int hwloc_topology_diff_load_xmlbuffer (const char ∗xmlbuffer, int buflen, hwloc_topology_diff_t
∗diff, char ∗∗refname)

• int hwloc_topology_diff_export_xmlbuffer (hwloc_topology_diff_t diff, const char ∗refname, char
∗∗xmlbuffer, int ∗buflen)

22.41.1 Detailed Description

Applications that manipulate many similar topologies, for instance one for each node of a homogeneous
cluster, may want to compress topologies to reduce the memory footprint.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.41 Topology differences 197

This file offers a way to manipulate the difference between topologies and export/import it to/from XML.
Compression may therefore be achieved by storing one topology entirely while the others are only de-
scribed by their differences with the former. The actual topology can be reconstructed when actually
needed by applying the precomputed difference to the reference topology.

This interface targets very similar nodes. Only very simple differences between topologies are actually
supported, for instance a change in the memory size, the name of the object, or some info attribute. More
complex differences such as adding or removing objects cannot be represented in the difference structures
and therefore return errors. Differences between object sets or topology-wide allowed sets, cannot be
represented either.

It means that there is no need to apply the difference when looking at the tree organization (how many
levels, how many objects per level, what kind of objects, CPU and node sets, etc) and when binding to
objects. However the difference must be applied when looking at object attributes such as the name, the
memory size or info attributes.

22.41.2 Typedef Documentation

22.41.2.1 typedef enum hwloc_topology_diff_obj_attr_type_e hwloc_topology_diff_obj_attr_-
type_t

Type of one object attribute difference.

22.41.2.2 typedef union hwloc_topology_diff_u ∗ hwloc_topology_diff_t

One element of a difference list between two topologies.

22.41.2.3 typedef enum hwloc_topology_diff_type_e hwloc_topology_diff_type_t

Type of one element of a difference list.

22.41.3 Enumeration Type Documentation

22.41.3.1 enum hwloc_topology_diff_apply_flags_e

Flags to be given to hwloc_topology_diff_apply().

Enumerator:

HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE Apply topology diff in reverse direction.

22.41.3.2 enum hwloc_topology_diff_obj_attr_type_e

Type of one object attribute difference.

Enumerator:

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE The object local memory is modified. The union
is a hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s (and the index
field is ignored).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

198 Module Documentation

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME The object name is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s (and the name field is
ignored).

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO the value of an info attribute is modified. The
union is a hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s.

22.41.3.3 enum hwloc_topology_diff_type_e

Type of one element of a difference list.

Enumerator:

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR An object attribute was changed. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_s.

HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX The difference is too complex, it cannot be repre-
sented. The difference below this object has not been checked. hwloc_topology_diff_build() will
return 1. The union is a hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_too_complex_s.

22.41.4 Function Documentation

22.41.4.1 int hwloc_topology_diff_apply (hwloc_topology_t topology, hwloc_topology_diff_t diff,
unsigned long flags)

Apply a topology diff to an existing topology. flags is an OR’ed set of hwloc_topology_diff_apply_-
flags_e.

The new topology is modified in place. hwloc_topology_dup() may be used to duplicate it before patching.

If the difference cannot be applied entirely, all previous applied elements are unapplied before returning.

Returns:

0 on success.
-N if applying the difference failed while trying to apply the N-th part of the difference. For instance
-1 is returned if the very first difference element could not be applied.

22.41.4.2 int hwloc_topology_diff_build (hwloc_topology_t topology, hwloc_topology_t
newtopology, unsigned long flags, hwloc_topology_diff_t ∗ diff)

Compute the difference between 2 topologies. The difference is stored as a list of hwloc_topology_-
diff_t entries starting at diff. It is computed by doing a depth-first traversal of both topology trees
simultaneously.

If the difference between 2 objects is too complex to be represented (for instance if some objects have
different types, or different numbers of children), a special diff entry of type HWLOC_TOPOLOGY_-
DIFF_TOO_COMPLEX is queued. The computation of the diff does not continue below these objects. So
each such diff entry means that the difference between two subtrees could not be computed.

Returns:

0 if the difference can be represented properly.
0 with diff pointing to NULL if there is no difference between the topologies.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.41 Topology differences 199

1 if the difference is too complex (see above). Some entries in the list will be of type HWLOC_-
TOPOLOGY_DIFF_TOO_COMPLEX.
-1 on any other error.

Note:

flags is currently not used. It should be 0.
The output diff has to be freed with hwloc_topology_diff_destroy().
The output diff can only be exported to XML or passed to hwloc_topology_diff_apply() if 0 was
returned, i.e. if no entry of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX is listed.
The output diff may be modified by removing some entries from the list. The removed entries should
be freed by passing them to to hwloc_topology_diff_destroy() (possible as another list).

22.41.4.3 int hwloc_topology_diff_destroy (hwloc_topology_diff_t diff)

Destroy a list of topology differences.

22.41.4.4 int hwloc_topology_diff_export_xml (hwloc_topology_diff_t diff, const char ∗ refname,
const char ∗ xmlpath)

Export a list of topology differences to a XML file. If not NULL, refname defines an identifier string for
the reference topology which was used as a base when computing this difference. This identifier is usually
the name of the other XML file that contains the reference topology. This attribute is given back when
reading the diff from XML.

22.41.4.5 int hwloc_topology_diff_export_xmlbuffer (hwloc_topology_diff_t diff, const char ∗
refname, char ∗∗ xmlbuffer, int ∗ buflen)

Export a list of topology differences to a XML buffer. If not NULL, refname defines an identifier string
for the reference topology which was used as a base when computing this difference. This identifier is
usually the name of the other XML file that contains the reference topology. This attribute is given back
when reading the diff from XML.

The returned buffer ends with a that is included in the returned length.

Note:

The XML buffer should later be freed with hwloc_free_xmlbuffer().

22.41.4.6 int hwloc_topology_diff_load_xml (const char ∗ xmlpath, hwloc_topology_diff_t ∗ diff,
char ∗∗ refname)

Load a list of topology differences from a XML file. If not NULL, refnamewill be filled with the identifier
string of the reference topology for the difference file, if any was specified in the XML file. This identifier
is usually the name of the other XML file that contains the reference topology.

Note:

the pointer returned in refname should later be freed by the caller.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

200 Module Documentation

22.41.4.7 int hwloc_topology_diff_load_xmlbuffer (const char ∗ xmlbuffer, int buflen,
hwloc_topology_diff_t ∗ diff, char ∗∗ refname)

Load a list of topology differences from a XML buffer. If not NULL, refname will be filled with the
identifier string of the reference topology for the difference file, if any was specified in the XML file. This
identifier is usually the name of the other XML file that contains the reference topology.

Note:

the pointer returned in refname should later be freed by the caller.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.42 Sharing topologies between processes 201

22.42 Sharing topologies between processes

Functions

• int hwloc_shmem_topology_get_length (hwloc_topology_t topology, size_t ∗lengthp, unsigned long
flags)

• int hwloc_shmem_topology_write (hwloc_topology_t topology, int fd, hwloc_uint64_t fileoffset,
void ∗mmap_address, size_t length, unsigned long flags)

• int hwloc_shmem_topology_adopt (hwloc_topology_t ∗topologyp, int fd, hwloc_uint64_t fileoffset,
void ∗mmap_address, size_t length, unsigned long flags)

22.42.1 Detailed Description

These functions are used to share a topology between processes by duplicating it into a file-backed shared-
memory buffer.

The master process must first get the required shared-memory size for storing this topology with hwloc_-
shmem_topology_get_length().

Then it must find a virtual memory area of that size that is available in all processes (identical virtual
addresses in all processes). On Linux, this can be done by comparing holes found in /proc/<pid>/maps
for each process.

Once found, it must open a destination file for storing the buffer, and pass it to hwloc_shmem_topology_-
write() together with virtual memory address and length obtained above.

Other processes may then adopt this shared topology by opening the same file and passing it to hwloc_-
shmem_topology_adopt() with the exact same virtual memory address and length.

22.42.2 Function Documentation

22.42.2.1 int hwloc_shmem_topology_adopt (hwloc_topology_t ∗ topologyp, int fd,
hwloc_uint64_t fileoffset, void ∗ mmap_address, size_t length, unsigned long flags)

Adopt a shared memory topology stored in a file. Map a file in virtual memory and adopt the topology that
was previously stored there with hwloc_shmem_topology_write().

The returned adopted topology in topologyp can be used just like any topology. And it must be destroyed
with hwloc_topology_destroy() as usual.

However the topology is read-only. For instance, it cannot be modified with hwloc_topology_restrict() and
object userdata pointers cannot be changed.

The segment of the file pointed by descriptor fd, starting at offset fileoffset, and of length length
(in bytes), will be mapped at virtual address mmap_address.

The file pointed by descriptor fd, the offset fileoffset, the requested mapping virtual address mmap_-
address and the length length must be identical to what was given to hwloc_shmem_topology_write()
earlier.

Note:

Flags flags are currently unused, must be 0.
The object userdata pointer should not be used unless the process that created the shared topology also
placed userdata-pointed buffers in shared memory.
This function takes care of calling hwloc_topology_abi_check().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

202 Module Documentation

Returns:

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and length
isn’t available in the process.
-1 with errno set to EINVAL if fileoffset, mmap_address or length aren’t page-aligned, or
do not match what was given to hwloc_shmem_topology_write() earlier.
-1 with errno set to EINVAL if the layout of the topology structure is different between the writer
process and the adopter process.

22.42.2.2 int hwloc_shmem_topology_get_length (hwloc_topology_t topology, size_t ∗ lengthp,
unsigned long flags)

Get the required shared memory length for storing a topology. This length (in bytes) must be used in
hwloc_shmem_topology_write() and hwloc_shmem_topology_adopt() later.

Note:

Flags flags are currently unused, must be 0.

22.42.2.3 int hwloc_shmem_topology_write (hwloc_topology_t topology, int fd, hwloc_uint64_t
fileoffset, void ∗ mmap_address, size_t length, unsigned long flags)

Duplicate a topology to a shared memory file. Temporarily map a file in virtual memory and duplicate the
topology topology by allocating duplicates in there.

The segment of the file pointed by descriptor fd, starting at offset fileoffset, and of length length
(in bytes), will be temporarily mapped at virtual address mmap_address during the duplication.

The mapping length length must have been previously obtained with hwloc_shmem_topology_get_-
length() and the topology must not have been modified in the meantime.

Note:

Flags flags are currently unused, must be 0.
The object userdata pointer is duplicated but the pointed buffer is not. However the caller may also
allocate it manually in shared memory to share it as well.

Returns:

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and length
isn’t available in the process.
-1 with errno set to EINVAL if fileoffset, mmap_address or length aren’t page-aligned.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.43 Components and Plugins: Discovery components 203

22.43 Components and Plugins: Discovery components

Data Structures

• struct hwloc_disc_component
Discovery component structure.

Typedefs

• typedef enum hwloc_disc_component_type_e hwloc_disc_component_type_t

Enumerations

• enum hwloc_disc_component_type_e { HWLOC_DISC_COMPONENT_TYPE_CPU, HWLOC_-
DISC_COMPONENT_TYPE_GLOBAL, HWLOC_DISC_COMPONENT_TYPE_MISC }

22.43.1 Typedef Documentation

22.43.1.1 typedef enum hwloc_disc_component_type_e hwloc_disc_component_type_t

Discovery component type.

22.43.2 Enumeration Type Documentation

22.43.2.1 enum hwloc_disc_component_type_e

Discovery component type.

Enumerator:

HWLOC_DISC_COMPONENT_TYPE_CPU CPU-only discovery through the OS, or generic no-
OS support.

HWLOC_DISC_COMPONENT_TYPE_GLOBAL xml or synthetic, platform-specific components
such as bgq. Anything the discovers CPU and everything else. No misc backend is expected to
complement a global component.

HWLOC_DISC_COMPONENT_TYPE_MISC OpenCL, Cuda, etc.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

204 Module Documentation

22.44 Components and Plugins: Discovery backends

Data Structures

• struct hwloc_backend
Discovery backend structure.

Functions

• struct hwloc_backend ∗ hwloc_backend_alloc (struct hwloc_disc_component ∗component)
• int hwloc_backend_enable (struct hwloc_topology ∗topology, struct hwloc_backend ∗backend)

22.44.1 Function Documentation

22.44.1.1 struct hwloc_backend∗ hwloc_backend_alloc (struct hwloc_disc_component ∗
component) [read]

Allocate a backend structure, set good default values, initialize backend->component and topology, etc.
The caller will then modify whatever needed, and call hwloc_backend_enable().

22.44.1.2 int hwloc_backend_enable (struct hwloc_topology ∗ topology, struct hwloc_backend ∗
backend)

Enable a previously allocated and setup backend.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.45 Components and Plugins: Generic components 205

22.45 Components and Plugins: Generic components

Data Structures

• struct hwloc_component
Generic component structure.

Typedefs

• typedef enum hwloc_component_type_e hwloc_component_type_t

Enumerations

• enum hwloc_component_type_e { HWLOC_COMPONENT_TYPE_DISC, HWLOC_-
COMPONENT_TYPE_XML }

22.45.1 Typedef Documentation

22.45.1.1 typedef enum hwloc_component_type_e hwloc_component_type_t

Generic component type.

22.45.2 Enumeration Type Documentation

22.45.2.1 enum hwloc_component_type_e

Generic component type.

Enumerator:

HWLOC_COMPONENT_TYPE_DISC The data field must point to a struct hwloc_disc_-
component.

HWLOC_COMPONENT_TYPE_XML The data field must point to a struct hwloc_xml_-
component.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

206 Module Documentation

22.46 Components and Plugins: Core functions to be used by com-
ponents

Typedefs

• typedef void(∗ hwloc_report_error_t)(const char ∗msg, int line)

Functions

• struct hwloc_obj ∗ hwloc_insert_object_by_cpuset (struct hwloc_topology ∗topology, hwloc_obj_t
obj)

• void hwloc_report_os_error (const char ∗msg, int line)
• int hwloc_hide_errors (void)
• struct hwloc_obj ∗ hwloc__insert_object_by_cpuset (struct hwloc_topology ∗topology, hwloc_obj_t

root, hwloc_obj_t obj, hwloc_report_error_t report_error)
• void hwloc_insert_object_by_parent (struct hwloc_topology ∗topology, hwloc_obj_t parent,

hwloc_obj_t obj)
• hwloc_obj_t hwloc_alloc_setup_object (hwloc_topology_t topology, hwloc_obj_type_t type, un-

signed os_index)
• int hwloc_obj_add_children_sets (hwloc_obj_t obj)
• int hwloc_topology_reconnect (hwloc_topology_t topology, unsigned long flags)
• static int hwloc_plugin_check_namespace (const char ∗pluginname, const char ∗symbol)

22.46.1 Typedef Documentation

22.46.1.1 typedef void(∗ hwloc_report_error_t)(const char ∗msg, int line)

Type of error callbacks during object insertion.

22.46.2 Function Documentation

22.46.2.1 struct hwloc_obj∗ hwloc__insert_object_by_cpuset (struct hwloc_topology ∗ topology,
hwloc_obj_t root, hwloc_obj_t obj, hwloc_report_error_t report_error) [read]

Add an object to the topology and specify which error callback to use. This function is similar to hwloc_-
insert_object_by_cpuset() but it allows specifying where to start insertion from (if root is NULL, the
topology root object is used), and specifying the error callback.

22.46.2.2 hwloc_obj_t hwloc_alloc_setup_object (hwloc_topology_t topology, hwloc_obj_type_t
type, unsigned os_index)

Allocate and initialize an object of the given type and physical index. If os_index is unknown or irrele-
vant, use HWLOC_UNKNOWN_INDEX.

22.46.2.3 int hwloc_hide_errors (void)

Check whether insertion errors are hidden.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.46 Components and Plugins: Core functions to be used by components 207

22.46.2.4 struct hwloc_obj∗ hwloc_insert_object_by_cpuset (struct hwloc_topology ∗ topology,
hwloc_obj_t obj) [read]

Add an object to the topology. It is sorted along the tree of other objects according to the inclusion of
cpusets, to eventually be added as a child of the smallest object including this object.

If the cpuset is empty, the type of the object (and maybe some attributes) must be enough to find where to
insert the object. This is especially true for NUMA nodes with memory and no CPUs.

The given object should not have children.

This shall only be called before levels are built.

In case of error, hwloc_report_os_error() is called.

The caller should check whether the object type is filtered-out before calling this function.

The topology cpuset/nodesets will be enlarged to include the object sets.

Returns the object on success. Returns NULL and frees obj on error. Returns another object and frees obj
if it was merged with an identical pre-existing object.

22.46.2.5 void hwloc_insert_object_by_parent (struct hwloc_topology ∗ topology, hwloc_obj_t
parent, hwloc_obj_t obj)

Insert an object somewhere in the topology. It is added as the last child of the given parent. The cpuset is
completely ignored, so strange objects such as I/O devices should preferably be inserted with this.

When used for "normal" children with cpusets (when importing from XML when duplicating a topology),
the caller should make sure that:

• children are inserted in order,

• children cpusets do not intersect.

The given object may have normal, I/O or Misc children, as long as they are in order as well. These children
must have valid parent and next_sibling pointers.

The caller should check whether the object type is filtered-out before calling this function.

22.46.2.6 int hwloc_obj_add_children_sets (hwloc_obj_t obj)

Setup object cpusets/nodesets by OR’ing its children. Used when adding an object late in the topology.
Will update the new object by OR’ing all its new children sets.

Used when PCI backend adds a hostbridge parent, when distances add a new Group, etc.

22.46.2.7 static int hwloc_plugin_check_namespace (const char ∗ pluginname, const char ∗
symbol) [inline, static]

Make sure that plugins can lookup core symbols. This is a sanity check to avoid lazy-lookup failures when
libhwloc is loaded within a plugin, and later tries to load its own plugins. This may fail (and abort the
program) if libhwloc symbols are in a private namespace.

Returns:

0 on success.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

208 Module Documentation

-1 if the plugin cannot be successfully loaded. The caller plugin init() callback should return a negative
error code as well.

Plugins should call this function in their init() callback to avoid later crashes if lazy symbol resolution
is used by the upper layer that loaded hwloc (e.g. OpenCL implementations using dlopen with RTLD_-
LAZY).

Note:

The build system must define HWLOC_INSIDE_PLUGIN if and only if building the caller as a plugin.
This function should remain inline so plugins can call it even when they cannot find libhwloc symbols.

22.46.2.8 void hwloc_report_os_error (const char ∗ msg, int line)

Report an insertion error from a backend.

22.46.2.9 int hwloc_topology_reconnect (hwloc_topology_t topology, unsigned long flags)

Request a reconnection of children and levels in the topology. May be used by backends during discovery
if they need arrays or lists of object within levels or children to be fully connected.

flags is currently unused, must 0.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.47 Components and Plugins: Filtering objects 209

22.47 Components and Plugins: Filtering objects

Functions

• static int hwloc_filter_check_pcidev_subtype_important (unsigned classid)
• static int hwloc_filter_check_osdev_subtype_important (hwloc_obj_osdev_type_t subtype)
• static int hwloc_filter_check_keep_object_type (hwloc_topology_t topology, hwloc_obj_type_-

t type)
• static int hwloc_filter_check_keep_object (hwloc_topology_t topology, hwloc_obj_t obj)

22.47.1 Function Documentation

22.47.1.1 static int hwloc_filter_check_keep_object (hwloc_topology_t topology, hwloc_obj_t obj)
[inline, static]

Check whether the given object should be filtered-out.

