Hardware Locality (hwloc)
v2.2-20200707.0300.gitabcfb85e

Generated by Doxygen 1.8.17

1 Hardware Locality
1.1 Introduction L e e e e
1.2 Installation L
1.2.1 Basic Installation
1.2.2Installing froma Gitclone

1.3Questionsand Bugs e

2 Hardware Locality (hwloc) Introduction

2.1 hwloc Summary e
2.2 hwloc Installation e
2.3 Command-line Examples
2.4 Programming Interface L e

241 Portability

242 APIExample e e e
25 History / Credits e e e
2.6 FurtherReading o e

3 Terms and Definitions
3.10bjects e
3.21Indexesand Sets L e e e e e

3.3 Hierarchy, Tree and Levels e

4 Command-Line Tools
4.1 Istopo and Istopo-no-graphics L
42hwloc-bind e
4.3 hwloc-calc e e e
4.4 hwloc-info . . . L e
45 hwloc-distrib L e
4B NWIOC-PS . . . o e e e e
4.7 hwloc-annotate L
4.8 hwloc-diff, hwloc-patch and hwloc-compress-dir,
4.9 hwloc-dump-hwdata e
4.10 hwloc-gather-topology and hwloc-gather-cpuid,

5 Environment Variables

6 CPU and Memory Binding Overview

7 1/0 Devices
7.1 Enabling and requirements L L
7.21/00bJECES e e e e e
7.30SdeviCeS e
7.4 PCldevicesand bridges e
7.5 Consulting I/O devicesand binding

N

—
o O 00 N N B MO L

—_

13
13
13
14

17
17
17
17
18
18
18
18
18
18
18

19

23

Generated by Doxygen

7.6 Examples . . . o e 27

8 Miscellaneous objects 31
8.1 Misc objects added by hwloc 31
8.2 Annotating topologies with Misc objects oL 31

9 Object attributes 33
9.1 Normal attributes e 33
9.2Customstring infos L L L L e 33
9.2.1 Hardware Platform Informationo 33

9.2.2 Operating System Information 34

9.2.3 hwloc Information 34

9.24 CPU Information e 34
9.2.50S Device Information 34

9.2.6 Other Object-specific Information o 35

9.2.7 User-Given Information 35

10 Importing and exporting topologies from/to XML files 37
10.1 libxml2 and minimalistic XML backends 37
10.2 XML import error management L L L L e e e e e e 38

11 Synthetic topologies 39
11.1 Synthetic description string L 39
11.2 Loading a synthetictopology e e e 40
11.3 Exporting a topology as a syntheticstring 40

12 Interoperability With Other Software 41
13 Thread Safety 43
14 Components and plugins 45
14.1 Components enabled by default 45
14.2 Selecting which componentstouse e 45
14.3 Loading components from plugins 46
14.4 Existing components and pluginso 46

15 Embedding hwloc in Other Software 49
15.1 Using hwloc's M4 Embedding Capabilities 49
15.2 Example Embedding hwloc L 50

16 Frequently Asked Questions 53
16.1 CONCEPLS o o o e e 53
16.1.1 [only need binding, why should lusehwloc? 53

16.1.2 Should | use logical or physical/OS indexes? andhow? 53

16.1.3 hwloc is only a structural model, it ignores performance models, memory bandwidth, etc.? 54

16.1.4 hwloc only has a one-dimensional view of the architecture, it ignores distances? 54