Returns:

1 if the object type should be kept, 0 otherwise.

22.47.1.2 static int hwloc_filter_check_keep_object_type (hwloc_topology_t topology,
hwloc_obj_type_t type) [inline, static]

Check whether a non-I/O object type should be filtered-out. Cannot be used for I/O objects.

Returns:

1 if the object type should be kept, 0 otherwise.

22.47.1.3 static int hwloc_filter_check_osdev_subtype_important (hwloc_obj_osdev_type_t
subtype) [inline, static]

Check whether the given OS device subtype is important.

Returns:

1 if important, 0 otherwise.

22.47.1.4 static int hwloc_filter_check_pcidev_subtype_important (unsigned classid) [inline,
static]

Check whether the given PCI device classid is important.

Returns:

1 if important, 0 otherwise.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

210 Module Documentation

22.48 Components and Plugins: helpers for PCI discovery

Functions

• unsigned hwloc_pcidisc_find_cap (const unsigned char ∗config, unsigned cap)
• int hwloc_pcidisc_find_linkspeed (const unsigned char ∗config, unsigned offset, float ∗linkspeed)
• hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (unsigned device_class, const unsigned char
∗config)

• int hwloc_pcidisc_setup_bridge_attr (hwloc_obj_t obj, const unsigned char ∗config)
• void hwloc_pcidisc_tree_insert_by_busid (struct hwloc_obj ∗∗treep, struct hwloc_obj ∗obj)
• int hwloc_pcidisc_tree_attach (struct hwloc_topology ∗topology, struct hwloc_obj ∗tree)

22.48.1 Function Documentation

22.48.1.1 hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (unsigned device_class, const
unsigned char ∗ config)

Return the hwloc object type (PCI device or Bridge) for the given class and configuration space. This
function requires 16 bytes of common configuration header at the beginning of config.

22.48.1.2 unsigned hwloc_pcidisc_find_cap (const unsigned char ∗ config, unsigned cap)

Return the offset of the given capability in the PCI config space buffer. This function requires a 256-bytes
config space. Unknown/unavailable bytes should be set to 0xff.

22.48.1.3 int hwloc_pcidisc_find_linkspeed (const unsigned char ∗ config, unsigned offset, float ∗
linkspeed)

Fill linkspeed by reading the PCI config space where PCI_CAP_ID_EXP is at position offset. Needs 20
bytes of EXP capability block starting at offset in the config space for registers up to link status.

22.48.1.4 int hwloc_pcidisc_setup_bridge_attr (hwloc_obj_t obj, const unsigned char ∗ config)

Fills the attributes of the given PCI bridge using the given PCI config space. This function requires 32
bytes of common configuration header at the beginning of config.

Returns -1 and destroys /p obj if bridge fields are invalid.

22.48.1.5 int hwloc_pcidisc_tree_attach (struct hwloc_topology ∗ topology, struct hwloc_obj ∗
tree)

Add some hostbridges on top of the given tree of PCI objects and attach them to the topology. For now,
they will be attached to the root object. The core will move them to their actual PCI locality using hwloc_-
pci_belowroot_apply_locality() at the end of the discovery.

In the meantime, other backends lookup PCI objects or localities (for instance to attach OS devices) by
using hwloc_pcidisc_find_by_busid() or hwloc_pcidisc_find_busid_parent().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.48 Components and Plugins: helpers for PCI discovery 211

22.48.1.6 void hwloc_pcidisc_tree_insert_by_busid (struct hwloc_obj ∗∗ treep, struct hwloc_obj ∗
obj)

Insert a PCI object in the given PCI tree by looking at PCI bus IDs. If treep points to NULL, the new
object is inserted there.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

212 Module Documentation

22.49 Components and Plugins: finding PCI objects during other
discoveries

Functions

• struct hwloc_obj ∗ hwloc_pcidisc_find_by_busid (struct hwloc_topology ∗topology, unsigned do-
main, unsigned bus, unsigned dev, unsigned func)

• struct hwloc_obj ∗ hwloc_pcidisc_find_busid_parent (struct hwloc_topology ∗topology, unsigned
domain, unsigned bus, unsigned dev, unsigned func)

22.49.1 Function Documentation

22.49.1.1 struct hwloc_obj∗ hwloc_pcidisc_find_busid_parent (struct hwloc_topology ∗ topology,
unsigned domain, unsigned bus, unsigned dev, unsigned func) [read]

Find the normal parent of a PCI bus ID. Look at PCI affinity to find out where the given PCI bus ID should
be attached.

This function should be used to attach an I/O device directly under a normal (non-I/O) object, instead of
below a PCI object. It is usually used by backends when hwloc_pcidisc_find_by_busid() failed to find the
hwloc object corresponding to this bus ID, for instance because PCI discovery is not supported on this
platform.

22.49.1.2 struct hwloc_obj∗ hwloc_pcidisc_find_by_busid (struct hwloc_topology ∗ topology,
unsigned domain, unsigned bus, unsigned dev, unsigned func) [read]

Find the PCI object that matches the bus ID. To be used after a PCI backend added PCI devices with
hwloc_pcidisc_tree_attach() and before the core moves them to their actual location with hwloc_pci_-
belowroot_apply_locality().

If no exactly matching object is found, return the container bridge if any, or NULL.

On failure, it may be possible to find the PCI locality (instead of the PCI device) by calling hwloc_pcidisc_-
find_busid_parent().

Note:

This is semantically identical to hwloc_get_pcidev_by_busid() which only works after the topology is
fully loaded.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

22.50 Netloc API 213

22.50 Netloc API

Enumerations

• enum {

NETLOC_SUCCESS = 0, NETLOC_ERROR = -1, NETLOC_ERROR_NOTDIR = -2, NETLOC_-
ERROR_NOENT = -3,

NETLOC_ERROR_EMPTY = -4, NETLOC_ERROR_MULTIPLE = -5, NETLOC_ERROR_-
NOT_IMPL = -6, NETLOC_ERROR_EXISTS = -7,

NETLOC_ERROR_NOT_FOUND = -8, NETLOC_ERROR_MAX = -9 }

22.50.1 Enumeration Type Documentation

22.50.1.1 anonymous enum

Return codes

Enumerator:

NETLOC_SUCCESS Success

NETLOC_ERROR Error: General condition

NETLOC_ERROR_NOTDIR Error: URI is not a directory

NETLOC_ERROR_NOENT Error: URI is invalid, no such entry

NETLOC_ERROR_EMPTY Error: No networks found

NETLOC_ERROR_MULTIPLE Error: Multiple matching networks found

NETLOC_ERROR_NOT_IMPL Error: Interface not implemented

NETLOC_ERROR_EXISTS Error: If the entry already exists when trying to add to a lookup table

NETLOC_ERROR_NOT_FOUND Error: No path found

NETLOC_ERROR_MAX Error: Enum upper bound marker. No errors less than this number Will
not be returned externally.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

214 Module Documentation

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Chapter 23

Data Structure Documentation

23.1 hwloc_backend Struct Reference

Discovery backend structure.

#include <plugins.h>

Data Fields

• unsigned long flags
• int is_thissystem
• void ∗ private_data
• void(∗ disable)(struct hwloc_backend ∗backend)
• int(∗ discover)(struct hwloc_backend ∗backend)
• int(∗ get_pci_busid_cpuset)(struct hwloc_backend ∗backend, struct hwloc_pcidev_attr_s ∗busid,

hwloc_bitmap_t cpuset)

23.1.1 Detailed Description

Discovery backend structure. A backend is the instantiation of a discovery component. When a component
gets enabled for a topology, its instantiate() callback creates a backend.

hwloc_backend_alloc() initializes all fields to default values that the component may change (except "com-
ponent" and "next") before enabling the backend with hwloc_backend_enable().

23.1.2 Field Documentation

23.1.2.1 void(∗ hwloc_backend::disable)(struct hwloc_backend ∗backend)

Callback for freeing the private_data. May be NULL.

23.1.2.2 int(∗ hwloc_backend::discover)(struct hwloc_backend ∗backend)

Main discovery callback. returns -1 on error, either because it couldn’t add its objects ot the existing
topology, or because of an actual discovery/gathering failure. May be NULL.

216 Data Structure Documentation

23.1.2.3 unsigned long hwloc_backend::flags

Backend flags, currently always 0.

23.1.2.4 int(∗ hwloc_backend::get_pci_busid_cpuset)(struct hwloc_backend ∗backend, struct
hwloc_pcidev_attr_s ∗busid, hwloc_bitmap_t cpuset)

Callback used by the PCI backend to retrieve the locality of a PCI object from the OS/cpu backend. May
be NULL.

23.1.2.5 int hwloc_backend::is_thissystem

Backend-specific ’is_thissystem’ property. Set to 0 or 1 if the backend should enforce the thissystem flag
when it gets enabled. Set to -1 if the backend doesn’t care (default).

23.1.2.6 void∗ hwloc_backend::private_data

Backend private data, or NULL if none.

The documentation for this struct was generated from the following file:

• plugins.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 217

23.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference

Bridge specific Object Attribues.

#include <hwloc.h>

Data Fields

• union {
struct hwloc_pcidev_attr_s pci

} upstream

• hwloc_obj_bridge_type_t upstream_type
• union {

struct {
unsigned short domain
unsigned char secondary_bus
unsigned char subordinate_bus

} pci
} downstream

• hwloc_obj_bridge_type_t downstream_type
• unsigned depth

23.2.1 Detailed Description

Bridge specific Object Attribues.

23.2.2 Field Documentation

23.2.2.1 unsigned hwloc_obj_attr_u::hwloc_bridge_attr_s::depth

23.2.2.2 unsigned short hwloc_obj_attr_u::hwloc_bridge_attr_s::domain

23.2.2.3 union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream

23.2.2.4 hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream_type

23.2.2.5 struct { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::pci

23.2.2.6 struct hwloc_pcidev_attr_s hwloc_obj_attr_u::hwloc_bridge_attr_s::pci [read]

23.2.2.7 unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::secondary_bus

23.2.2.8 unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::subordinate_bus

23.2.2.9 union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream

23.2.2.10 hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream_type

The documentation for this struct was generated from the following file:

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

218 Data Structure Documentation

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference 219

23.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference

Cache-specific Object Attributes.

#include <hwloc.h>

Data Fields

• hwloc_uint64_t size
• unsigned depth
• unsigned linesize
• int associativity
• hwloc_obj_cache_type_t type

23.3.1 Detailed Description

Cache-specific Object Attributes.

23.3.2 Field Documentation

23.3.2.1 int hwloc_obj_attr_u::hwloc_cache_attr_s::associativity

Ways of associativity, -1 if fully associative, 0 if unknown.

23.3.2.2 unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::depth

Depth of cache (e.g., L1, L2, ...etc.).

23.3.2.3 unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::linesize

Cache-line size in bytes. 0 if unknown.

23.3.2.4 hwloc_uint64_t hwloc_obj_attr_u::hwloc_cache_attr_s::size

Size of cache in bytes.

23.3.2.5 hwloc_obj_cache_type_t hwloc_obj_attr_u::hwloc_cache_attr_s::type

Cache type.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

220 Data Structure Documentation

23.4 hwloc_component Struct Reference

Generic component structure.

#include <plugins.h>

Data Fields

• unsigned abi
• int(∗ init)(unsigned long flags)
• void(∗ finalize)(unsigned long flags)
• hwloc_component_type_t type
• unsigned long flags
• void ∗ data

23.4.1 Detailed Description

Generic component structure. Generic components structure, either statically listed by configure in static-
components.h or dynamically loaded as a plugin.

23.4.2 Field Documentation

23.4.2.1 unsigned hwloc_component::abi

Component ABI version, set to HWLOC_COMPONENT_ABI.

23.4.2.2 void∗ hwloc_component::data

Component data, pointing to a struct hwloc_disc_component or struct hwloc_xml_component.

23.4.2.3 void(∗ hwloc_component::finalize)(unsigned long flags)

Process-wide component termination callback. This optional callback is called after unregistering the
component from the hwloc core (before unloading the plugin).

flags is always 0 for now.

Note:

If the component uses ltdl for loading its own plugins, it should load/unload them only in init() and
finalize(), to avoid race conditions with hwloc’s use of ltdl.

23.4.2.4 unsigned long hwloc_component::flags

Component flags, unused for now.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.4 hwloc_component Struct Reference 221

23.4.2.5 int(∗ hwloc_component::init)(unsigned long flags)

Process-wide component initialization callback. This optional callback is called when the component is
registered to the hwloc core (after loading the plugin).

When the component is built as a plugin, this callback should call hwloc_check_plugin_namespace() and
return an negative error code on error.

flags is always 0 for now.

Returns:

0 on success, or a negative code on error.

Note:

If the component uses ltdl for loading its own plugins, it should load/unload them only in init() and
finalize(), to avoid race conditions with hwloc’s use of ltdl.

23.4.2.6 hwloc_component_type_t hwloc_component::type

Component type.

The documentation for this struct was generated from the following file:

• plugins.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

222 Data Structure Documentation

23.5 hwloc_disc_component Struct Reference

Discovery component structure.

#include <plugins.h>

Data Fields

• hwloc_disc_component_type_t type

• const char ∗ name

• unsigned excludes

• struct hwloc_backend ∗(∗ instantiate)(struct hwloc_disc_component ∗component, const void
∗data1, const void ∗data2, const void ∗data3)

• unsigned priority

• unsigned enabled_by_default

23.5.1 Detailed Description

Discovery component structure. This is the major kind of components, taking care of the discovery. They
are registered by generic components, either statically-built or as plugins.

23.5.2 Field Documentation

23.5.2.1 unsigned hwloc_disc_component::enabled_by_default

Enabled by default. If unset, if will be disabled unless explicitly requested.

23.5.2.2 unsigned hwloc_disc_component::excludes

Component types to exclude, as an OR’ed set of hwloc_disc_component_type_e. For a GLOBAL compo-
nent, this usually includes all other types (∼0).

Other components only exclude types that may bring conflicting topology information. MISC components
should likely not be excluded since they usually bring non-primary additional information.

23.5.2.3 struct hwloc_backend∗(∗ hwloc_disc_component::instantiate)(struct
hwloc_disc_component ∗component, const void ∗data1, const void ∗data2, const void
∗data3) [read]

Instantiate callback to create a backend from the component. Parameters data1, data2, data3 are NULL
except for components that have special enabling routines such as hwloc_topology_set_xml().

23.5.2.4 const char∗ hwloc_disc_component::name

Name. If this component is built as a plugin, this name does not have to match the plugin filename.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.5 hwloc_disc_component Struct Reference 223

23.5.2.5 unsigned hwloc_disc_component::priority

Component priority. Used to sort topology->components, higher priority first. Also used to decide between
two components with the same name. Usual values are 50 for native OS (or platform) components, 45 for
x86, 40 for no-OS fallback, 30 for global components (xml, synthetic), 20 for pci, 10 for other misc
components (opencl etc.).

23.5.2.6 hwloc_disc_component_type_t hwloc_disc_component::type

Discovery component type.

The documentation for this struct was generated from the following file:

• plugins.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

224 Data Structure Documentation

23.6 hwloc_distances_s Struct Reference

Matrix of distances between a set of objects.

#include <distances.h>

Data Fields

• unsigned nbobjs
• hwloc_obj_t ∗ objs
• unsigned long kind
• hwloc_uint64_t ∗ values

23.6.1 Detailed Description

Matrix of distances between a set of objects. This matrix often contains latencies between NUMA nodes
(as reported in the System Locality Distance Information Table (SLIT) in the ACPI specification), which
may or may not be physically accurate. It corresponds to the latency for accessing the memory of one
node from a core in another node. The corresponding kind is HWLOC_DISTANCES_KIND_FROM_OS
| HWLOC_DISTANCES_KIND_FROM_USER.

The matrix may also contain bandwidths between random sets of objects, possibly provided by the user, as
specified in the kind attribute.

23.6.2 Field Documentation

23.6.2.1 unsigned long hwloc_distances_s::kind

OR’ed set of hwloc_distances_kind_e.

23.6.2.2 unsigned hwloc_distances_s::nbobjs

Number of objects described by the distance matrix.

23.6.2.3 hwloc_obj_t∗ hwloc_distances_s::objs

Array of objects described by the distance matrix. These objects are not in any particular order, see hwloc_-
distances_obj_index() and hwloc_distances_obj_pair_values() for easy ways to find objects in this array
and their corresponding values.

23.6.2.4 hwloc_uint64_t∗ hwloc_distances_s::values

Matrix of distances between objects, stored as a one-dimension array. Distance from i-th to j-th object is
stored in slot i∗nbobjs+j. The meaning of the value depends on the kind attribute.

The documentation for this struct was generated from the following file:

• distances.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.7 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference 225

23.7 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference

Group-specific Object Attributes.

#include <hwloc.h>

Data Fields

• unsigned depth
• unsigned kind
• unsigned subkind

23.7.1 Detailed Description

Group-specific Object Attributes.

23.7.2 Field Documentation

23.7.2.1 unsigned hwloc_obj_attr_u::hwloc_group_attr_s::depth

Depth of group object. It may change if intermediate Group objects are added.

23.7.2.2 unsigned hwloc_obj_attr_u::hwloc_group_attr_s::kind

Internally-used kind of group.

23.7.2.3 unsigned hwloc_obj_attr_u::hwloc_group_attr_s::subkind

Internally-used subkind to distinguish different levels of groups with same kind.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

226 Data Structure Documentation

23.8 hwloc_info_s Struct Reference

Object info.

#include <hwloc.h>

Data Fields

• char ∗ name
• char ∗ value

23.8.1 Detailed Description

Object info.

See also:

Consulting and Adding Key-Value Info Attributes

23.8.2 Field Documentation

23.8.2.1 char∗ hwloc_info_s::name

Info name.

23.8.2.2 char∗ hwloc_info_s::value

Info value.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.9 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference227

23.9 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_-
memory_page_type_s Struct Reference

Array of local memory page types, NULL if no local memory and page_types is 0.

#include <hwloc.h>

Data Fields

• hwloc_uint64_t size
• hwloc_uint64_t count

23.9.1 Detailed Description

Array of local memory page types, NULL if no local memory and page_types is 0. The array is sorted
by increasing size fields. It contains page_types_len slots.

23.9.2 Field Documentation

23.9.2.1 hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_-
type_s::count

Number of pages of this size.

23.9.2.2 hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_-
type_s::size

Size of pages.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

228 Data Structure Documentation

23.10 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference

NUMA node-specific Object Attributes.

#include <hwloc.h>

Data Structures

• struct hwloc_memory_page_type_s
Array of local memory page types, NULL if no local memory and page_types is 0.

Data Fields

• hwloc_uint64_t local_memory
• unsigned page_types_len
• struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s ∗ page_types

23.10.1 Detailed Description

NUMA node-specific Object Attributes.

23.10.2 Field Documentation

23.10.2.1 hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::local_memory

Local memory (in bytes).

23.10.2.2 struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s ∗
hwloc_obj_attr_u::hwloc_numanode_attr_s::page_types

Array of local memory page types, NULL if no local memory and page_types is 0. The array is sorted
by increasing size fields. It contains page_types_len slots.

23.10.2.3 unsigned hwloc_obj_attr_u::hwloc_numanode_attr_s::page_types_len

Size of array page_types.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.11 hwloc_obj Struct Reference 229

23.11 hwloc_obj Struct Reference

Structure of a topology object.

#include <hwloc.h>

Data Fields

• hwloc_obj_type_t type
• char ∗ subtype
• unsigned os_index
• char ∗ name
• hwloc_uint64_t total_memory
• union hwloc_obj_attr_u ∗ attr
• int depth
• unsigned logical_index
• struct hwloc_obj ∗ next_cousin
• struct hwloc_obj ∗ prev_cousin
• struct hwloc_obj ∗ parent
• unsigned sibling_rank
• struct hwloc_obj ∗ next_sibling
• struct hwloc_obj ∗ prev_sibling
• int symmetric_subtree
• hwloc_cpuset_t cpuset
• hwloc_cpuset_t complete_cpuset
• hwloc_nodeset_t nodeset
• hwloc_nodeset_t complete_nodeset
• struct hwloc_info_s ∗ infos
• unsigned infos_count
• void ∗ userdata
• hwloc_uint64_t gp_index

List and array of normal children below this object (except Memory, I/O and Misc children).

• unsigned arity
• struct hwloc_obj ∗∗ children
• struct hwloc_obj ∗ first_child
• struct hwloc_obj ∗ last_child

List of Memory children below this object.

• unsigned memory_arity
• struct hwloc_obj ∗ memory_first_child

List of I/O children below this object.

• unsigned io_arity
• struct hwloc_obj ∗ io_first_child

List of Misc children below this object.

• unsigned misc_arity
• struct hwloc_obj ∗ misc_first_child

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

230 Data Structure Documentation

23.11.1 Detailed Description

Structure of a topology object. Applications must not modify any field except hwloc_obj.userdata.

23.11.2 Field Documentation

23.11.2.1 unsigned hwloc_obj::arity

Number of normal children. Memory, Misc and I/O children are not listed here but rather in their dedicated
children list.

23.11.2.2 union hwloc_obj_attr_u∗ hwloc_obj::attr [write]

Object type-specific Attributes, may be NULL if no attribute value was found.

23.11.2.3 struct hwloc_obj∗∗ hwloc_obj::children [read]

Normal children, children[0 .. arity -1].

23.11.2.4 hwloc_cpuset_t hwloc_obj::complete_cpuset

The complete CPU set of logical processors of this object,. This may include not only the same as the
cpuset field, but also some CPUs for which topology information is unknown or incomplete, some offlines
CPUs, and the CPUs that are ignored when the HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM flag
is not set. Thus no corresponding PU object may be found in the topology, because the precise position is
undefined. It is however known that it would be somewhere under this object.

Note:

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

23.11.2.5 hwloc_nodeset_t hwloc_obj::complete_nodeset

The complete NUMA node set of this object,. This may include not only the same as the nodeset field, but
also some NUMA nodes for which topology information is unknown or incomplete, some offlines nodes,
and the nodes that are ignored when the HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM flag is not
set. Thus no corresponding NUMA node object may be found in the topology, because the precise position
is undefined. It is however known that it would be somewhere under this object.

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit is
set in complete_nodeset.

Note:

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.11 hwloc_obj Struct Reference 231

23.11.2.6 hwloc_cpuset_t hwloc_obj::cpuset

CPUs covered by this object. This is the set of CPUs for which there are PU objects in the topology under
this object, i.e. which are known to be physically contained in this object and known how (the children
path between this object and the PU objects).

If the HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM configuration flag is set, some of these CPUs
may not be allowed for binding, see hwloc_topology_get_allowed_cpuset().

Note:

All objects have non-NULL CPU and node sets except Misc and I/O objects.
Its value must not be changed, hwloc_bitmap_dup() must be used instead.

23.11.2.7 int hwloc_obj::depth

Vertical index in the hierarchy. For normal objects, this is the depth of the horizontal level that contains
this object and its cousins of the same type. If the topology is symmetric, this is equal to the parent depth
plus one, and also equal to the number of parent/child links from the root object to here.

For special objects (NUMA nodes, I/O and Misc) that are not in the main tree, this is a special negative
value that corresponds to their dedicated level, see hwloc_get_type_depth() and hwloc_get_type_depth_e.
Those special values can be passed to hwloc functions such hwloc_get_nbobjs_by_depth() as usual.

23.11.2.8 struct hwloc_obj∗ hwloc_obj::first_child [read]

First normal child.

23.11.2.9 hwloc_uint64_t hwloc_obj::gp_index

Global persistent index. Generated by hwloc, unique across the topology (contrary to os_index) and per-
sistent across topology changes (contrary to logical_index). Mostly used internally, but could also be used
by application to identify objects.

23.11.2.10 struct hwloc_info_s∗ hwloc_obj::infos [read]

Array of stringified info type=name.

23.11.2.11 unsigned hwloc_obj::infos_count

Size of infos array.

23.11.2.12 unsigned hwloc_obj::io_arity

Number of I/O children. These children are listed in io_first_child.

23.11.2.13 struct hwloc_obj∗ hwloc_obj::io_first_child [read]

First I/O child. Bridges, PCI and OS devices are listed here (io_arity and io_first_child) instead
of in the normal children list. See also hwloc_obj_type_is_io().

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

232 Data Structure Documentation

23.11.2.14 struct hwloc_obj∗ hwloc_obj::last_child [read]

Last normal child.

23.11.2.15 unsigned hwloc_obj::logical_index

Horizontal index in the whole list of similar objects, hence guaranteed unique across the entire machine.
Could be a "cousin_rank" since it’s the rank within the "cousin" list below Note that this index may change
when restricting the topology or when inserting a group.

23.11.2.16 unsigned hwloc_obj::memory_arity

Number of Memory children. These children are listed in memory_first_child.

23.11.2.17 struct hwloc_obj∗ hwloc_obj::memory_first_child [read]

First Memory child. NUMA nodes are listed here (memory_arity and memory_first_child)
instead of in the normal children list. See also hwloc_obj_type_is_memory().

23.11.2.18 unsigned hwloc_obj::misc_arity

Number of Misc children. These children are listed in misc_first_child.

23.11.2.19 struct hwloc_obj∗ hwloc_obj::misc_first_child [read]

First Misc child. Misc objects are listed here (misc_arity and misc_first_child) instead of in
the normal children list.

23.11.2.20 char∗ hwloc_obj::name

Object-specific name if any. Mostly used for identifying OS devices and Misc objects where a name string
is more useful than numerical indexes.

23.11.2.21 struct hwloc_obj∗ hwloc_obj::next_cousin [read]

Next object of same type and depth.

23.11.2.22 struct hwloc_obj∗ hwloc_obj::next_sibling [read]

Next object below the same parent (inside the same list of children).

23.11.2.23 hwloc_nodeset_t hwloc_obj::nodeset

NUMA nodes covered by this object or containing this object. This is the set of NUMA nodes for which
there are NUMA node objects in the topology under or above this object, i.e. which are known to be
physically contained in this object or containing it and known how (the children path between this object
and the NUMA node objects).

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.11 hwloc_obj Struct Reference 233

In the end, these nodes are those that are close to the current object.

If the HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM configuration flag is set, some of these nodes
may not be allowed for allocation, see hwloc_topology_get_allowed_nodeset().

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit may
be set in nodeset.

Note:

All objects have non-NULL CPU and node sets except Misc and I/O objects.
Its value must not be changed, hwloc_bitmap_dup() must be used instead.

23.11.2.24 unsigned hwloc_obj::os_index

OS-provided physical index number. It is not guaranteed unique across the entire machine, except for PUs
and NUMA nodes. Set to HWLOC_UNKNOWN_INDEX if unknown or irrelevant for this object.

23.11.2.25 struct hwloc_obj∗ hwloc_obj::parent [read]

Parent, NULL if root (Machine object).

23.11.2.26 struct hwloc_obj∗ hwloc_obj::prev_cousin [read]

Previous object of same type and depth.

23.11.2.27 struct hwloc_obj∗ hwloc_obj::prev_sibling [read]

Previous object below the same parent (inside the same list of children).

23.11.2.28 unsigned hwloc_obj::sibling_rank

Index in parent’s children[] array. Or the index in parent’s Memory, I/O or Misc children list.

23.11.2.29 char∗ hwloc_obj::subtype

Subtype string to better describe the type field.

23.11.2.30 int hwloc_obj::symmetric_subtree

Set if the subtree of normal objects below this object is symmetric, which means all normal children and
their children have identical subtrees. Memory, I/O and Misc children are ignored.

If set in the topology root object, lstopo may export the topology as a synthetic string.

23.11.2.31 hwloc_uint64_t hwloc_obj::total_memory

Total memory (in bytes) in NUMA nodes below this object.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

234 Data Structure Documentation

23.11.2.32 hwloc_obj_type_t hwloc_obj::type

Type of object.

23.11.2.33 void∗ hwloc_obj::userdata

Application-given private data pointer, initialized to NULL, use it as you wish. See hwloc_topology_set_-
userdata_export_callback() in hwloc/export.h if you wish to export this field to XML.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.12 hwloc_obj_attr_u Union Reference 235

23.12 hwloc_obj_attr_u Union Reference

Object type-specific Attributes.

#include <hwloc.h>

Data Structures

• struct hwloc_bridge_attr_s
Bridge specific Object Attribues.

• struct hwloc_cache_attr_s
Cache-specific Object Attributes.

• struct hwloc_group_attr_s
Group-specific Object Attributes.

• struct hwloc_numanode_attr_s
NUMA node-specific Object Attributes.

• struct hwloc_osdev_attr_s
OS Device specific Object Attributes.

• struct hwloc_pcidev_attr_s
PCI Device specific Object Attributes.

Data Fields

• struct hwloc_obj_attr_u::hwloc_numanode_attr_s numanode
• struct hwloc_obj_attr_u::hwloc_cache_attr_s cache
• struct hwloc_obj_attr_u::hwloc_group_attr_s group
• struct hwloc_obj_attr_u::hwloc_pcidev_attr_s pcidev
• struct hwloc_obj_attr_u::hwloc_bridge_attr_s bridge
• struct hwloc_obj_attr_u::hwloc_osdev_attr_s osdev

23.12.1 Detailed Description

Object type-specific Attributes.

23.12.2 Field Documentation

23.12.2.1 struct hwloc_obj_attr_u::hwloc_bridge_attr_s hwloc_obj_attr_u::bridge

Bridge specific Object Attribues.

23.12.2.2 struct hwloc_obj_attr_u::hwloc_cache_attr_s hwloc_obj_attr_u::cache

Cache-specific Object Attributes.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

236 Data Structure Documentation

23.12.2.3 struct hwloc_obj_attr_u::hwloc_group_attr_s hwloc_obj_attr_u::group

Group-specific Object Attributes.

23.12.2.4 struct hwloc_obj_attr_u::hwloc_numanode_attr_s hwloc_obj_attr_u::numanode

NUMA node-specific Object Attributes.

23.12.2.5 struct hwloc_obj_attr_u::hwloc_osdev_attr_s hwloc_obj_attr_u::osdev

OS Device specific Object Attributes.

23.12.2.6 struct hwloc_obj_attr_u::hwloc_pcidev_attr_s hwloc_obj_attr_u::pcidev

PCI Device specific Object Attributes.

The documentation for this union was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.13 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference 237

23.13 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference

OS Device specific Object Attributes.

#include <hwloc.h>

Data Fields

• hwloc_obj_osdev_type_t type

23.13.1 Detailed Description

OS Device specific Object Attributes.

23.13.2 Field Documentation

23.13.2.1 hwloc_obj_osdev_type_t hwloc_obj_attr_u::hwloc_osdev_attr_s::type

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

238 Data Structure Documentation

23.14 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference

PCI Device specific Object Attributes.

#include <hwloc.h>

Data Fields

• unsigned short domain
• unsigned char bus
• unsigned char dev
• unsigned char func
• unsigned short class_id
• unsigned short vendor_id
• unsigned short device_id
• unsigned short subvendor_id
• unsigned short subdevice_id
• unsigned char revision
• float linkspeed

23.14.1 Detailed Description

PCI Device specific Object Attributes.

23.14.2 Field Documentation

23.14.2.1 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::bus

23.14.2.2 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::class_id

23.14.2.3 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::dev

23.14.2.4 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::device_id

23.14.2.5 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::domain

23.14.2.6 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::func

23.14.2.7 float hwloc_obj_attr_u::hwloc_pcidev_attr_s::linkspeed

23.14.2.8 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::revision

23.14.2.9 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subdevice_id

23.14.2.10 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subvendor_id

23.14.2.11 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::vendor_id

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.15 hwloc_topology_cpubind_support Struct Reference 239

23.15 hwloc_topology_cpubind_support Struct Reference

Flags describing actual PU binding support for this topology.

#include <hwloc.h>

Data Fields

• unsigned char set_thisproc_cpubind
• unsigned char get_thisproc_cpubind
• unsigned char set_proc_cpubind
• unsigned char get_proc_cpubind
• unsigned char set_thisthread_cpubind
• unsigned char get_thisthread_cpubind
• unsigned char set_thread_cpubind
• unsigned char get_thread_cpubind
• unsigned char get_thisproc_last_cpu_location
• unsigned char get_proc_last_cpu_location
• unsigned char get_thisthread_last_cpu_location

23.15.1 Detailed Description

Flags describing actual PU binding support for this topology. A flag may be set even if the feature isn’t
supported in all cases (e.g. binding to random sets of non-contiguous objects).

23.15.2 Field Documentation

23.15.2.1 unsigned char hwloc_topology_cpubind_support::get_proc_cpubind

Getting the binding of a whole given process is supported.

23.15.2.2 unsigned char hwloc_topology_cpubind_support::get_proc_last_cpu_location

Getting the last processors where a whole process ran is supported

23.15.2.3 unsigned char hwloc_topology_cpubind_support::get_thisproc_cpubind

Getting the binding of the whole current process is supported.

23.15.2.4 unsigned char hwloc_topology_cpubind_support::get_thisproc_last_cpu_location

Getting the last processors where the whole current process ran is supported

23.15.2.5 unsigned char hwloc_topology_cpubind_support::get_thisthread_cpubind

Getting the binding of the current thread only is supported.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

240 Data Structure Documentation

23.15.2.6 unsigned char hwloc_topology_cpubind_support::get_thisthread_last_cpu_location

Getting the last processors where the current thread ran is supported

23.15.2.7 unsigned char hwloc_topology_cpubind_support::get_thread_cpubind

Getting the binding of a given thread only is supported.

23.15.2.8 unsigned char hwloc_topology_cpubind_support::set_proc_cpubind

Binding a whole given process is supported.

23.15.2.9 unsigned char hwloc_topology_cpubind_support::set_thisproc_cpubind

Binding the whole current process is supported.

23.15.2.10 unsigned char hwloc_topology_cpubind_support::set_thisthread_cpubind

Binding the current thread only is supported.

23.15.2.11 unsigned char hwloc_topology_cpubind_support::set_thread_cpubind

Binding a given thread only is supported.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.16 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference 241

23.16 hwloc_topology_diff_u::hwloc_topology_diff_generic_s
Struct Reference

#include <diff.h>

Data Fields

• hwloc_topology_diff_type_t type
• union hwloc_topology_diff_u ∗ next

23.16.1 Field Documentation

23.16.1.1 union hwloc_topology_diff_u∗ hwloc_topology_diff_u::hwloc_topology_diff_generic_-
s::next [write]

23.16.1.2 hwloc_topology_diff_type_t hwloc_topology_diff_u::hwloc_topology_diff_generic_-
s::type

The documentation for this struct was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

242 Data Structure Documentation

23.17 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_-
attr_generic_s Struct Reference

#include <diff.h>

Data Fields

• hwloc_topology_diff_obj_attr_type_t type

23.17.1 Field Documentation

23.17.1.1 hwloc_topology_diff_obj_attr_type_t hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_generic_s::type

The documentation for this struct was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.18 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference 243

23.18 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s
Struct Reference

#include <diff.h>

Data Fields

• hwloc_topology_diff_type_t type
• union hwloc_topology_diff_u ∗ next
• int obj_depth
• unsigned obj_index
• union hwloc_topology_diff_obj_attr_u diff

23.18.1 Field Documentation

23.18.1.1 union hwloc_topology_diff_obj_attr_u hwloc_topology_diff_u::hwloc_topology_diff_-
obj_attr_s::diff [write]

23.18.1.2 union hwloc_topology_diff_u∗ hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_-
s::next [write]

23.18.1.3 int hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::obj_depth

23.18.1.4 unsigned hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::obj_index

23.18.1.5 hwloc_topology_diff_type_t hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_-
s::type

The documentation for this struct was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

244 Data Structure Documentation

23.19 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_-
attr_string_s Struct Reference

String attribute modification with an optional name.

#include <diff.h>

Data Fields

• hwloc_topology_diff_obj_attr_type_t type
• char ∗ name
• char ∗ oldvalue
• char ∗ newvalue

23.19.1 Detailed Description

String attribute modification with an optional name.

23.19.2 Field Documentation

23.19.2.1 char∗ hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s::name

23.19.2.2 char∗ hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_-
s::newvalue

23.19.2.3 char∗ hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_-
s::oldvalue

23.19.2.4 hwloc_topology_diff_obj_attr_type_t hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_string_s::type

The documentation for this struct was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.20 hwloc_topology_diff_obj_attr_u Union Reference 245

23.20 hwloc_topology_diff_obj_attr_u Union Reference

One object attribute difference.

#include <diff.h>

Data Structures

• struct hwloc_topology_diff_obj_attr_generic_s
• struct hwloc_topology_diff_obj_attr_string_s

String attribute modification with an optional name.

• struct hwloc_topology_diff_obj_attr_uint64_s
Integer attribute modification with an optional index.

Data Fields

• struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s generic
• struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s uint64
• struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s string

23.20.1 Detailed Description

One object attribute difference.

23.20.2 Field Documentation

23.20.2.1 struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s
hwloc_topology_diff_obj_attr_u::generic

23.20.2.2 struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s
hwloc_topology_diff_obj_attr_u::string

String attribute modification with an optional name.

23.20.2.3 struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s
hwloc_topology_diff_obj_attr_u::uint64

Integer attribute modification with an optional index.

The documentation for this union was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

246 Data Structure Documentation

23.21 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_-
attr_uint64_s Struct Reference

Integer attribute modification with an optional index.

#include <diff.h>

Data Fields

• hwloc_topology_diff_obj_attr_type_t type
• hwloc_uint64_t index
• hwloc_uint64_t oldvalue
• hwloc_uint64_t newvalue

23.21.1 Detailed Description

Integer attribute modification with an optional index.

23.21.2 Field Documentation

23.21.2.1 hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_-
uint64_s::index

23.21.2.2 hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_-
uint64_s::newvalue

23.21.2.3 hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_-
uint64_s::oldvalue

23.21.2.4 hwloc_topology_diff_obj_attr_type_t hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_uint64_s::type

The documentation for this struct was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.22 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference 247

23.22 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s
Struct Reference

#include <diff.h>

Data Fields

• hwloc_topology_diff_type_t type
• union hwloc_topology_diff_u ∗ next
• int obj_depth
• unsigned obj_index

23.22.1 Field Documentation

23.22.1.1 union hwloc_topology_diff_u∗ hwloc_topology_diff_u::hwloc_topology_diff_too_-
complex_s::next [write]

23.22.1.2 int hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::obj_depth

23.22.1.3 unsigned hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::obj_index

23.22.1.4 hwloc_topology_diff_type_t hwloc_topology_diff_u::hwloc_topology_diff_too_-
complex_s::type

The documentation for this struct was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

248 Data Structure Documentation

23.23 hwloc_topology_diff_u Union Reference

One element of a difference list between two topologies.