Generated by Doxygen

16.1.5 What are these Group objects in my topology?, 54
16.1.6 What happens if my topology is asymmetric?, 55
16.1.7 What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in
the system? L 55
16.1.8 How may | ignore symmetric multithreading, hyper-threading, etc. in hwloc? 56
16.2 Advanced e e e e e e e e e 56
16.2.1 | do not want hwloc to rediscover my enormous machine topology every time | rerun a process 56
16.2.2 How many topologies may l use in my program? 57
16.2.3 How to avoid memory waste when manipulating multiple similar topologies? 57
16.2.4 How do | annotate the topology with private notes? 57
16.3Caveats e 57
16.3.1 Why is hwloc slow? e 57
16.3.2 Does hwloc require privileged access? 58
16.3.3 What should | do when hwloc reports "operating system" warnings? 58
16.3.4 Why does Valgrind complain about hwloc memory leaks? 59
16.4 Platform-specific e 59
16.4.1 How do | find the local MCDRAM NUMA node on Intel Xeon Phi processor? 59
16.4.2 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor? 59
16.4.3 How do | build hwloc for BlueGene/Q? 60
16.4.4 How do | build hwloc for Windows? 60
16.4.5 How to get useful topology information on NetBSD? 60
16.4.6 Why does binding failon AIX? 60
16.5 Compatibility between hwloc versions 60
16.5.1 How do | handle APl changes? 60
16.5.2 What is the difference between API and library version numbers? 61
16.5.3 How do | handle ABl breaks? 61
16.5.4 Are XML topology files compatible between hwloc releases? 61
16.5.5 Are synthetic strings compatible between hwloc releases? 62
16.5.6 Is it possible to share a shared-memory topology between different hwloc releases? 62
17 Upgrading to the hwloc 2.0 API 63
17.1 New Organization of NUMA nodes and Memory 63
17.1.1 Memory children L 63
171.2Examples. e 63
1713 NUMA levelanddepth e 64
17.1.4 Finding Local NUMA nodes and looking at Childrenand Parents 64
17.2 4 Kinds of Objects and Children 65
17.211/0and Misc children 65
17.2.2Kindsof objects 65
17.3 HWLOC_OBJ_CACHE replaced i e i e e e e e e e e e e 65
17.4 allowed_cpuset and allowed_nodeset only in the maintopology 66
17.5 Object depths are now signed int L 66
17.6 Memory attributes become NUMANode-specific 66

Generated by Doxygen

17.7 Topology configuration changes 66
17.8 XML changes e e 66
17.9 Distances APl totally rewritten 67
17.10 Return values of functions L 67
17.11 Misc APl changes e e e e 67
17.12 APlremovals and deprecations L 68

18 Network Locality (netloc) 69
18.1 Netloc Summary e e e 69
18.1.1 Supported Networks 69

18.2 Netloc Installation e e 69
18.3SetUp . . . o 70
18.4 Topology display e e 71
18.4.1 Generate the JSONfile 71
18.4.2Using netloc_draw L e 71

19 Netloc with Scotch 73
19.1 Introduction L e e e e e 73
19.28€tUP . . o o e 73
19.3Tools and APl L e e e e e 73
19.3.1 Build Scotch architectures L 73

19.3.2 Build Scotch sub-architectures 73

19.3.3 Mapping Of ProCeSSES o e e e e 74

20 Module Index 75
20.1 Modules e e e e 75

21 Data Structure Index 77
211 Data Structures L e e 77

22 Module Documentation 79
22,1 APLVErSION o e e e 79
22.1.1 Detailed Descriptiono 79

22.1.2 Macro Definition Documentationo 79

22.1.2.1 HWLOC_API_VERSION e e e 79

22.1.22 HWLOC_COMPONENT_ABI e e e 79

22.1.3 Function Documentation 79

22.1.3.1 hwloc_get_api_version() o 79

22.2 Object Sets (hwloc_cpuset_tand hwloc_nodeset t) 80
22.2.1 Detailed Description L 80

22.2.2 Typedef Documentation e 80

22221 hwloc_const_cpuset_t 80
22.2.22hwloc_const nodeset t e 80

22223 hwloc_cpuset_t 80

Generated by Doxygen

22224 hwloc_nodeset t 80
22.30DbJECt TYPES . . . o o e e e 81
22.3.1 Detailed Description L 81
22.3.2 Macro Definition Documentationo 81
22.3.21 HWLOC_TYPE_UNORDERED it 81

22.3.3 Typedef Documentation L 81
22.3.3.1 hwloc_obj_bridge_type_t 81
22.3.3.2hwloc_obj_cache type t 81
22.3.3.3 hwloc_obj_osdev_type t L 82

22.3.4 Enumeration Type Documentationo 82
22.3.4.1 hwloc_obj_bridge _type_ e 82
22.3.4.2hwloc_obj_cache_type_e 82
22.3.43 hwloc_obj_osdev_type_e 82
22.34.4hwloc_obj_type_t 83

22.3.5 Function Documentation L. 84
22.3.5.1 hwloc_compare_types() o 84

22.4 Object Structure and Attributes L L 86
22.4.1 Detailed Description L e 86
22.4.2 Typedef Documentation L 86
22421 hwloc_obj_t 86

22.5 Topology Creation and Destruction 87
22.5.1 Detailed Description e e 87
22.5.2 Typedef Documentation e 87
22.5.2.1 hwloc_topology t 87

22.5.3 Function Documentation Lo 87
22.5.3.1 hwloc_topology_abi_check() 87
22.5.3.2 hwloc_topology_check() 87
22.5.3.3 hwloc_topology_destroy() 88
22.5.3.4 hwloc_topology_dup() . . . « .« v v 88
22.5.3.5 hwloc_topology_init() 88
22.5.3.6 hwloc_topology load()« . o 88

22.6 Object levels, depths and types o e e 90
22.6.1 Detailed Description 90
22.6.2 Enumeration Type Documentationo 90
22.6.2.1 hwloc_get_type depth_e 90

22.6.3 Function Documentation 91
22.6.3.1 hwloc_get_depth_type() o o 91
22.6.3.2 hwloc_get_memory_parents_depth() 91
22.6.3.3 hwloc_get_nbobjs_by_depth() 91
22.6.3.4 hwloc_get_nbobjs_by_type() o 91
22.6.3.5 hwloc_get_next_obj_by depth() 91
22.6.3.6 hwloc_get_next_obj_by type() 92

Generated by Doxygen

vi

22.6.3.7 hwloc_get_obj_by depth() 92
22.6.3.8 hwloc_get_obj_by type() 92
22.6.3.9 hwloc_get_root_obj() 92
22.6.3.10 hwloc_get_type depth() 92
22.6.3.11 hwloc_get_type_or_above depth(), 93
22.6.3.12 hwloc_get_type_or_below depth(). 93
22.6.3.13 hwloc_topology _get_ depth() 93

22.7 Converting between Object Types and Attributes, and Strings 94
22.7.1 Detailed Description L 94
22.7.2 Function Documentation 94
22.7.2.1 hwloc_obj_attr_snprintf() Lo 94
22.7.2.2 hwloc_obj_type_snprintf() 94
22.7.2.3 hwloc_obj_type_string() 95
22.7.24 hwloc_type_sscanf() e 95
22.7.2.5 hwloc_type_sscanf _as_depth() 95

22.8 Consulting and Adding Key-Value Info Attributes o o 96
22.8.1 Detailed Description L 96
22.8.2 Function Documentationo 96
22.8.2.1 hwloc_obj_add_info() 96
22.8.2.2 hwloc_obj_get_info_by name()o 96

229 CPUDbINdINg e 97
22.9.1 Detailed Description e 97
22.9.2 Enumeration Type Documentationo 97
22.9.21 hwloc_cpubind_flags_t L 98

22.9.3 Function Documentationo 98
22.9.3.1 hwloc_get_cpubind() 98
22.9.3.2 hwloc_get_last_cpu_location()o 99
22.9.3.3 hwloc_get_proc_cpubind() 99
22.9.3.4 hwloc_get_proc_last_cpu_location() 99
22.9.3.5 hwloc_get_thread cpubind() 99
22.9.3.6 hwloc_set_cpubind() 100
22.9.3.7 hwloc_set_proc_cpubind() 100
22.9.3.8 hwloc_set_thread_cpubind()o 100

2210 Memory binding L e e e e 101
22.10.1 Detailed Description e 101
22.10.2 Enumeration Type Documentation 102
22.10.2.1 hwloc_membind flags t 102
22.10.2.2 hwloc_membind_policy t L 103
22.10.3 Function Documentation 103
22.10.83.1 hwloc_alloc() o 103
22.10.3.2 hwloc_alloc_membind()o 104
22.10.3.3 hwloc_alloc_membind_policy()o 104

Generated by Doxygen

vii

22.10.34 hwloc_free() o 104
22.10.3.5 hwloc_get_area_membind() 104
22.10.3.6 hwloc_get_area_memlocation() 105
22.10.3.7 hwloc_get_ membind() 105
22.10.3.8 hwloc_get_proc_membind() oo 106
22.10.3.9 hwloc_set_area_membind() 106
22.10.3.10 hwloc_set._ membind() L 106
22.10.3.11 hwloc_set_proc_membind()o 107

22.11 Changing the Source of Topology Discovery i ittt 108
22.11.1 Detailed Description e e 108
22.11.2 Enumeration Type Documentationo 108
22.11.2.1 hwloc_topology_components_flag_.e 108
22.11.3 Function Documentation L 108
22.11.3.1 hwloc_topology_set_components(), 108
22.11.3.2 hwloc_topology_set_ pid() o 109
22.11.3.3 hwloc_topology_set_synthetic() L. 109
22.11.3.4 hwloc_topology_set_ xml() 109
22.11.3.5 hwloc_topology_set_xmlbuffer() 110