#include <diff.h>

Data Structures

• struct hwloc_topology_diff_generic_s
• struct hwloc_topology_diff_obj_attr_s
• struct hwloc_topology_diff_too_complex_s

Data Fields

• struct hwloc_topology_diff_u::hwloc_topology_diff_generic_s generic
• struct hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s obj_attr
• struct hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s too_complex

23.23.1 Detailed Description

One element of a difference list between two topologies.

23.23.2 Field Documentation

23.23.2.1 struct hwloc_topology_diff_u::hwloc_topology_diff_generic_s
hwloc_topology_diff_u::generic

23.23.2.2 struct hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s
hwloc_topology_diff_u::obj_attr

23.23.2.3 struct hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s
hwloc_topology_diff_u::too_complex

The documentation for this union was generated from the following file:

• diff.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.24 hwloc_topology_discovery_support Struct Reference 249

23.24 hwloc_topology_discovery_support Struct Reference

Flags describing actual discovery support for this topology.

#include <hwloc.h>

Data Fields

• unsigned char pu
• unsigned char numa
• unsigned char numa_memory

23.24.1 Detailed Description

Flags describing actual discovery support for this topology.

23.24.2 Field Documentation

23.24.2.1 unsigned char hwloc_topology_discovery_support::numa

Detecting the number of NUMA nodes is supported.

23.24.2.2 unsigned char hwloc_topology_discovery_support::numa_memory

Detecting the amount of memory in NUMA nodes is supported.

23.24.2.3 unsigned char hwloc_topology_discovery_support::pu

Detecting the number of PU objects is supported.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

250 Data Structure Documentation

23.25 hwloc_topology_membind_support Struct Reference

Flags describing actual memory binding support for this topology.

#include <hwloc.h>

Data Fields

• unsigned char set_thisproc_membind
• unsigned char get_thisproc_membind
• unsigned char set_proc_membind
• unsigned char get_proc_membind
• unsigned char set_thisthread_membind
• unsigned char get_thisthread_membind
• unsigned char set_area_membind
• unsigned char get_area_membind
• unsigned char alloc_membind
• unsigned char firsttouch_membind
• unsigned char bind_membind
• unsigned char interleave_membind
• unsigned char nexttouch_membind
• unsigned char migrate_membind
• unsigned char get_area_memlocation

23.25.1 Detailed Description

Flags describing actual memory binding support for this topology. A flag may be set even if the feature
isn’t supported in all cases (e.g. binding to random sets of non-contiguous objects).

23.25.2 Field Documentation

23.25.2.1 unsigned char hwloc_topology_membind_support::alloc_membind

Allocating a bound memory area is supported.

23.25.2.2 unsigned char hwloc_topology_membind_support::bind_membind

Bind policy is supported.

23.25.2.3 unsigned char hwloc_topology_membind_support::firsttouch_membind

First-touch policy is supported.

23.25.2.4 unsigned char hwloc_topology_membind_support::get_area_membind

Getting the binding of a given memory area is supported.

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

23.25 hwloc_topology_membind_support Struct Reference 251

23.25.2.5 unsigned char hwloc_topology_membind_support::get_area_memlocation

Getting the last NUMA nodes where a memory area was allocated is supported

23.25.2.6 unsigned char hwloc_topology_membind_support::get_proc_membind

Getting the binding of a whole given process is supported.

23.25.2.7 unsigned char hwloc_topology_membind_support::get_thisproc_membind

Getting the binding of the whole current process is supported.

23.25.2.8 unsigned char hwloc_topology_membind_support::get_thisthread_membind

Getting the binding of the current thread only is supported.

23.25.2.9 unsigned char hwloc_topology_membind_support::interleave_membind

Interleave policy is supported.

23.25.2.10 unsigned char hwloc_topology_membind_support::migrate_membind

Migration flags is supported.

23.25.2.11 unsigned char hwloc_topology_membind_support::nexttouch_membind

Next-touch migration policy is supported.

23.25.2.12 unsigned char hwloc_topology_membind_support::set_area_membind

Binding a given memory area is supported.

23.25.2.13 unsigned char hwloc_topology_membind_support::set_proc_membind

Binding a whole given process is supported.

23.25.2.14 unsigned char hwloc_topology_membind_support::set_thisproc_membind

Binding the whole current process is supported.

23.25.2.15 unsigned char hwloc_topology_membind_support::set_thisthread_membind

Binding the current thread only is supported.

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

252 Data Structure Documentation

23.26 hwloc_topology_support Struct Reference

Set of flags describing actual support for this topology.

#include <hwloc.h>

Data Fields

• struct hwloc_topology_discovery_support ∗ discovery
• struct hwloc_topology_cpubind_support ∗ cpubind
• struct hwloc_topology_membind_support ∗ membind

23.26.1 Detailed Description

Set of flags describing actual support for this topology. This is retrieved with hwloc_topology_get_-
support() and will be valid until the topology object is destroyed. Note: the values are correct only after
discovery.

23.26.2 Field Documentation

23.26.2.1 struct hwloc_topology_cpubind_support∗ hwloc_topology_support::cpubind [read]

23.26.2.2 struct hwloc_topology_discovery_support∗ hwloc_topology_support::discovery
[read]

23.26.2.3 struct hwloc_topology_membind_support∗ hwloc_topology_support::membind
[read]

The documentation for this struct was generated from the following file:

• hwloc.h

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

Index

abi
hwloc_component, 220

Add or remove distances between objects, 174
alloc_membind

hwloc_topology_membind_support, 250
API version, 97
arity

hwloc_obj, 230
associativity

hwloc_obj_attr_u::hwloc_cache_attr_s, 219
attr

hwloc_obj, 230

bind_membind
hwloc_topology_membind_support, 250

bridge
hwloc_obj_attr_u, 235

bus
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238

cache
hwloc_obj_attr_u, 235

Changing the Source of Topology Discovery, 126
children

hwloc_obj, 230
class_id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238
complete_cpuset

hwloc_obj, 230
complete_nodeset

hwloc_obj, 230
Components and Plugins: Core functions to be used

by components, 206
Components and Plugins: Discovery backends, 204
Components and Plugins: Discovery components,

203
Components and Plugins: Filtering objects, 209
Components and Plugins: finding PCI objects dur-

ing other discoveries, 212
Components and Plugins: Generic components, 205
Components and Plugins: helpers for PCI discovery,

210
Consulting and Adding Key-Value Info Attributes,

114
Converting between CPU sets and node sets, 152

Converting between Object Types and Attributes,
and Strings, 112

count
hwloc_obj_attr_u::hwloc_numanode_attr_-

s::hwloc_memory_page_type_s, 227
CPU and node sets of entire topologies, 149
CPU binding, 115
cpubind

hwloc_topology_support, 252
cpuset

hwloc_obj, 230

data
hwloc_component, 220

depth
hwloc_obj, 231
hwloc_obj_attr_u::hwloc_bridge_attr_s, 217
hwloc_obj_attr_u::hwloc_cache_attr_s, 219
hwloc_obj_attr_u::hwloc_group_attr_s, 225

dev
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238

device_id
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238

diff
hwloc_topology_diff_u::hwloc_topology_-

diff_obj_attr_s, 243
disable

hwloc_backend, 215
discover

hwloc_backend, 215
discovery

hwloc_topology_support, 252
Distributing items over a topology, 148
domain

hwloc_obj_attr_u::hwloc_bridge_attr_s, 217
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238

downstream
hwloc_obj_attr_u::hwloc_bridge_attr_s, 217

downstream_type
hwloc_obj_attr_u::hwloc_bridge_attr_s, 217

enabled_by_default
hwloc_disc_component, 222

excludes
hwloc_disc_component, 222

254 INDEX

Exporting Topologies to Synthetic, 169
Exporting Topologies to XML, 165

finalize
hwloc_component, 220

Finding I/O objects, 153
Finding Objects covering at least CPU set, 139
Finding Objects inside a CPU set, 136
Finding objects, miscellaneous helpers, 146
first_child

hwloc_obj, 231
firsttouch_membind

hwloc_topology_membind_support, 250
flags

hwloc_backend, 215
hwloc_component, 220

func
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238

generic
hwloc_topology_diff_obj_attr_u, 245
hwloc_topology_diff_u, 248

get_area_membind
hwloc_topology_membind_support, 250

get_area_memlocation
hwloc_topology_membind_support, 250

get_pci_busid_cpuset
hwloc_backend, 216

get_proc_cpubind
hwloc_topology_cpubind_support, 239

get_proc_last_cpu_location
hwloc_topology_cpubind_support, 239

get_proc_membind
hwloc_topology_membind_support, 251

get_thisproc_cpubind
hwloc_topology_cpubind_support, 239

get_thisproc_last_cpu_location
hwloc_topology_cpubind_support, 239

get_thisproc_membind
hwloc_topology_membind_support, 251

get_thisthread_cpubind
hwloc_topology_cpubind_support, 239

get_thisthread_last_cpu_location
hwloc_topology_cpubind_support, 239

get_thisthread_membind
hwloc_topology_membind_support, 251

get_thread_cpubind
hwloc_topology_cpubind_support, 240

gp_index
hwloc_obj, 231

group
hwloc_obj_attr_u, 235

Helpers for consulting distance matrices, 173

HWLOC_COMPONENT_TYPE_DISC
hwlocality_generic_components, 205

HWLOC_COMPONENT_TYPE_XML
hwlocality_generic_components, 205

HWLOC_CPUBIND_NOMEMBIND
hwlocality_cpubinding, 116

HWLOC_CPUBIND_PROCESS
hwlocality_cpubinding, 116

HWLOC_CPUBIND_STRICT
hwlocality_cpubinding, 116

HWLOC_CPUBIND_THREAD
hwlocality_cpubinding, 116

HWLOC_DISC_COMPONENT_TYPE_CPU
hwlocality_disc_components, 203

HWLOC_DISC_COMPONENT_TYPE_GLOBAL
hwlocality_disc_components, 203

HWLOC_DISC_COMPONENT_TYPE_MISC
hwlocality_disc_components, 203

HWLOC_DISTANCES_ADD_FLAG_GROUP
hwlocality_distances_add, 174

HWLOC_DISTANCES_ADD_FLAG_GROUP_-
INACCURATE

hwlocality_distances_add, 174
HWLOC_DISTANCES_KIND_FROM_OS

hwlocality_distances_get, 171
HWLOC_DISTANCES_KIND_FROM_USER

hwlocality_distances_get, 171
HWLOC_DISTANCES_KIND_MEANS_-

BANDWIDTH
hwlocality_distances_get, 171

HWLOC_DISTANCES_KIND_MEANS_-
LATENCY

hwlocality_distances_get, 171
HWLOC_DISTRIB_FLAG_REVERSE

hwlocality_helper_distribute, 148
HWLOC_MEMBIND_BIND

hwlocality_membinding, 121
HWLOC_MEMBIND_BYNODESET

hwlocality_membinding, 121
HWLOC_MEMBIND_DEFAULT

hwlocality_membinding, 121
HWLOC_MEMBIND_FIRSTTOUCH

hwlocality_membinding, 121
HWLOC_MEMBIND_INTERLEAVE

hwlocality_membinding, 121
HWLOC_MEMBIND_MIGRATE

hwlocality_membinding, 121
HWLOC_MEMBIND_MIXED

hwlocality_membinding, 121
HWLOC_MEMBIND_NEXTTOUCH

hwlocality_membinding, 121
HWLOC_MEMBIND_NOCPUBIND

hwlocality_membinding, 121
HWLOC_MEMBIND_PROCESS

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 255

hwlocality_membinding, 120
HWLOC_MEMBIND_STRICT

hwlocality_membinding, 121
HWLOC_MEMBIND_THREAD

hwlocality_membinding, 120
HWLOC_OBJ_BRIDGE

hwlocality_object_types, 102
HWLOC_OBJ_BRIDGE_HOST

hwlocality_object_types, 101
HWLOC_OBJ_BRIDGE_PCI

hwlocality_object_types, 101
HWLOC_OBJ_CACHE_DATA

hwlocality_object_types, 101
HWLOC_OBJ_CACHE_INSTRUCTION

hwlocality_object_types, 101
HWLOC_OBJ_CACHE_UNIFIED

hwlocality_object_types, 101
HWLOC_OBJ_CORE

hwlocality_object_types, 102
HWLOC_OBJ_GROUP

hwlocality_object_types, 102
HWLOC_OBJ_L1CACHE

hwlocality_object_types, 102
HWLOC_OBJ_L1ICACHE

hwlocality_object_types, 102
HWLOC_OBJ_L2CACHE

hwlocality_object_types, 102
HWLOC_OBJ_L2ICACHE

hwlocality_object_types, 102
HWLOC_OBJ_L3CACHE

hwlocality_object_types, 102
HWLOC_OBJ_L3ICACHE

hwlocality_object_types, 102
HWLOC_OBJ_L4CACHE

hwlocality_object_types, 102
HWLOC_OBJ_L5CACHE

hwlocality_object_types, 102
HWLOC_OBJ_MACHINE

hwlocality_object_types, 102
HWLOC_OBJ_MISC

hwlocality_object_types, 103
HWLOC_OBJ_NUMANODE

hwlocality_object_types, 102
HWLOC_OBJ_OS_DEVICE

hwlocality_object_types, 103
HWLOC_OBJ_OSDEV_BLOCK

hwlocality_object_types, 101
HWLOC_OBJ_OSDEV_COPROC

hwlocality_object_types, 102
HWLOC_OBJ_OSDEV_DMA

hwlocality_object_types, 102
HWLOC_OBJ_OSDEV_GPU

hwlocality_object_types, 101
HWLOC_OBJ_OSDEV_NETWORK

hwlocality_object_types, 102
HWLOC_OBJ_OSDEV_OPENFABRICS

hwlocality_object_types, 102
HWLOC_OBJ_PACKAGE

hwlocality_object_types, 102
HWLOC_OBJ_PCI_DEVICE

hwlocality_object_types, 103
HWLOC_OBJ_PU

hwlocality_object_types, 102
HWLOC_OBJ_TYPE_MAX

hwlocality_object_types, 103
HWLOC_RESTRICT_FLAG_ADAPT_IO

hwlocality_tinker, 133
HWLOC_RESTRICT_FLAG_ADAPT_MISC

hwlocality_tinker, 133
HWLOC_RESTRICT_FLAG_REMOVE_-

CPULESS
hwlocality_tinker, 133

HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE
hwlocality_diff, 197

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR
hwlocality_diff, 198

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO
hwlocality_diff, 198

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_-
NAME

hwlocality_diff, 197
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE

hwlocality_diff, 197
HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX

hwlocality_diff, 198
HWLOC_TOPOLOGY_EXPORT_-

SYNTHETIC_FLAG_IGNORE_-
MEMORY

hwlocality_syntheticexport, 169
HWLOC_TOPOLOGY_EXPORT_-

SYNTHETIC_FLAG_NO_ATTRS
hwlocality_syntheticexport, 169

HWLOC_TOPOLOGY_EXPORT_-
SYNTHETIC_FLAG_NO_-
EXTENDED_TYPES

hwlocality_syntheticexport, 169
HWLOC_TOPOLOGY_EXPORT_-

SYNTHETIC_FLAG_V1
hwlocality_syntheticexport, 169

HWLOC_TOPOLOGY_EXPORT_XML_FLAG_-
V1

hwlocality_xmlexport, 165
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM

hwlocality_configuration, 129
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_-

ALLOWED_RESOURCES
hwlocality_configuration, 129

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

256 INDEX

HWLOC_TOPOLOGY_FLAG_WHOLE_-
SYSTEM

hwlocality_configuration, 129
HWLOC_TYPE_DEPTH_BRIDGE

hwlocality_levels, 108
HWLOC_TYPE_DEPTH_MISC

hwlocality_levels, 108
HWLOC_TYPE_DEPTH_MULTIPLE

hwlocality_levels, 108
HWLOC_TYPE_DEPTH_NUMANODE

hwlocality_levels, 108
HWLOC_TYPE_DEPTH_OS_DEVICE

hwlocality_levels, 108
HWLOC_TYPE_DEPTH_PCI_DEVICE

hwlocality_levels, 108
HWLOC_TYPE_DEPTH_UNKNOWN

hwlocality_levels, 108
HWLOC_TYPE_FILTER_KEEP_ALL

hwlocality_configuration, 130
HWLOC_TYPE_FILTER_KEEP_IMPORTANT

hwlocality_configuration, 130
HWLOC_TYPE_FILTER_KEEP_NONE

hwlocality_configuration, 130
HWLOC_TYPE_FILTER_KEEP_STRUCTURE

hwlocality_configuration, 130
HWLOC_TYPE_UNORDERED

hwlocality_object_types, 101
hwloc__insert_object_by_cpuset

hwlocality_components_core_funcs, 206
hwloc_alloc

hwlocality_membinding, 122
hwloc_alloc_membind

hwlocality_membinding, 122
hwloc_alloc_membind_policy

hwlocality_membinding, 122
hwloc_alloc_setup_object

hwlocality_components_core_funcs, 206
HWLOC_API_VERSION

hwlocality_api_version, 97
hwloc_backend, 215

disable, 215
discover, 215
flags, 215
get_pci_busid_cpuset, 216
is_thissystem, 216
private_data, 216