22.12 Topology Detection Configurationand Query 111
22.12.1 Detailed Description e e 111
22.12.2 Enumeration Type Documentation L 111
22.12.2.1 hwloc_topology flags_e 111
22.12.2.2 hwloc_type_filter e Lo 113
22.12.3 Function Documentation 114
22.12.3.1 hwloc_topology_get_flags() oo 114
22.12.3.2 hwloc_topology_get_support() 114
22.12.3.3 hwloc_topology_get_type_filter()o 114
22.12.3.4 hwloc_topology _get userdata() 114
22.12.3.5 hwloc_topology_is_thissystem() 115
22.12.3.6 hwloc_topology_set_all_types filter() 115
22.12.3.7 hwloc_topology_set_cache_types_filter() 115
22.12.3.8 hwloc_topology_set_flags() Lo 115
22.12.3.9 hwloc_topology_set_icache_types_filter() 115
22.12.3.10 hwloc_topology_set_io_types_filter() 115
22.12.3.11 hwloc_topology_set_type_filter() L. 115
22.12.3.12 hwloc_topology_set_userdata() 116

22.13 Madifying aloaded Topology e e 117
22.13.1 Detailed Description e e 117
22.13.2 Enumeration Type Documentationo 117
22.18.2.1 hwloc_allow_flags_e e 117
22.13.2.2 hwloc_restrict_flags_e L 117
22.13.3 Function Documentation 118

Generated by Doxygen

viii

22.13.3.1 hwloc_obj_add_other_obj_sets() 118
22.13.3.2 hwloc_topology_alloc_group_object() 118
22.13.3.3 hwloc_topology_allow() 118
22.13.3.4 hwloc_topology_insert_group_object() 119
22.13.3.5 hwloc_topology_insert_misc_object() 119
22.13.83.6 hwloc_topology_restrict() oo 120

22.14 Finding Objects inside aCPUset e 121
22.14.1 Detailed Description 121
22.14.2 Function Documentation 121
22.14.2.1 hwloc_get_first_largest_obj_inside_cpuset() 121
22.14.2.2 hwloc_get_largest_objs_inside_cpuset() 121
22.14.2.3 hwloc_get_nbobjs_inside_cpuset_by depth() 122
22.14.2.4 hwloc_get_nbobjs_inside_cpuset_by type()o 122
22.14.2.5 hwloc_get_next_obj_inside_cpuset_by depth() 122
22.14.2.6 hwloc_get_next_obj_inside_cpuset_by _type() 122
22.14.2.7 hwloc_get_obj_index_inside_cpuset() 123
22.14.2.8 hwloc_get_obj_inside_cpuset_by depth() 123
22.14.2.9 hwloc_get_obj_inside_cpuset_by_type() 123

22.15 Finding Objects covering atleast CPUset 124
22.15.1 Detailed Description L e e 124
22.15.2 Function Documentation L 124
22.15.2.1 hwloc_get_child_covering_cpuset(), 124
22.15.2.2 hwloc_get_next_obj_covering_cpuset_by depth(). 124
22.15.2.3 hwloc_get_next_obj_covering_cpuset_by type() 124
22.15.2.4 hwloc_get_obj_covering_cpuset()o 125

22.16 Looking at Ancestor and Child Objects 126
22.16.1 Detailed Description L e e 126
22.16.2 Function Documentation L 126
22.16.2.1 hwloc_get_ancestor_obj_by depth(), 126
22.16.2.2 hwloc_get_ancestor_obj by type() 126
22.16.2.3 hwloc_get_common_ancestor_obj() 126
22.16.2.4 hwloc_get_next_child() Lo 127
22.16.2.5 hwloc_obj_is_in_subtree() 127

2217 Kinds of object Type L e 128
22.17.1 Detailed Description 128
22.17.2 Function Documentation L 128
22.17.21 hwloc_obj_type_is_cache() oo 128
22.17.2.2 hwloc_obj_type_is_dcache() oL 128
22.17.2.3 hwloc_obj_type_is_icache()o 128
22.17.2.4 hwloc_obj_type_is_io() o 129
22.17.2.5 hwloc_obj_type_is_memory() oo 129
22.17.2.6 hwloc_obj_type is_ normal() L 129