hwloc_backend_alloc
hwlocality_disc_backends, 204

hwloc_backend_enable
hwlocality_disc_backends, 204

hwloc_bitmap_allbut
hwlocality_bitmap, 157

hwloc_bitmap_alloc
hwlocality_bitmap, 157

hwloc_bitmap_alloc_full
hwlocality_bitmap, 157

hwloc_bitmap_and
hwlocality_bitmap, 157

hwloc_bitmap_andnot
hwlocality_bitmap, 157

hwloc_bitmap_asprintf
hwlocality_bitmap, 158

hwloc_bitmap_clr
hwlocality_bitmap, 158

hwloc_bitmap_clr_range
hwlocality_bitmap, 158

hwloc_bitmap_compare
hwlocality_bitmap, 158

hwloc_bitmap_compare_first
hwlocality_bitmap, 158

hwloc_bitmap_copy
hwlocality_bitmap, 159

hwloc_bitmap_dup
hwlocality_bitmap, 159

hwloc_bitmap_fill
hwlocality_bitmap, 159

hwloc_bitmap_first
hwlocality_bitmap, 159

hwloc_bitmap_first_unset
hwlocality_bitmap, 159

hwloc_bitmap_foreach_begin
hwlocality_bitmap, 156

hwloc_bitmap_foreach_end
hwlocality_bitmap, 157

hwloc_bitmap_free
hwlocality_bitmap, 159

hwloc_bitmap_from_ith_ulong
hwlocality_bitmap, 159

hwloc_bitmap_from_ulong
hwlocality_bitmap, 160

hwloc_bitmap_intersects
hwlocality_bitmap, 160

hwloc_bitmap_isequal
hwlocality_bitmap, 160

hwloc_bitmap_isfull
hwlocality_bitmap, 160

hwloc_bitmap_isincluded
hwlocality_bitmap, 160

hwloc_bitmap_isset
hwlocality_bitmap, 160

hwloc_bitmap_iszero
hwlocality_bitmap, 161

hwloc_bitmap_last
hwlocality_bitmap, 161

hwloc_bitmap_last_unset
hwlocality_bitmap, 161

hwloc_bitmap_list_asprintf
hwlocality_bitmap, 161

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 257

hwloc_bitmap_list_snprintf
hwlocality_bitmap, 161

hwloc_bitmap_list_sscanf
hwlocality_bitmap, 161

hwloc_bitmap_next
hwlocality_bitmap, 162

hwloc_bitmap_next_unset
hwlocality_bitmap, 162

hwloc_bitmap_not
hwlocality_bitmap, 162

hwloc_bitmap_only
hwlocality_bitmap, 162

hwloc_bitmap_or
hwlocality_bitmap, 162

hwloc_bitmap_set
hwlocality_bitmap, 162

hwloc_bitmap_set_ith_ulong
hwlocality_bitmap, 162

hwloc_bitmap_set_range
hwlocality_bitmap, 162

hwloc_bitmap_singlify
hwlocality_bitmap, 162

hwloc_bitmap_snprintf
hwlocality_bitmap, 163

hwloc_bitmap_sscanf
hwlocality_bitmap, 163

hwloc_bitmap_t
hwlocality_bitmap, 157

hwloc_bitmap_taskset_asprintf
hwlocality_bitmap, 163

hwloc_bitmap_taskset_snprintf
hwlocality_bitmap, 163

hwloc_bitmap_taskset_sscanf
hwlocality_bitmap, 163

hwloc_bitmap_to_ith_ulong
hwlocality_bitmap, 164

hwloc_bitmap_to_ulong
hwlocality_bitmap, 164

hwloc_bitmap_weight
hwlocality_bitmap, 164

hwloc_bitmap_xor
hwlocality_bitmap, 164

hwloc_bitmap_zero
hwlocality_bitmap, 164

hwloc_bridge_covers_pcibus
hwlocality_advanced_io, 153

hwloc_compare_types
hwlocality_object_types, 103

hwloc_compare_types_e
hwlocality_object_types, 101

hwloc_component, 220
abi, 220
data, 220
finalize, 220

flags, 220
init, 220
type, 221

HWLOC_COMPONENT_ABI
hwlocality_api_version, 97

hwloc_component_type_e
hwlocality_generic_components, 205

hwloc_component_type_t
hwlocality_generic_components, 205

hwloc_const_bitmap_t
hwlocality_bitmap, 157

hwloc_const_cpuset_t
hwlocality_object_sets, 99

hwloc_const_nodeset_t
hwlocality_object_sets, 99

hwloc_cpubind_flags_t
hwlocality_cpubinding, 116

hwloc_cpuset_from_glibc_sched_affinity
hwlocality_glibc_sched, 182

hwloc_cpuset_from_linux_libnuma_bitmask
hwlocality_linux_libnuma_bitmask, 180

hwloc_cpuset_from_linux_libnuma_ulongs
hwlocality_linux_libnuma_ulongs, 178

hwloc_cpuset_from_nodeset
hwlocality_helper_nodeset_convert, 152

hwloc_cpuset_t
hwlocality_object_sets, 99

hwloc_cpuset_to_glibc_sched_affinity
hwlocality_glibc_sched, 182

hwloc_cpuset_to_linux_libnuma_bitmask
hwlocality_linux_libnuma_bitmask, 180

hwloc_cpuset_to_linux_libnuma_ulongs
hwlocality_linux_libnuma_ulongs, 178

hwloc_cpuset_to_nodeset
hwlocality_helper_nodeset_convert, 152

hwloc_cuda_get_device_cpuset
hwlocality_cuda, 185

hwloc_cuda_get_device_osdev
hwlocality_cuda, 185

hwloc_cuda_get_device_osdev_by_index
hwlocality_cuda, 185

hwloc_cuda_get_device_pci_ids
hwlocality_cuda, 186

hwloc_cuda_get_device_pcidev
hwlocality_cuda, 186

hwloc_cudart_get_device_cpuset
hwlocality_cudart, 187

hwloc_cudart_get_device_osdev_by_index
hwlocality_cudart, 187

hwloc_cudart_get_device_pci_ids
hwlocality_cudart, 187

hwloc_cudart_get_device_pcidev
hwlocality_cudart, 188

hwloc_disc_component, 222

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

258 INDEX

enabled_by_default, 222
excludes, 222
instantiate, 222
name, 222
priority, 222
type, 223

hwloc_disc_component_type_e
hwlocality_disc_components, 203

hwloc_disc_component_type_t
hwlocality_disc_components, 203

hwloc_distances_add
hwlocality_distances_add, 174

hwloc_distances_add_flag_e
hwlocality_distances_add, 174

hwloc_distances_get
hwlocality_distances_get, 172

hwloc_distances_get_by_depth
hwlocality_distances_get, 172

hwloc_distances_get_by_type
hwlocality_distances_get, 172

hwloc_distances_kind_e
hwlocality_distances_get, 171

hwloc_distances_obj_index
hwlocality_distances_consult, 173

hwloc_distances_obj_pair_values
hwlocality_distances_consult, 173

hwloc_distances_release
hwlocality_distances_get, 172

hwloc_distances_remove
hwlocality_distances_add, 174

hwloc_distances_remove_by_depth
hwlocality_distances_add, 174

hwloc_distances_remove_by_type
hwlocality_distances_add, 175

hwloc_distances_s, 224
kind, 224
nbobjs, 224
objs, 224
values, 224

hwloc_distrib
hwlocality_helper_distribute, 148

hwloc_distrib_flags_e
hwlocality_helper_distribute, 148

hwloc_export_obj_userdata
hwlocality_xmlexport, 165

hwloc_export_obj_userdata_base64
hwlocality_xmlexport, 166

hwloc_filter_check_keep_object
hwlocality_components_filtering, 209

hwloc_filter_check_keep_object_type
hwlocality_components_filtering, 209

hwloc_filter_check_osdev_subtype_important
hwlocality_components_filtering, 209

hwloc_filter_check_pcidev_subtype_important

hwlocality_components_filtering, 209
hwloc_free

hwlocality_membinding, 122
hwloc_free_xmlbuffer

hwlocality_xmlexport, 166
hwloc_get_ancestor_obj_by_depth

hwlocality_helper_ancestors, 141
hwloc_get_ancestor_obj_by_type

hwlocality_helper_ancestors, 141
hwloc_get_api_version

hwlocality_api_version, 98
hwloc_get_area_membind

hwlocality_membinding, 122
hwloc_get_area_memlocation

hwlocality_membinding, 123
hwloc_get_cache_covering_cpuset

hwlocality_helper_find_cache, 145
hwloc_get_cache_type_depth

hwlocality_helper_find_cache, 145
hwloc_get_child_covering_cpuset

hwlocality_helper_find_covering, 139
hwloc_get_closest_objs

hwlocality_helper_find_misc, 146
hwloc_get_common_ancestor_obj

hwlocality_helper_ancestors, 141
hwloc_get_cpubind

hwlocality_cpubinding, 117
hwloc_get_depth_type

hwlocality_levels, 109
hwloc_get_first_largest_obj_inside_cpuset

hwlocality_helper_find_inside, 136
hwloc_get_largest_objs_inside_cpuset

hwlocality_helper_find_inside, 136
hwloc_get_last_cpu_location

hwlocality_cpubinding, 117
hwloc_get_membind

hwlocality_membinding, 123
hwloc_get_memory_parents_depth

hwlocality_levels, 109
hwloc_get_nbobjs_by_depth

hwlocality_levels, 109
hwloc_get_nbobjs_by_type

hwlocality_levels, 109
hwloc_get_nbobjs_inside_cpuset_by_depth

hwlocality_helper_find_inside, 136
hwloc_get_nbobjs_inside_cpuset_by_type

hwlocality_helper_find_inside, 137
hwloc_get_next_bridge

hwlocality_advanced_io, 153
hwloc_get_next_child

hwlocality_helper_ancestors, 141
hwloc_get_next_obj_by_depth

hwlocality_levels, 109
hwloc_get_next_obj_by_type

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 259

hwlocality_levels, 109
hwloc_get_next_obj_covering_cpuset_by_depth

hwlocality_helper_find_covering, 139
hwloc_get_next_obj_covering_cpuset_by_type

hwlocality_helper_find_covering, 139
hwloc_get_next_obj_inside_cpuset_by_depth

hwlocality_helper_find_inside, 137
hwloc_get_next_obj_inside_cpuset_by_type

hwlocality_helper_find_inside, 137
hwloc_get_next_osdev

hwlocality_advanced_io, 153
hwloc_get_next_pcidev

hwlocality_advanced_io, 153
hwloc_get_non_io_ancestor_obj

hwlocality_advanced_io, 153
hwloc_get_numanode_obj_by_os_index

hwlocality_helper_find_misc, 146
hwloc_get_obj_below_array_by_type

hwlocality_helper_find_misc, 146
hwloc_get_obj_below_by_type

hwlocality_helper_find_misc, 147
hwloc_get_obj_by_depth

hwlocality_levels, 109
hwloc_get_obj_by_type

hwlocality_levels, 110
hwloc_get_obj_covering_cpuset

hwlocality_helper_find_covering, 140
hwloc_get_obj_index_inside_cpuset

hwlocality_helper_find_inside, 137
hwloc_get_obj_inside_cpuset_by_depth

hwlocality_helper_find_inside, 138
hwloc_get_obj_inside_cpuset_by_type

hwlocality_helper_find_inside, 138
hwloc_get_pcidev_by_busid

hwlocality_advanced_io, 154
hwloc_get_pcidev_by_busidstring

hwlocality_advanced_io, 154
hwloc_get_proc_cpubind

hwlocality_cpubinding, 117
hwloc_get_proc_last_cpu_location

hwlocality_cpubinding, 117
hwloc_get_proc_membind

hwlocality_membinding, 124
hwloc_get_pu_obj_by_os_index

hwlocality_helper_find_misc, 147
hwloc_get_root_obj

hwlocality_levels, 110
hwloc_get_shared_cache_covering_obj

hwlocality_helper_find_cache, 145
hwloc_get_thread_cpubind

hwlocality_cpubinding, 117
hwloc_get_type_depth

hwlocality_levels, 110
hwloc_get_type_depth_e

hwlocality_levels, 108
hwloc_get_type_or_above_depth

hwlocality_levels, 110
hwloc_get_type_or_below_depth

hwlocality_levels, 110
hwloc_gl_get_display_by_osdev

hwlocality_gl, 191
hwloc_gl_get_display_osdev_by_name

hwlocality_gl, 191
hwloc_gl_get_display_osdev_by_port_device

hwlocality_gl, 191
hwloc_hide_errors

hwlocality_components_core_funcs, 206
hwloc_ibv_get_device_cpuset

hwlocality_openfabrics, 194
hwloc_ibv_get_device_osdev

hwlocality_openfabrics, 194
hwloc_ibv_get_device_osdev_by_name

hwlocality_openfabrics, 194
hwloc_info_s, 226

name, 226
value, 226

hwloc_insert_object_by_cpuset
hwlocality_components_core_funcs, 206

hwloc_insert_object_by_parent
hwlocality_components_core_funcs, 207

hwloc_intel_mic_get_device_cpuset
hwlocality_intel_mic, 193

hwloc_intel_mic_get_device_osdev_by_index
hwlocality_intel_mic, 193

hwloc_linux_get_tid_cpubind
hwlocality_linux, 176

hwloc_linux_get_tid_last_cpu_location
hwlocality_linux, 176

hwloc_linux_read_path_as_cpumask
hwlocality_linux, 176

hwloc_linux_set_tid_cpubind
hwlocality_linux, 176

hwloc_membind_flags_t
hwlocality_membinding, 120

hwloc_membind_policy_t
hwlocality_membinding, 121

hwloc_nodeset_from_linux_libnuma_bitmask
hwlocality_linux_libnuma_bitmask, 180

hwloc_nodeset_from_linux_libnuma_ulongs
hwlocality_linux_libnuma_ulongs, 178

hwloc_nodeset_t
hwlocality_object_sets, 99

hwloc_nodeset_to_linux_libnuma_bitmask
hwlocality_linux_libnuma_bitmask, 180

hwloc_nodeset_to_linux_libnuma_ulongs
hwlocality_linux_libnuma_ulongs, 179

hwloc_nvml_get_device_cpuset
hwlocality_nvml, 189

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

260 INDEX

hwloc_nvml_get_device_osdev
hwlocality_nvml, 189

hwloc_nvml_get_device_osdev_by_index
hwlocality_nvml, 189

hwloc_obj, 229
arity, 230
attr, 230
children, 230
complete_cpuset, 230
complete_nodeset, 230
cpuset, 230
depth, 231
first_child, 231
gp_index, 231
infos, 231
infos_count, 231
io_arity, 231
io_first_child, 231
last_child, 231
logical_index, 232
memory_arity, 232
memory_first_child, 232
misc_arity, 232
misc_first_child, 232
name, 232
next_cousin, 232
next_sibling, 232
nodeset, 232
os_index, 233
parent, 233
prev_cousin, 233
prev_sibling, 233
sibling_rank, 233
subtype, 233
symmetric_subtree, 233
total_memory, 233
type, 233
userdata, 234

hwloc_obj_add_children_sets
hwlocality_components_core_funcs, 207

hwloc_obj_add_info
hwlocality_info_attr, 114

hwloc_obj_add_other_obj_sets
hwlocality_tinker, 133

hwloc_obj_attr_snprintf
hwlocality_object_strings, 112

hwloc_obj_attr_u, 235
bridge, 235
cache, 235
group, 235
numanode, 236
osdev, 236
pcidev, 236

hwloc_obj_attr_u::hwloc_bridge_attr_s, 217

depth, 217
domain, 217
downstream, 217
downstream_type, 217
pci, 217
secondary_bus, 217
subordinate_bus, 217
upstream, 217
upstream_type, 217

hwloc_obj_attr_u::hwloc_cache_attr_s, 219
associativity, 219
depth, 219
linesize, 219
size, 219
type, 219

hwloc_obj_attr_u::hwloc_group_attr_s, 225
depth, 225
kind, 225
subkind, 225

hwloc_obj_attr_u::hwloc_numanode_attr_s, 228
local_memory, 228
page_types, 228
page_types_len, 228

hwloc_obj_attr_u::hwloc_numanode_attr_-
s::hwloc_memory_page_type_s, 227

count, 227
size, 227

hwloc_obj_attr_u::hwloc_osdev_attr_s, 237
type, 237

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238
bus, 238
class_id, 238
dev, 238
device_id, 238
domain, 238
func, 238
linkspeed, 238
revision, 238
subdevice_id, 238
subvendor_id, 238
vendor_id, 238

hwloc_obj_bridge_type_e
hwlocality_object_types, 101

hwloc_obj_bridge_type_t
hwlocality_object_types, 101

hwloc_obj_cache_type_e
hwlocality_object_types, 101

hwloc_obj_cache_type_t
hwlocality_object_types, 101

hwloc_obj_get_info_by_name
hwlocality_info_attr, 114

hwloc_obj_is_in_subtree
hwlocality_helper_ancestors, 142

hwloc_obj_osdev_type_e

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 261

hwlocality_object_types, 101
hwloc_obj_osdev_type_t

hwlocality_object_types, 101
hwloc_obj_t

hwlocality_objects, 104
hwloc_obj_type_is_cache

hwlocality_helper_types, 143
hwloc_obj_type_is_dcache

hwlocality_helper_types, 143
hwloc_obj_type_is_icache

hwlocality_helper_types, 143
hwloc_obj_type_is_io

hwlocality_helper_types, 143
hwloc_obj_type_is_memory

hwlocality_helper_types, 143
hwloc_obj_type_is_normal

hwlocality_helper_types, 144
HWLOC_OBJ_TYPE_MIN

hwlocality_object_types, 100
hwloc_obj_type_snprintf

hwlocality_object_strings, 112
hwloc_obj_type_string

hwlocality_object_strings, 112
hwloc_obj_type_t

hwlocality_object_types, 102
hwloc_opencl_get_device_cpuset

hwlocality_opencl, 183
hwloc_opencl_get_device_osdev

hwlocality_opencl, 183
hwloc_opencl_get_device_osdev_by_index

hwlocality_opencl, 184
hwloc_pcidisc_check_bridge_type

hwlocality_components_pcidisc, 210
hwloc_pcidisc_find_busid_parent

hwlocality_components_pcifind, 212
hwloc_pcidisc_find_by_busid

hwlocality_components_pcifind, 212
hwloc_pcidisc_find_cap

hwlocality_components_pcidisc, 210
hwloc_pcidisc_find_linkspeed

hwlocality_components_pcidisc, 210
hwloc_pcidisc_setup_bridge_attr

hwlocality_components_pcidisc, 210
hwloc_pcidisc_tree_attach

hwlocality_components_pcidisc, 210
hwloc_pcidisc_tree_insert_by_busid

hwlocality_components_pcidisc, 210
hwloc_plugin_check_namespace

hwlocality_components_core_funcs, 207
hwloc_report_error_t

hwlocality_components_core_funcs, 206
hwloc_report_os_error

hwlocality_components_core_funcs, 208
hwloc_restrict_flags_e

hwlocality_tinker, 133
hwloc_set_area_membind

hwlocality_membinding, 124
hwloc_set_cpubind

hwlocality_cpubinding, 118
hwloc_set_membind

hwlocality_membinding, 124
hwloc_set_proc_cpubind

hwlocality_cpubinding, 118
hwloc_set_proc_membind

hwlocality_membinding, 125
hwloc_set_thread_cpubind

hwlocality_cpubinding, 118
hwloc_shmem_topology_adopt

hwlocality_shmem, 201
hwloc_shmem_topology_get_length

hwlocality_shmem, 202
hwloc_shmem_topology_write

hwlocality_shmem, 202
hwloc_topology_abi_check

hwlocality_creation, 105
hwloc_topology_alloc_group_object

hwlocality_tinker, 133
hwloc_topology_check

hwlocality_creation, 105
hwloc_topology_cpubind_support, 239

get_proc_cpubind, 239
get_proc_last_cpu_location, 239
get_thisproc_cpubind, 239
get_thisproc_last_cpu_location, 239
get_thisthread_cpubind, 239
get_thisthread_last_cpu_location, 239
get_thread_cpubind, 240
set_proc_cpubind, 240
set_thisproc_cpubind, 240
set_thisthread_cpubind, 240
set_thread_cpubind, 240

hwloc_topology_destroy
hwlocality_creation, 106

hwloc_topology_diff_apply
hwlocality_diff, 198

hwloc_topology_diff_apply_flags_e
hwlocality_diff, 197

hwloc_topology_diff_build
hwlocality_diff, 198

hwloc_topology_diff_destroy
hwlocality_diff, 199

hwloc_topology_diff_export_xml
hwlocality_diff, 199

hwloc_topology_diff_export_xmlbuffer
hwlocality_diff, 199

hwloc_topology_diff_load_xml
hwlocality_diff, 199

hwloc_topology_diff_load_xmlbuffer

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

262 INDEX

hwlocality_diff, 199
hwloc_topology_diff_obj_attr_type_e

hwlocality_diff, 197
hwloc_topology_diff_obj_attr_type_t

hwlocality_diff, 197
hwloc_topology_diff_obj_attr_u, 245

generic, 245
string, 245
uint64, 245

hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_generic_s, 242

type, 242
hwloc_topology_diff_obj_attr_u::hwloc_-

topology_diff_obj_attr_string_s, 244
name, 244
newvalue, 244
oldvalue, 244
type, 244

hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_uint64_s, 246

index, 246
newvalue, 246
oldvalue, 246
type, 246

hwloc_topology_diff_t
hwlocality_diff, 197

hwloc_topology_diff_type_e
hwlocality_diff, 198

hwloc_topology_diff_type_t
hwlocality_diff, 197

hwloc_topology_diff_u, 248
generic, 248
obj_attr, 248
too_complex, 248

hwloc_topology_diff_u::hwloc_topology_diff_-
generic_s, 241

next, 241
type, 241

hwloc_topology_diff_u::hwloc_topology_diff_-
obj_attr_s, 243

diff, 243
next, 243
obj_depth, 243
obj_index, 243
type, 243

hwloc_topology_diff_u::hwloc_topology_diff_-
too_complex_s, 247

next, 247
obj_depth, 247
obj_index, 247
type, 247

hwloc_topology_discovery_support, 249
numa, 249
numa_memory, 249

pu, 249
hwloc_topology_dup

hwlocality_creation, 106
hwloc_topology_export_synthetic

hwlocality_syntheticexport, 169
hwloc_topology_export_synthetic_flags_e

hwlocality_syntheticexport, 169
hwloc_topology_export_xml

hwlocality_xmlexport, 166
hwloc_topology_export_xml_flags_e

hwlocality_xmlexport, 165
hwloc_topology_export_xmlbuffer

hwlocality_xmlexport, 166
hwloc_topology_flags_e

hwlocality_configuration, 129
hwloc_topology_get_allowed_cpuset

hwlocality_helper_topology_sets, 149
hwloc_topology_get_allowed_nodeset

hwlocality_helper_topology_sets, 149
hwloc_topology_get_complete_cpuset

hwlocality_helper_topology_sets, 149
hwloc_topology_get_complete_nodeset

hwlocality_helper_topology_sets, 150
hwloc_topology_get_depth

hwlocality_levels, 111
hwloc_topology_get_flags

hwlocality_configuration, 130
hwloc_topology_get_support

hwlocality_configuration, 130
hwloc_topology_get_topology_cpuset

hwlocality_helper_topology_sets, 150
hwloc_topology_get_topology_nodeset

hwlocality_helper_topology_sets, 150
hwloc_topology_get_type_filter

hwlocality_configuration, 130
hwloc_topology_get_userdata

hwlocality_configuration, 131
hwloc_topology_init

hwlocality_creation, 106
hwloc_topology_insert_group_object

hwlocality_tinker, 134
hwloc_topology_insert_misc_object

hwlocality_tinker, 134
hwloc_topology_is_thissystem

hwlocality_configuration, 131
hwloc_topology_load

hwlocality_creation, 106
hwloc_topology_membind_support, 250

alloc_membind, 250
bind_membind, 250
firsttouch_membind, 250
get_area_membind, 250
get_area_memlocation, 250
get_proc_membind, 251

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 263

get_thisproc_membind, 251
get_thisthread_membind, 251
interleave_membind, 251
migrate_membind, 251
nexttouch_membind, 251
set_area_membind, 251
set_proc_membind, 251
set_thisproc_membind, 251
set_thisthread_membind, 251

hwloc_topology_reconnect
hwlocality_components_core_funcs, 208

hwloc_topology_restrict
hwlocality_tinker, 135

hwloc_topology_set_all_types_filter
hwlocality_configuration, 131

hwloc_topology_set_cache_types_filter
hwlocality_configuration, 131

hwloc_topology_set_flags
hwlocality_configuration, 131

hwloc_topology_set_icache_types_filter
hwlocality_configuration, 131

hwloc_topology_set_io_types_filter
hwlocality_configuration, 131

hwloc_topology_set_pid
hwlocality_setsource, 126

hwloc_topology_set_synthetic
hwlocality_setsource, 126

hwloc_topology_set_type_filter
hwlocality_configuration, 131

hwloc_topology_set_userdata
hwlocality_configuration, 132

hwloc_topology_set_userdata_export_callback
hwlocality_xmlexport, 167

hwloc_topology_set_userdata_import_callback
hwlocality_xmlexport, 167

hwloc_topology_set_xml
hwlocality_setsource, 127

hwloc_topology_set_xmlbuffer
hwlocality_setsource, 127

hwloc_topology_support, 252
cpubind, 252
discovery, 252
membind, 252

hwloc_topology_t
hwlocality_creation, 105

hwloc_type_filter_e
hwlocality_configuration, 129

hwloc_type_sscanf
hwlocality_object_strings, 113

hwloc_type_sscanf_as_depth
hwlocality_object_strings, 113

hwlocality_configuration
HWLOC_TOPOLOGY_FLAG_IS_-

THISSYSTEM, 129

HWLOC_TOPOLOGY_FLAG_-
THISSYSTEM_ALLOWED_-
RESOURCES, 129

HWLOC_TOPOLOGY_FLAG_WHOLE_-
SYSTEM, 129

HWLOC_TYPE_FILTER_KEEP_ALL, 130
HWLOC_TYPE_FILTER_KEEP_-

IMPORTANT, 130
HWLOC_TYPE_FILTER_KEEP_NONE, 130
HWLOC_TYPE_FILTER_KEEP_-

STRUCTURE, 130
hwlocality_cpubinding

HWLOC_CPUBIND_NOMEMBIND, 116
HWLOC_CPUBIND_PROCESS, 116
HWLOC_CPUBIND_STRICT, 116
HWLOC_CPUBIND_THREAD, 116

hwlocality_diff
HWLOC_TOPOLOGY_DIFF_APPLY_-

REVERSE, 197
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR,

198
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_-

INFO, 198
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_-

NAME, 197
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_-

SIZE, 197
HWLOC_TOPOLOGY_DIFF_TOO_-

COMPLEX, 198
hwlocality_disc_components

HWLOC_DISC_COMPONENT_TYPE_-
CPU, 203

HWLOC_DISC_COMPONENT_TYPE_-
GLOBAL, 203

HWLOC_DISC_COMPONENT_TYPE_-
MISC, 203

hwlocality_distances_add
HWLOC_DISTANCES_ADD_FLAG_-

GROUP, 174
HWLOC_DISTANCES_ADD_FLAG_-

GROUP_INACCURATE, 174
hwlocality_distances_get

HWLOC_DISTANCES_KIND_FROM_OS,
171

HWLOC_DISTANCES_KIND_FROM_-
USER, 171

HWLOC_DISTANCES_KIND_MEANS_-
BANDWIDTH, 171

HWLOC_DISTANCES_KIND_MEANS_-
LATENCY, 171

hwlocality_generic_components
HWLOC_COMPONENT_TYPE_DISC, 205
HWLOC_COMPONENT_TYPE_XML, 205

hwlocality_helper_distribute

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

264 INDEX

HWLOC_DISTRIB_FLAG_REVERSE, 148
hwlocality_levels

HWLOC_TYPE_DEPTH_BRIDGE, 108
HWLOC_TYPE_DEPTH_MISC, 108
HWLOC_TYPE_DEPTH_MULTIPLE, 108
HWLOC_TYPE_DEPTH_NUMANODE, 108
HWLOC_TYPE_DEPTH_OS_DEVICE, 108
HWLOC_TYPE_DEPTH_PCI_DEVICE, 108
HWLOC_TYPE_DEPTH_UNKNOWN, 108

hwlocality_membinding
HWLOC_MEMBIND_BIND, 121
HWLOC_MEMBIND_BYNODESET, 121
HWLOC_MEMBIND_DEFAULT, 121
HWLOC_MEMBIND_FIRSTTOUCH, 121
HWLOC_MEMBIND_INTERLEAVE, 121
HWLOC_MEMBIND_MIGRATE, 121
HWLOC_MEMBIND_MIXED, 121
HWLOC_MEMBIND_NEXTTOUCH, 121
HWLOC_MEMBIND_NOCPUBIND, 121
HWLOC_MEMBIND_PROCESS, 120
HWLOC_MEMBIND_STRICT, 121
HWLOC_MEMBIND_THREAD, 120

hwlocality_object_types
HWLOC_OBJ_BRIDGE, 102
HWLOC_OBJ_BRIDGE_HOST, 101
HWLOC_OBJ_BRIDGE_PCI, 101
HWLOC_OBJ_CACHE_DATA, 101
HWLOC_OBJ_CACHE_INSTRUCTION,

101
HWLOC_OBJ_CACHE_UNIFIED, 101
HWLOC_OBJ_CORE, 102
HWLOC_OBJ_GROUP, 102
HWLOC_OBJ_L1CACHE, 102
HWLOC_OBJ_L1ICACHE, 102
HWLOC_OBJ_L2CACHE, 102
HWLOC_OBJ_L2ICACHE, 102
HWLOC_OBJ_L3CACHE, 102
HWLOC_OBJ_L3ICACHE, 102
HWLOC_OBJ_L4CACHE, 102
HWLOC_OBJ_L5CACHE, 102
HWLOC_OBJ_MACHINE, 102
HWLOC_OBJ_MISC, 103
HWLOC_OBJ_NUMANODE, 102
HWLOC_OBJ_OS_DEVICE, 103
HWLOC_OBJ_OSDEV_BLOCK, 101
HWLOC_OBJ_OSDEV_COPROC, 102
HWLOC_OBJ_OSDEV_DMA, 102
HWLOC_OBJ_OSDEV_GPU, 101
HWLOC_OBJ_OSDEV_NETWORK, 102
HWLOC_OBJ_OSDEV_OPENFABRICS,

102
HWLOC_OBJ_PACKAGE, 102
HWLOC_OBJ_PCI_DEVICE, 103
HWLOC_OBJ_PU, 102

HWLOC_OBJ_TYPE_MAX, 103
HWLOC_TYPE_UNORDERED, 101

hwlocality_syntheticexport
HWLOC_TOPOLOGY_EXPORT_-

SYNTHETIC_FLAG_IGNORE_-
MEMORY, 169

HWLOC_TOPOLOGY_EXPORT_-
SYNTHETIC_FLAG_NO_ATTRS,
169

HWLOC_TOPOLOGY_EXPORT_-
SYNTHETIC_FLAG_NO_-
EXTENDED_TYPES, 169

HWLOC_TOPOLOGY_EXPORT_-
SYNTHETIC_FLAG_V1, 169

hwlocality_tinker
HWLOC_RESTRICT_FLAG_ADAPT_IO,

133
HWLOC_RESTRICT_FLAG_ADAPT_-

MISC, 133
HWLOC_RESTRICT_FLAG_REMOVE_-

CPULESS, 133
hwlocality_xmlexport

HWLOC_TOPOLOGY_EXPORT_XML_-
FLAG_V1, 165

hwlocality_advanced_io
hwloc_bridge_covers_pcibus, 153
hwloc_get_next_bridge, 153
hwloc_get_next_osdev, 153
hwloc_get_next_pcidev, 153
hwloc_get_non_io_ancestor_obj, 153
hwloc_get_pcidev_by_busid, 154
hwloc_get_pcidev_by_busidstring, 154

hwlocality_api_version
HWLOC_API_VERSION, 97
HWLOC_COMPONENT_ABI, 97
hwloc_get_api_version, 98

hwlocality_bitmap
hwloc_bitmap_allbut, 157
hwloc_bitmap_alloc, 157
hwloc_bitmap_alloc_full, 157
hwloc_bitmap_and, 157
hwloc_bitmap_andnot, 157
hwloc_bitmap_asprintf, 158
hwloc_bitmap_clr, 158
hwloc_bitmap_clr_range, 158
hwloc_bitmap_compare, 158
hwloc_bitmap_compare_first, 158
hwloc_bitmap_copy, 159
hwloc_bitmap_dup, 159
hwloc_bitmap_fill, 159
hwloc_bitmap_first, 159
hwloc_bitmap_first_unset, 159
hwloc_bitmap_foreach_begin, 156
hwloc_bitmap_foreach_end, 157

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 265

hwloc_bitmap_free, 159
hwloc_bitmap_from_ith_ulong, 159
hwloc_bitmap_from_ulong, 160
hwloc_bitmap_intersects, 160
hwloc_bitmap_isequal, 160
hwloc_bitmap_isfull, 160
hwloc_bitmap_isincluded, 160
hwloc_bitmap_isset, 160
hwloc_bitmap_iszero, 161
hwloc_bitmap_last, 161
hwloc_bitmap_last_unset, 161
hwloc_bitmap_list_asprintf, 161
hwloc_bitmap_list_snprintf, 161
hwloc_bitmap_list_sscanf, 161
hwloc_bitmap_next, 162
hwloc_bitmap_next_unset, 162
hwloc_bitmap_not, 162
hwloc_bitmap_only, 162
hwloc_bitmap_or, 162
hwloc_bitmap_set, 162
hwloc_bitmap_set_ith_ulong, 162
hwloc_bitmap_set_range, 162
hwloc_bitmap_singlify, 162
hwloc_bitmap_snprintf, 163
hwloc_bitmap_sscanf, 163
hwloc_bitmap_t, 157
hwloc_bitmap_taskset_asprintf, 163
hwloc_bitmap_taskset_snprintf, 163
hwloc_bitmap_taskset_sscanf, 163
hwloc_bitmap_to_ith_ulong, 164
hwloc_bitmap_to_ulong, 164
hwloc_bitmap_weight, 164
hwloc_bitmap_xor, 164
hwloc_bitmap_zero, 164
hwloc_const_bitmap_t, 157

hwlocality_components_core_funcs
hwloc__insert_object_by_cpuset, 206
hwloc_alloc_setup_object, 206
hwloc_hide_errors, 206
hwloc_insert_object_by_cpuset, 206
hwloc_insert_object_by_parent, 207
hwloc_obj_add_children_sets, 207
hwloc_plugin_check_namespace, 207
hwloc_report_error_t, 206
hwloc_report_os_error, 208
hwloc_topology_reconnect, 208

hwlocality_components_filtering
hwloc_filter_check_keep_object, 209
hwloc_filter_check_keep_object_type, 209
hwloc_filter_check_osdev_subtype_important,

209
hwloc_filter_check_pcidev_subtype_-

important, 209
hwlocality_components_pcidisc

hwloc_pcidisc_check_bridge_type, 210
hwloc_pcidisc_find_cap, 210
hwloc_pcidisc_find_linkspeed, 210
hwloc_pcidisc_setup_bridge_attr, 210
hwloc_pcidisc_tree_attach, 210
hwloc_pcidisc_tree_insert_by_busid, 210

hwlocality_components_pcifind
hwloc_pcidisc_find_busid_parent, 212
hwloc_pcidisc_find_by_busid, 212

hwlocality_configuration
hwloc_topology_flags_e, 129
hwloc_topology_get_flags, 130
hwloc_topology_get_support, 130
hwloc_topology_get_type_filter, 130
hwloc_topology_get_userdata, 131
hwloc_topology_is_thissystem, 131
hwloc_topology_set_all_types_filter, 131
hwloc_topology_set_cache_types_filter, 131
hwloc_topology_set_flags, 131
hwloc_topology_set_icache_types_filter, 131
hwloc_topology_set_io_types_filter, 131
hwloc_topology_set_type_filter, 131
hwloc_topology_set_userdata, 132
hwloc_type_filter_e, 129

hwlocality_cpubinding
hwloc_cpubind_flags_t, 116
hwloc_get_cpubind, 117
hwloc_get_last_cpu_location, 117
hwloc_get_proc_cpubind, 117
hwloc_get_proc_last_cpu_location, 117
hwloc_get_thread_cpubind, 117
hwloc_set_cpubind, 118
hwloc_set_proc_cpubind, 118
hwloc_set_thread_cpubind, 118

hwlocality_creation
hwloc_topology_abi_check, 105
hwloc_topology_check, 105
hwloc_topology_destroy, 106
hwloc_topology_dup, 106
hwloc_topology_init, 106
hwloc_topology_load, 106
hwloc_topology_t, 105

hwlocality_cuda
hwloc_cuda_get_device_cpuset, 185
hwloc_cuda_get_device_osdev, 185
hwloc_cuda_get_device_osdev_by_index, 185
hwloc_cuda_get_device_pci_ids, 186
hwloc_cuda_get_device_pcidev, 186

hwlocality_cudart
hwloc_cudart_get_device_cpuset, 187
hwloc_cudart_get_device_osdev_by_index,

187
hwloc_cudart_get_device_pci_ids, 187
hwloc_cudart_get_device_pcidev, 188

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

266 INDEX

hwlocality_diff
hwloc_topology_diff_apply, 198
hwloc_topology_diff_apply_flags_e, 197
hwloc_topology_diff_build, 198
hwloc_topology_diff_destroy, 199
hwloc_topology_diff_export_xml, 199
hwloc_topology_diff_export_xmlbuffer, 199
hwloc_topology_diff_load_xml, 199
hwloc_topology_diff_load_xmlbuffer, 199
hwloc_topology_diff_obj_attr_type_e, 197
hwloc_topology_diff_obj_attr_type_t, 197
hwloc_topology_diff_t, 197
hwloc_topology_diff_type_e, 198
hwloc_topology_diff_type_t, 197

hwlocality_disc_backends
hwloc_backend_alloc, 204
hwloc_backend_enable, 204

hwlocality_disc_components
hwloc_disc_component_type_e, 203
hwloc_disc_component_type_t, 203

hwlocality_distances_add
hwloc_distances_add, 174
hwloc_distances_add_flag_e, 174
hwloc_distances_remove, 174
hwloc_distances_remove_by_depth, 174
hwloc_distances_remove_by_type, 175

hwlocality_distances_consult
hwloc_distances_obj_index, 173
hwloc_distances_obj_pair_values, 173

hwlocality_distances_get
hwloc_distances_get, 172
hwloc_distances_get_by_depth, 172
hwloc_distances_get_by_type, 172
hwloc_distances_kind_e, 171
hwloc_distances_release, 172

hwlocality_generic_components
hwloc_component_type_e, 205
hwloc_component_type_t, 205

hwlocality_gl
hwloc_gl_get_display_by_osdev, 191
hwloc_gl_get_display_osdev_by_name, 191
hwloc_gl_get_display_osdev_by_port_device,

191
hwlocality_glibc_sched

hwloc_cpuset_from_glibc_sched_affinity, 182
hwloc_cpuset_to_glibc_sched_affinity, 182

hwlocality_helper_ancestors
hwloc_get_ancestor_obj_by_depth, 141
hwloc_get_ancestor_obj_by_type, 141
hwloc_get_common_ancestor_obj, 141
hwloc_get_next_child, 141
hwloc_obj_is_in_subtree, 142

hwlocality_helper_distribute
hwloc_distrib, 148

hwloc_distrib_flags_e, 148
hwlocality_helper_find_cache

hwloc_get_cache_covering_cpuset, 145
hwloc_get_cache_type_depth, 145
hwloc_get_shared_cache_covering_obj, 145

hwlocality_helper_find_covering
hwloc_get_child_covering_cpuset, 139
hwloc_get_next_obj_covering_cpuset_by_-

depth, 139
hwloc_get_next_obj_covering_cpuset_by_-

type, 139
hwloc_get_obj_covering_cpuset, 140

hwlocality_helper_find_inside
hwloc_get_first_largest_obj_inside_cpuset,

136
hwloc_get_largest_objs_inside_cpuset, 136
hwloc_get_nbobjs_inside_cpuset_by_depth,

136
hwloc_get_nbobjs_inside_cpuset_by_type,

137
hwloc_get_next_obj_inside_cpuset_by_depth,

137
hwloc_get_next_obj_inside_cpuset_by_type,

137
hwloc_get_obj_index_inside_cpuset, 137
hwloc_get_obj_inside_cpuset_by_depth, 138
hwloc_get_obj_inside_cpuset_by_type, 138

hwlocality_helper_find_misc
hwloc_get_closest_objs, 146
hwloc_get_numanode_obj_by_os_index, 146
hwloc_get_obj_below_array_by_type, 146
hwloc_get_obj_below_by_type, 147
hwloc_get_pu_obj_by_os_index, 147

hwlocality_helper_nodeset_convert
hwloc_cpuset_from_nodeset, 152
hwloc_cpuset_to_nodeset, 152

hwlocality_helper_topology_sets
hwloc_topology_get_allowed_cpuset, 149
hwloc_topology_get_allowed_nodeset, 149
hwloc_topology_get_complete_cpuset, 149
hwloc_topology_get_complete_nodeset, 150
hwloc_topology_get_topology_cpuset, 150
hwloc_topology_get_topology_nodeset, 150

hwlocality_helper_types
hwloc_obj_type_is_cache, 143
hwloc_obj_type_is_dcache, 143
hwloc_obj_type_is_icache, 143
hwloc_obj_type_is_io, 143
hwloc_obj_type_is_memory, 143
hwloc_obj_type_is_normal, 144

hwlocality_info_attr
hwloc_obj_add_info, 114
hwloc_obj_get_info_by_name, 114

hwlocality_intel_mic

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 267

hwloc_intel_mic_get_device_cpuset, 193
hwloc_intel_mic_get_device_osdev_by_-

index, 193
hwlocality_levels

hwloc_get_depth_type, 109
hwloc_get_memory_parents_depth, 109
hwloc_get_nbobjs_by_depth, 109
hwloc_get_nbobjs_by_type, 109
hwloc_get_next_obj_by_depth, 109
hwloc_get_next_obj_by_type, 109
hwloc_get_obj_by_depth, 109
hwloc_get_obj_by_type, 110
hwloc_get_root_obj, 110
hwloc_get_type_depth, 110
hwloc_get_type_depth_e, 108
hwloc_get_type_or_above_depth, 110
hwloc_get_type_or_below_depth, 110
hwloc_topology_get_depth, 111

hwlocality_linux
hwloc_linux_get_tid_cpubind, 176
hwloc_linux_get_tid_last_cpu_location, 176
hwloc_linux_read_path_as_cpumask, 176
hwloc_linux_set_tid_cpubind, 176

hwlocality_linux_libnuma_bitmask
hwloc_cpuset_from_linux_libnuma_bitmask,

180
hwloc_cpuset_to_linux_libnuma_bitmask,

180
hwloc_nodeset_from_linux_libnuma_bitmask,

180
hwloc_nodeset_to_linux_libnuma_bitmask,

180
hwlocality_linux_libnuma_ulongs

hwloc_cpuset_from_linux_libnuma_ulongs,
178

hwloc_cpuset_to_linux_libnuma_ulongs, 178
hwloc_nodeset_from_linux_libnuma_ulongs,

178
hwloc_nodeset_to_linux_libnuma_ulongs,

179
hwlocality_membinding

hwloc_alloc, 122
hwloc_alloc_membind, 122
hwloc_alloc_membind_policy, 122
hwloc_free, 122
hwloc_get_area_membind, 122
hwloc_get_area_memlocation, 123
hwloc_get_membind, 123
hwloc_get_proc_membind, 124
hwloc_membind_flags_t, 120
hwloc_membind_policy_t, 121
hwloc_set_area_membind, 124
hwloc_set_membind, 124
hwloc_set_proc_membind, 125

hwlocality_nvml
hwloc_nvml_get_device_cpuset, 189
hwloc_nvml_get_device_osdev, 189
hwloc_nvml_get_device_osdev_by_index,

189
hwlocality_object_sets

hwloc_const_cpuset_t, 99
hwloc_const_nodeset_t, 99
hwloc_cpuset_t, 99
hwloc_nodeset_t, 99

hwlocality_object_strings
hwloc_obj_attr_snprintf, 112
hwloc_obj_type_snprintf, 112
hwloc_obj_type_string, 112
hwloc_type_sscanf, 113
hwloc_type_sscanf_as_depth, 113

hwlocality_object_types
hwloc_compare_types, 103
hwloc_compare_types_e, 101
hwloc_obj_bridge_type_e, 101
hwloc_obj_bridge_type_t, 101
hwloc_obj_cache_type_e, 101
hwloc_obj_cache_type_t, 101
hwloc_obj_osdev_type_e, 101
hwloc_obj_osdev_type_t, 101
HWLOC_OBJ_TYPE_MIN, 100
hwloc_obj_type_t, 102

hwlocality_objects
hwloc_obj_t, 104

hwlocality_opencl
hwloc_opencl_get_device_cpuset, 183
hwloc_opencl_get_device_osdev, 183
hwloc_opencl_get_device_osdev_by_index,

184
hwlocality_openfabrics

hwloc_ibv_get_device_cpuset, 194
hwloc_ibv_get_device_osdev, 194
hwloc_ibv_get_device_osdev_by_name, 194

hwlocality_setsource
hwloc_topology_set_pid, 126
hwloc_topology_set_synthetic, 126
hwloc_topology_set_xml, 127
hwloc_topology_set_xmlbuffer, 127

hwlocality_shmem
hwloc_shmem_topology_adopt, 201
hwloc_shmem_topology_get_length, 202
hwloc_shmem_topology_write, 202

hwlocality_syntheticexport
hwloc_topology_export_synthetic, 169
hwloc_topology_export_synthetic_flags_e,

169
hwlocality_tinker

hwloc_obj_add_other_obj_sets, 133
hwloc_restrict_flags_e, 133

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

268 INDEX

hwloc_topology_alloc_group_object, 133
hwloc_topology_insert_group_object, 134
hwloc_topology_insert_misc_object, 134
hwloc_topology_restrict, 135

hwlocality_xmlexport
hwloc_export_obj_userdata, 165
hwloc_export_obj_userdata_base64, 166
hwloc_free_xmlbuffer, 166
hwloc_topology_export_xml, 166
hwloc_topology_export_xml_flags_e, 165
hwloc_topology_export_xmlbuffer, 166
hwloc_topology_set_userdata_export_-

callback, 167
hwloc_topology_set_userdata_import_-

callback, 167

index
hwloc_topology_diff_obj_attr_u::hwloc_-

topology_diff_obj_attr_uint64_s, 246
infos

hwloc_obj, 231
infos_count

hwloc_obj, 231
init

hwloc_component, 220
instantiate

hwloc_disc_component, 222
interleave_membind

hwloc_topology_membind_support, 251
Interoperability with glibc sched affinity, 182
Interoperability with Intel Xeon Phi (MIC), 193
Interoperability with Linux libnuma bitmask, 180
Interoperability with Linux libnuma unsigned long

masks, 178
Interoperability with OpenCL, 183
Interoperability with OpenFabrics, 194
Interoperability with OpenGL displays, 191
Interoperability with the CUDA Driver API, 185
Interoperability with the CUDA Runtime API, 187
Interoperability with the NVIDIA Management Li-

brary, 189
io_arity

hwloc_obj, 231
io_first_child

hwloc_obj, 231
is_thissystem

hwloc_backend, 216

kind
hwloc_distances_s, 224
hwloc_obj_attr_u::hwloc_group_attr_s, 225

Kinds of object Type, 143

last_child

hwloc_obj, 231
linesize

hwloc_obj_attr_u::hwloc_cache_attr_s, 219
linkspeed

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238
Linux-specific helpers, 176
local_memory

hwloc_obj_attr_u::hwloc_numanode_attr_s,
228

logical_index
hwloc_obj, 232

Looking at Ancestor and Child Objects, 141
Looking at Cache Objects, 145

membind
hwloc_topology_support, 252

Memory binding, 119
memory_arity

hwloc_obj, 232
memory_first_child

hwloc_obj, 232
migrate_membind

hwloc_topology_membind_support, 251
misc_arity

hwloc_obj, 232
misc_first_child

hwloc_obj, 232
Modifying a loaded Topology, 133

name
hwloc_disc_component, 222
hwloc_info_s, 226
hwloc_obj, 232
hwloc_topology_diff_obj_attr_u::hwloc_-

topology_diff_obj_attr_string_s, 244
nbobjs

hwloc_distances_s, 224
Netloc API, 213
netloc_api

NETLOC_ERROR, 213
NETLOC_ERROR_EMPTY, 213
NETLOC_ERROR_EXISTS, 213
NETLOC_ERROR_MAX, 213
NETLOC_ERROR_MULTIPLE, 213
NETLOC_ERROR_NOENT, 213
NETLOC_ERROR_NOT_FOUND, 213
NETLOC_ERROR_NOT_IMPL, 213
NETLOC_ERROR_NOTDIR, 213
NETLOC_SUCCESS, 213

NETLOC_ERROR
netloc_api, 213

NETLOC_ERROR_EMPTY
netloc_api, 213

NETLOC_ERROR_EXISTS

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

INDEX 269

netloc_api, 213
NETLOC_ERROR_MAX

netloc_api, 213
NETLOC_ERROR_MULTIPLE

netloc_api, 213
NETLOC_ERROR_NOENT

netloc_api, 213
NETLOC_ERROR_NOT_FOUND

netloc_api, 213
NETLOC_ERROR_NOT_IMPL

netloc_api, 213
NETLOC_ERROR_NOTDIR

netloc_api, 213
NETLOC_SUCCESS

netloc_api, 213
newvalue

hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_string_s, 244

hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_uint64_s, 246

next
hwloc_topology_diff_u::hwloc_topology_-

diff_generic_s, 241
hwloc_topology_diff_u::hwloc_topology_-

diff_obj_attr_s, 243
hwloc_topology_diff_u::hwloc_topology_-

diff_too_complex_s, 247
next_cousin

hwloc_obj, 232
next_sibling

hwloc_obj, 232
nexttouch_membind

hwloc_topology_membind_support, 251
nodeset

hwloc_obj, 232
numa

hwloc_topology_discovery_support, 249
numa_memory

hwloc_topology_discovery_support, 249
numanode

hwloc_obj_attr_u, 236

obj_attr
hwloc_topology_diff_u, 248

obj_depth
hwloc_topology_diff_u::hwloc_topology_-

diff_obj_attr_s, 243
hwloc_topology_diff_u::hwloc_topology_-

diff_too_complex_s, 247
obj_index

hwloc_topology_diff_u::hwloc_topology_-
diff_obj_attr_s, 243

hwloc_topology_diff_u::hwloc_topology_-
diff_too_complex_s, 247

Object levels, depths and types, 108
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),

99
Object Structure and Attributes, 104
Object Types, 100
objs

hwloc_distances_s, 224
oldvalue

hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_string_s, 244

hwloc_topology_diff_obj_attr_u::hwloc_-
topology_diff_obj_attr_uint64_s, 246

os_index
hwloc_obj, 233

osdev
hwloc_obj_attr_u, 236

page_types
hwloc_obj_attr_u::hwloc_numanode_attr_s,

228
page_types_len

hwloc_obj_attr_u::hwloc_numanode_attr_s,
228

parent
hwloc_obj, 233

pci
hwloc_obj_attr_u::hwloc_bridge_attr_s, 217

pcidev
hwloc_obj_attr_u, 236

prev_cousin
hwloc_obj, 233

prev_sibling
hwloc_obj, 233

priority
hwloc_disc_component, 222

private_data
hwloc_backend, 216

pu
hwloc_topology_discovery_support, 249

Retrieve distances between objects, 171
revision

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238

secondary_bus
hwloc_obj_attr_u::hwloc_bridge_attr_s, 217

set_area_membind
hwloc_topology_membind_support, 251

set_proc_cpubind
hwloc_topology_cpubind_support, 240

set_proc_membind
hwloc_topology_membind_support, 251

set_thisproc_cpubind
hwloc_topology_cpubind_support, 240

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

270 INDEX

set_thisproc_membind
hwloc_topology_membind_support, 251

set_thisthread_cpubind
hwloc_topology_cpubind_support, 240

set_thisthread_membind
hwloc_topology_membind_support, 251

set_thread_cpubind
hwloc_topology_cpubind_support, 240

Sharing topologies between processes, 201
sibling_rank

hwloc_obj, 233
size

hwloc_obj_attr_u::hwloc_cache_attr_s, 219
hwloc_obj_attr_u::hwloc_numanode_attr_-

s::hwloc_memory_page_type_s, 227
string

hwloc_topology_diff_obj_attr_u, 245
subdevice_id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238
subkind

hwloc_obj_attr_u::hwloc_group_attr_s, 225
subordinate_bus

hwloc_obj_attr_u::hwloc_bridge_attr_s, 217
subtype

hwloc_obj, 233
subvendor_id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238
symmetric_subtree

hwloc_obj, 233

The bitmap API, 155
too_complex

hwloc_topology_diff_u, 248
Topology Creation and Destruction, 105
Topology Detection Configuration and Query, 128
Topology differences, 196
total_memory

hwloc_obj, 233
type

hwloc_component, 221
hwloc_disc_component, 223
hwloc_obj, 233
hwloc_obj_attr_u::hwloc_cache_attr_s, 219
hwloc_obj_attr_u::hwloc_osdev_attr_s, 237
hwloc_topology_diff_obj_attr_u::hwloc_-

topology_diff_obj_attr_generic_s, 242
hwloc_topology_diff_obj_attr_u::hwloc_-

topology_diff_obj_attr_string_s, 244
hwloc_topology_diff_obj_attr_u::hwloc_-

topology_diff_obj_attr_uint64_s, 246
hwloc_topology_diff_u::hwloc_topology_-

diff_generic_s, 241
hwloc_topology_diff_u::hwloc_topology_-

diff_obj_attr_s, 243

hwloc_topology_diff_u::hwloc_topology_-
diff_too_complex_s, 247

uint64
hwloc_topology_diff_obj_attr_u, 245

upstream
hwloc_obj_attr_u::hwloc_bridge_attr_s, 217

upstream_type
hwloc_obj_attr_u::hwloc_bridge_attr_s, 217

userdata
hwloc_obj, 234

value
hwloc_info_s, 226

values
hwloc_distances_s, 224

vendor_id
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 238

Generated on Fri May 24 04:00:59 2019 for Hardware Locality (hwloc) by Doxygen

	Hardware Locality
	Introduction
	Installation
	Basic Installation
	Installing from a Git clone

	Questions and Bugs

	Hardware Locality (hwloc) Introduction
	hwloc Summary
	hwloc Installation
	Command-line Examples
	Programming Interface
	Portability
	API Example

	History / Credits
	Further Reading

	Terms and Definitions
	Objects
	Indexes and Sets
	Hierarchy, Tree and Levels

	Command-Line Tools
	lstopo and lstopo-no-graphics
	hwloc-bind
	hwloc-calc
	hwloc-info
	hwloc-distrib
	hwloc-ps
	hwloc-annotate
	hwloc-diff, hwloc-patch and hwloc-compress-dir
	hwloc-dump-hwdata
	hwloc-gather-topology and hwloc-gather-cpuid

	Environment Variables
	CPU and Memory Binding Overview
	I/O Devices
	Enabling and requirements
	I/O objects
	OS devices
	PCI devices and bridges
	Consulting I/O devices and binding
	Examples

	Miscellaneous objects
	Misc objects added by hwloc
	Annotating topologies with Misc objects

	Object attributes
	Normal attributes
	Custom string infos
	Hardware Platform Information
	Operating System Information
	hwloc Information
	CPU Information
	OS Device Information
	Other Object-specific Information
	User-Given Information

	Importing and exporting topologies from/to XML files
	libxml2 and minimalistic XML backends
	XML import error management

	Synthetic topologies
	Synthetic description string
	Loading a synthetic topology
	Exporting a topology as a synthetic string

	Interoperability With Other Software
	Thread Safety
	Components and plugins
	Components enabled by default
	Selecting which components to use
	Loading components from plugins
	Adding new discovery components and plugins
	Basics of discovery components
	Registering a new discovery component

	Existing components and plugins

	Embedding hwloc in Other Software
	Using hwloc's M4 Embedding Capabilities
	Example Embedding hwloc

	Frequently Asked Questions
	Concepts
	I only need binding, why should I use hwloc ?
	Should I use logical or physical/OS indexes? and how?
	hwloc is only a structural model, it ignores performance models, memory bandwidth, etc.?
	hwloc only has a one-dimensional view of the architecture, it ignores distances?
	What are these Group objects in my topology?
	What happens if my topology is asymmetric?
	What happens to my topology if I disable symmetric multithreading, hyper-threading, etc. in the system?
	How may I ignore symmetric multithreading, hyper-threading, etc. in hwloc?

	Advanced
	I do not want hwloc to rediscover my enormous machine topology every time I rerun a process
	How many topologies may I use in my program?
	How to avoid memory waste when manipulating multiple similar topologies?
	How do I annotate the topology with private notes?

	Caveats
	Why is hwloc slow?
	Does hwloc require privileged access?
	What should I do when hwloc reports `¨operating system`¨ warnings?
	Why does Valgrind complain about hwloc memory leaks?
	How do I handle ABI breaks and API upgrades?

	Platform-specific
	How do I find the local MCDRAM NUMA node on Intel Xeon Phi processor?
	Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?
	How do I build for Intel Xeon Phi coprocessor?
	How do I build hwloc for BlueGene/Q?
	How do I build hwloc for Windows?
	How to get useful topology information on NetBSD?
	Why does binding fail on AIX?

	Upgrading to the hwloc 2.0 API
	New Organization of NUMA nodes and Memory
	Memory children
	Examples
	NUMA level and depth
	Finding Local NUMA nodes and looking at Children and Parents

	4 Kinds of Objects and Children
	I/O and Misc children
	Kinds of objects

	HWLOC_OBJ_CACHE replaced
	allowed_cpuset and allowed_nodeset only in the main topology
	Object depths are now signed int
	Memory attributes become NUMANode-specific
	Topology configuration changes
	XML changes
	Distances API totally rewritten
	Return values of functions
	Misc API changes
	API removals and deprecations

	Network Locality (netloc)
	Netloc Summary
	Supported Networks

	Netloc Installation
	Setup
	Topology display
	Generate the JSON file
	Using netloc_draw

	Netloc with Scotch
	Introduction
	Setup
	Tools and API
	Build Scotch architectures
	Build Scotch sub-architectures
	Mapping of processes

	Module Index
	Modules

	Data Structure Index
	Data Structures

	Module Documentation
	API version
	Define Documentation
	HWLOC_API_VERSION
	HWLOC_COMPONENT_ABI

	Function Documentation
	hwloc_get_api_version

	Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
	Detailed Description
	Typedef Documentation
	hwloc_const_cpuset_t
	hwloc_const_nodeset_t
	hwloc_cpuset_t
	hwloc_nodeset_t

	Object Types
	Define Documentation
	HWLOC_OBJ_TYPE_MIN

	Typedef Documentation
	hwloc_obj_bridge_type_t
	hwloc_obj_cache_type_t
	hwloc_obj_osdev_type_t

	Enumeration Type Documentation
	hwloc_compare_types_e
	hwloc_obj_bridge_type_e
	hwloc_obj_cache_type_e
	hwloc_obj_osdev_type_e
	hwloc_obj_type_t

	Function Documentation
	hwloc_compare_types

	Object Structure and Attributes
	Typedef Documentation
	hwloc_obj_t

	Topology Creation and Destruction
	Typedef Documentation
	hwloc_topology_t

	Function Documentation
	hwloc_topology_abi_check
	hwloc_topology_check
	hwloc_topology_destroy
	hwloc_topology_dup
	hwloc_topology_init
	hwloc_topology_load

	Object levels, depths and types
	Detailed Description
	Enumeration Type Documentation
	hwloc_get_type_depth_e

	Function Documentation
	hwloc_get_depth_type
	hwloc_get_memory_parents_depth
	hwloc_get_nbobjs_by_depth
	hwloc_get_nbobjs_by_type
	hwloc_get_next_obj_by_depth
	hwloc_get_next_obj_by_type
	hwloc_get_obj_by_depth
	hwloc_get_obj_by_type
	hwloc_get_root_obj
	hwloc_get_type_depth
	hwloc_get_type_or_above_depth
	hwloc_get_type_or_below_depth
	hwloc_topology_get_depth

	Converting between Object Types and Attributes, and Strings
	Function Documentation
	hwloc_obj_attr_snprintf
	hwloc_obj_type_snprintf
	hwloc_obj_type_string
	hwloc_type_sscanf
	hwloc_type_sscanf_as_depth

	Consulting and Adding Key-Value Info Attributes
	Function Documentation
	hwloc_obj_add_info
	hwloc_obj_get_info_by_name

	CPU binding
	Detailed Description
	Enumeration Type Documentation
	hwloc_cpubind_flags_t

	Function Documentation
	hwloc_get_cpubind
	hwloc_get_last_cpu_location
	hwloc_get_proc_cpubind
	hwloc_get_proc_last_cpu_location
	hwloc_get_thread_cpubind
	hwloc_set_cpubind
	hwloc_set_proc_cpubind
	hwloc_set_thread_cpubind

	Memory binding
	Detailed Description
	Enumeration Type Documentation
	hwloc_membind_flags_t
	hwloc_membind_policy_t

	Function Documentation
	hwloc_alloc
	hwloc_alloc_membind
	hwloc_alloc_membind_policy
	hwloc_free
	hwloc_get_area_membind
	hwloc_get_area_memlocation
	hwloc_get_membind
	hwloc_get_proc_membind
	hwloc_set_area_membind
	hwloc_set_membind
	hwloc_set_proc_membind

	Changing the Source of Topology Discovery
	Detailed Description
	Function Documentation
	hwloc_topology_set_pid
	hwloc_topology_set_synthetic
	hwloc_topology_set_xml
	hwloc_topology_set_xmlbuffer

	Topology Detection Configuration and Query
	Detailed Description
	Enumeration Type Documentation
	hwloc_topology_flags_e
	hwloc_type_filter_e

	Function Documentation
	hwloc_topology_get_flags
	hwloc_topology_get_support
	hwloc_topology_get_type_filter
	hwloc_topology_get_userdata
	hwloc_topology_is_thissystem
	hwloc_topology_set_all_types_filter
	hwloc_topology_set_cache_types_filter
	hwloc_topology_set_flags
	hwloc_topology_set_icache_types_filter
	hwloc_topology_set_io_types_filter
	hwloc_topology_set_type_filter
	hwloc_topology_set_userdata

	Modifying a loaded Topology
	Enumeration Type Documentation
	hwloc_restrict_flags_e

	Function Documentation
	hwloc_obj_add_other_obj_sets
	hwloc_topology_alloc_group_object
	hwloc_topology_insert_group_object
	hwloc_topology_insert_misc_object
	hwloc_topology_restrict

	Finding Objects inside a CPU set
	Function Documentation
	hwloc_get_first_largest_obj_inside_cpuset
	hwloc_get_largest_objs_inside_cpuset
	hwloc_get_nbobjs_inside_cpuset_by_depth
	hwloc_get_nbobjs_inside_cpuset_by_type
	hwloc_get_next_obj_inside_cpuset_by_depth
	hwloc_get_next_obj_inside_cpuset_by_type
	hwloc_get_obj_index_inside_cpuset
	hwloc_get_obj_inside_cpuset_by_depth
	hwloc_get_obj_inside_cpuset_by_type

	Finding Objects covering at least CPU set
	Function Documentation
	hwloc_get_child_covering_cpuset
	hwloc_get_next_obj_covering_cpuset_by_depth
	hwloc_get_next_obj_covering_cpuset_by_type
	hwloc_get_obj_covering_cpuset

	Looking at Ancestor and Child Objects
	Detailed Description
	Function Documentation
	hwloc_get_ancestor_obj_by_depth
	hwloc_get_ancestor_obj_by_type
	hwloc_get_common_ancestor_obj
	hwloc_get_next_child
	hwloc_obj_is_in_subtree

	Kinds of object Type
	Detailed Description
	Function Documentation
	hwloc_obj_type_is_cache
	hwloc_obj_type_is_dcache
	hwloc_obj_type_is_icache
	hwloc_obj_type_is_io
	hwloc_obj_type_is_memory
	hwloc_obj_type_is_normal

	Looking at Cache Objects
	Function Documentation
	hwloc_get_cache_covering_cpuset
	hwloc_get_cache_type_depth
	hwloc_get_shared_cache_covering_obj

	Finding objects, miscellaneous helpers
	Detailed Description
	Function Documentation
	hwloc_get_closest_objs
	hwloc_get_numanode_obj_by_os_index
	hwloc_get_obj_below_array_by_type
	hwloc_get_obj_below_by_type
	hwloc_get_pu_obj_by_os_index

	Distributing items over a topology
	Enumeration Type Documentation
	hwloc_distrib_flags_e

	Function Documentation
	hwloc_distrib

	CPU and node sets of entire topologies
	Function Documentation
	hwloc_topology_get_allowed_cpuset
	hwloc_topology_get_allowed_nodeset
	hwloc_topology_get_complete_cpuset
	hwloc_topology_get_complete_nodeset
	hwloc_topology_get_topology_cpuset
	hwloc_topology_get_topology_nodeset

	Converting between CPU sets and node sets
	Function Documentation
	hwloc_cpuset_from_nodeset
	hwloc_cpuset_to_nodeset

	Finding I/O objects
	Function Documentation
	hwloc_bridge_covers_pcibus
	hwloc_get_next_bridge
	hwloc_get_next_osdev
	hwloc_get_next_pcidev
	hwloc_get_non_io_ancestor_obj
	hwloc_get_pcidev_by_busid
	hwloc_get_pcidev_by_busidstring

	The bitmap API
	Detailed Description
	Define Documentation
	hwloc_bitmap_foreach_begin
	hwloc_bitmap_foreach_end

	Typedef Documentation
	hwloc_bitmap_t
	hwloc_const_bitmap_t

	Function Documentation
	hwloc_bitmap_allbut
	hwloc_bitmap_alloc
	hwloc_bitmap_alloc_full
	hwloc_bitmap_and
	hwloc_bitmap_andnot
	hwloc_bitmap_asprintf
	hwloc_bitmap_clr
	hwloc_bitmap_clr_range
	hwloc_bitmap_compare
	hwloc_bitmap_compare_first
	hwloc_bitmap_copy
	hwloc_bitmap_dup
	hwloc_bitmap_fill
	hwloc_bitmap_first
	hwloc_bitmap_first_unset
	hwloc_bitmap_free
	hwloc_bitmap_from_ith_ulong
	hwloc_bitmap_from_ulong
	hwloc_bitmap_intersects
	hwloc_bitmap_isequal
	hwloc_bitmap_isfull
	hwloc_bitmap_isincluded
	hwloc_bitmap_isset
	hwloc_bitmap_iszero
	hwloc_bitmap_last
	hwloc_bitmap_last_unset
	hwloc_bitmap_list_asprintf
	hwloc_bitmap_list_snprintf
	hwloc_bitmap_list_sscanf
	hwloc_bitmap_next
	hwloc_bitmap_next_unset
	hwloc_bitmap_not
	hwloc_bitmap_only
	hwloc_bitmap_or
	hwloc_bitmap_set
	hwloc_bitmap_set_ith_ulong
	hwloc_bitmap_set_range
	hwloc_bitmap_singlify
	hwloc_bitmap_snprintf
	hwloc_bitmap_sscanf
	hwloc_bitmap_taskset_asprintf
	hwloc_bitmap_taskset_snprintf
	hwloc_bitmap_taskset_sscanf
	hwloc_bitmap_to_ith_ulong
	hwloc_bitmap_to_ulong
	hwloc_bitmap_weight
	hwloc_bitmap_xor
	hwloc_bitmap_zero

	Exporting Topologies to XML
	Enumeration Type Documentation
	hwloc_topology_export_xml_flags_e

	Function Documentation
	hwloc_export_obj_userdata
	hwloc_export_obj_userdata_base64
	hwloc_free_xmlbuffer
	hwloc_topology_export_xml
	hwloc_topology_export_xmlbuffer
	hwloc_topology_set_userdata_export_callback
	hwloc_topology_set_userdata_import_callback

	Exporting Topologies to Synthetic
	Enumeration Type Documentation
	hwloc_topology_export_synthetic_flags_e

	Function Documentation
	hwloc_topology_export_synthetic

	Retrieve distances between objects
	Enumeration Type Documentation
	hwloc_distances_kind_e

	Function Documentation
	hwloc_distances_get
	hwloc_distances_get_by_depth
	hwloc_distances_get_by_type
	hwloc_distances_release

	Helpers for consulting distance matrices
	Function Documentation
	hwloc_distances_obj_index
	hwloc_distances_obj_pair_values

	Add or remove distances between objects
	Enumeration Type Documentation
	hwloc_distances_add_flag_e

	Function Documentation
	hwloc_distances_add
	hwloc_distances_remove
	hwloc_distances_remove_by_depth
	hwloc_distances_remove_by_type

	Linux-specific helpers
	Detailed Description
	Function Documentation
	hwloc_linux_get_tid_cpubind
	hwloc_linux_get_tid_last_cpu_location
	hwloc_linux_read_path_as_cpumask
	hwloc_linux_set_tid_cpubind

	Interoperability with Linux libnuma unsigned long masks
	Detailed Description
	Function Documentation
	hwloc_cpuset_from_linux_libnuma_ulongs
	hwloc_cpuset_to_linux_libnuma_ulongs
	hwloc_nodeset_from_linux_libnuma_ulongs
	hwloc_nodeset_to_linux_libnuma_ulongs

	Interoperability with Linux libnuma bitmask
	Detailed Description
	Function Documentation
	hwloc_cpuset_from_linux_libnuma_bitmask
	hwloc_cpuset_to_linux_libnuma_bitmask
	hwloc_nodeset_from_linux_libnuma_bitmask
	hwloc_nodeset_to_linux_libnuma_bitmask

	Interoperability with glibc sched affinity
	Detailed Description
	Function Documentation
	hwloc_cpuset_from_glibc_sched_affinity
	hwloc_cpuset_to_glibc_sched_affinity

	Interoperability with OpenCL
	Detailed Description
	Function Documentation
	hwloc_opencl_get_device_cpuset
	hwloc_opencl_get_device_osdev
	hwloc_opencl_get_device_osdev_by_index

	Interoperability with the CUDA Driver API
	Detailed Description
	Function Documentation
	hwloc_cuda_get_device_cpuset
	hwloc_cuda_get_device_osdev
	hwloc_cuda_get_device_osdev_by_index
	hwloc_cuda_get_device_pci_ids
	hwloc_cuda_get_device_pcidev

	Interoperability with the CUDA Runtime API
	Detailed Description
	Function Documentation
	hwloc_cudart_get_device_cpuset
	hwloc_cudart_get_device_osdev_by_index
	hwloc_cudart_get_device_pci_ids
	hwloc_cudart_get_device_pcidev

	Interoperability with the NVIDIA Management Library
	Detailed Description
	Function Documentation
	hwloc_nvml_get_device_cpuset
	hwloc_nvml_get_device_osdev
	hwloc_nvml_get_device_osdev_by_index

	Interoperability with OpenGL displays
	Detailed Description
	Function Documentation
	hwloc_gl_get_display_by_osdev
	hwloc_gl_get_display_osdev_by_name
	hwloc_gl_get_display_osdev_by_port_device

	Interoperability with Intel Xeon Phi (MIC)
	Detailed Description
	Function Documentation
	hwloc_intel_mic_get_device_cpuset
	hwloc_intel_mic_get_device_osdev_by_index

	Interoperability with OpenFabrics
	Detailed Description
	Function Documentation
	hwloc_ibv_get_device_cpuset
	hwloc_ibv_get_device_osdev
	hwloc_ibv_get_device_osdev_by_name

	Topology differences
	Detailed Description
	Typedef Documentation
	hwloc_topology_diff_obj_attr_type_t
	hwloc_topology_diff_t
	hwloc_topology_diff_type_t

	Enumeration Type Documentation
	hwloc_topology_diff_apply_flags_e
	hwloc_topology_diff_obj_attr_type_e
	hwloc_topology_diff_type_e

	Function Documentation
	hwloc_topology_diff_apply
	hwloc_topology_diff_build
	hwloc_topology_diff_destroy
	hwloc_topology_diff_export_xml
	hwloc_topology_diff_export_xmlbuffer
	hwloc_topology_diff_load_xml
	hwloc_topology_diff_load_xmlbuffer

	Sharing topologies between processes
	Detailed Description
	Function Documentation
	hwloc_shmem_topology_adopt
	hwloc_shmem_topology_get_length
	hwloc_shmem_topology_write

	Components and Plugins: Discovery components
	Typedef Documentation
	hwloc_disc_component_type_t

	Enumeration Type Documentation
	hwloc_disc_component_type_e

	Components and Plugins: Discovery backends
	Function Documentation
	hwloc_backend_alloc
	hwloc_backend_enable

	Components and Plugins: Generic components
	Typedef Documentation
	hwloc_component_type_t

	Enumeration Type Documentation
	hwloc_component_type_e

	Components and Plugins: Core functions to be used by components
	Typedef Documentation
	hwloc_report_error_t

	Function Documentation
	hwloc__insert_object_by_cpuset
	hwloc_alloc_setup_object
	hwloc_hide_errors
	hwloc_insert_object_by_cpuset
	hwloc_insert_object_by_parent
	hwloc_obj_add_children_sets
	hwloc_plugin_check_namespace
	hwloc_report_os_error
	hwloc_topology_reconnect

	Components and Plugins: Filtering objects
	Function Documentation
	hwloc_filter_check_keep_object
	hwloc_filter_check_keep_object_type
	hwloc_filter_check_osdev_subtype_important
	hwloc_filter_check_pcidev_subtype_important

	Components and Plugins: helpers for PCI discovery
	Function Documentation
	hwloc_pcidisc_check_bridge_type
	hwloc_pcidisc_find_cap
	hwloc_pcidisc_find_linkspeed
	hwloc_pcidisc_setup_bridge_attr
	hwloc_pcidisc_tree_attach
	hwloc_pcidisc_tree_insert_by_busid

	Components and Plugins: finding PCI objects during other discoveries
	Function Documentation
	hwloc_pcidisc_find_busid_parent
	hwloc_pcidisc_find_by_busid

	Netloc API
	Enumeration Type Documentation
	"@3

	Data Structure Documentation
	hwloc_backend Struct Reference
	Detailed Description
	Field Documentation
	disable
	discover
	flags
	get_pci_busid_cpuset
	is_thissystem
	private_data

	hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference
	Detailed Description
	Field Documentation
	depth
	domain
	downstream
	downstream_type
	pci
	pci
	secondary_bus
	subordinate_bus
	upstream
	upstream_type

	hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference
	Detailed Description
	Field Documentation
	associativity
	depth
	linesize
	size
	type

	hwloc_component Struct Reference
	Detailed Description
	Field Documentation
	abi
	data
	finalize
	flags
	init
	type

	hwloc_disc_component Struct Reference
	Detailed Description
	Field Documentation
	enabled_by_default
	excludes
	instantiate
	name
	priority
	type

	hwloc_distances_s Struct Reference
	Detailed Description
	Field Documentation
	kind
	nbobjs
	objs
	values

	hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference
	Detailed Description
	Field Documentation
	depth
	kind
	subkind

	hwloc_info_s Struct Reference
	Detailed Description
	Field Documentation
	name
	value

	hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference
	Detailed Description
	Field Documentation
	count
	size

	hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference
	Detailed Description
	Field Documentation
	local_memory
	page_types
	page_types_len

	hwloc_obj Struct Reference
	Detailed Description
	Field Documentation
	arity
	attr
	children
	complete_cpuset
	complete_nodeset
	cpuset
	depth
	first_child
	gp_index
	infos
	infos_count
	io_arity
	io_first_child
	last_child
	logical_index
	memory_arity
	memory_first_child
	misc_arity
	misc_first_child
	name
	next_cousin
	next_sibling
	nodeset
	os_index
	parent
	prev_cousin
	prev_sibling
	sibling_rank
	subtype
	symmetric_subtree
	total_memory
	type
	userdata

	hwloc_obj_attr_u Union Reference
	Detailed Description
	Field Documentation
	bridge
	cache
	group
	numanode
	osdev
	pcidev

	hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference
	Detailed Description
	Field Documentation
	type

	hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference
	Detailed Description
	Field Documentation
	bus
	class_id
	dev
	device_id
	domain
	func
	linkspeed
	revision
	subdevice_id
	subvendor_id
	vendor_id

	hwloc_topology_cpubind_support Struct Reference
	Detailed Description
	Field Documentation
	get_proc_cpubind
	get_proc_last_cpu_location
	get_thisproc_cpubind
	get_thisproc_last_cpu_location
	get_thisthread_cpubind
	get_thisthread_last_cpu_location
	get_thread_cpubind
	set_proc_cpubind
	set_thisproc_cpubind
	set_thisthread_cpubind
	set_thread_cpubind

	hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference
	Field Documentation
	next
	type

	hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference
	Field Documentation
	type

	hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference
	Field Documentation
	diff
	next
	obj_depth
	obj_index
	type

	hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference
	Detailed Description
	Field Documentation
	name
	newvalue
	oldvalue
	type

	hwloc_topology_diff_obj_attr_u Union Reference
	Detailed Description
	Field Documentation
	generic
	string
	uint64

	hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference
	Detailed Description
	Field Documentation
	index
	newvalue
	oldvalue
	type

	hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference
	Field Documentation
	next
	obj_depth
	obj_index
	type

	hwloc_topology_diff_u Union Reference
	Detailed Description
	Field Documentation
	generic
	obj_attr
	too_complex

	hwloc_topology_discovery_support Struct Reference
	Detailed Description
	Field Documentation
	numa
	numa_memory
	pu

	hwloc_topology_membind_support Struct Reference
	Detailed Description
	Field Documentation
	alloc_membind
	bind_membind
	firsttouch_membind
	get_area_membind
	get_area_memlocation
	get_proc_membind
	get_thisproc_membind
	get_thisthread_membind
	interleave_membind
	migrate_membind
	nexttouch_membind
	set_area_membind
	set_proc_membind
	set_thisproc_membind
	set_thisthread_membind

	hwloc_topology_support Struct Reference
	Detailed Description
	Field Documentation
	cpubind
	discovery
	membind