Generated by Doxygen

22.18 Looking at Cache Objects e 130
22.18.1 Detailed Description e 130
22.18.2 Function Documentation 130

22.18.2.1 hwloc_get_cache_covering_cpuset() 130
22.18.2.2 hwloc_get_cache_type_depth() 130
22.18.2.3 hwloc_get_shared_cache_covering_obj() 130

22.19 Finding objects, miscellaneous helpers Lo 131
22.19.1 Detailed Description 131
22.19.2 Function Documentation 131

22.19.2.1 hwloc_bitmap_singlify_per_core()o 131
22.19.2.2 hwloc_get_closest_objs() 131
22.19.2.3 hwloc_get_numanode_obj by_os_index() 132
22.19.2.4 hwloc_get_obj_below_array by type() 132
22.19.2.5 hwloc_get_obj_below_by type() o 132
22.19.2.6 hwloc_get pu_obj by os_index() 133

22.20 Distributing items over atopology 134
22.20.1 Detailed Description e e 134
22.20.2 Enumeration Type Documentationo 134

22.20.2.1 hwloc_distrib_flags_e 134
22.20.3 Function Documentation L 134
22.20.3.1 hwloc_distrib() e 134

22.21 CPU and node sets of entire topologies 135
22.21.1 Detailed Description e e 135
22.21.2 Function Documentation 135

22.21.2.1 hwloc_topology_get_allowed_cpuset() 135
22.21.2.2 hwloc_topology_get_allowed_nodeset() 135
22.21.2.3 hwloc_topology_get_complete_cpuset() 136
22.21.2.4 hwloc_topology _get_complete_nodeset() 136
22.21.2.5 hwloc_topology_get_topology_cpuset() 136
22.21.2.6 hwloc_topology_get_topology_nodeset() 136

22.22 Converting between CPU setsandnode sets 138
22.22.1 Detailed Description o 138
22.22.2 Function Documentation L 138

22.22.2.1 hwloc_cpuset_from_nodeset() oo 138
22.22.2.2 hwloc_cpuset_to_nodeset() 138

22.23 Finding /O objects L 139
22.23.1 Detailed Description e e e 139
22.23.2 Function Documentationo 139

22.23.2.1 hwloc_bridge_covers_pcibus()o 139
22.23.2.2 hwloc_get_next_bridge() L 139
22.23.2.3 hwloc_get_ next_osdev() 139
22.23.2.4 hwloc_get next_pcidev() 139

Generated by Doxygen

22.23.2.5 hwloc_get _non_io_ancestor obj() 140

22.23.2.6 hwloc_get_pcidev_by busid() oo 140
22.23.2.7 hwloc_get_pcidev_by_busidstring()o 140

22.24 The bitmap APl 141
22.24.1 Detailed Description 142
22.24.2 Macro Definition Documentation oL 142
22.24.2.1 hwloc_bitmap_foreach_begin oL 142
22.24.2.2 hwloc_bitmap_foreach_endo 142
22.24.3 Typedef Documentation L 143
222431 hwloc_bitmap_t.o 143
22.24.3.2 hwloc_const_bitmap_t 143
22.24.4 Function Documentationo 143
22.24.41 hwloc_bitmap_allbut() 143
22.24.42 hwloc_bitmap_alloc() 143
22.24.4.3 hwloc_bitmap_alloc_full() 143
22.24.44 hwloc_bitmap_and() 143
22.24.45 hwloc_bitmap_andnot() 144
22.24.4.6 hwloc_bitmap_asprintf() L 144
22.24.4.7 hwloc_bitmap_clr() o 144
22.24.4.8 hwloc_bitmap_clr_range()« .« o o 144
22.24.4.9 hwloc_bitmap_compare() 144
22.24.4.10 hwloc_bitmap_compare_first()o 145
22.24.411 hwloc_bitmap_copy()« . 145
22.24.412 hwloc_bitmap_dup() 145
22.24.413 hwloc_bitmap_fill() 145
22.24.414 hwloc_bitmap_first() 145
22.24.415 hwloc_bitmap_first_unset()o o 146
22.24.4.16 hwloc_bitmap_free() 146
22.24.417 hwloc_bitmap_from_ith_ulong() 146
22.24.418 hwloc_bitmap_from_ulong() oo 146
22.24.419 hwloc_bitmap_from_ulongs() oL 146
22.24.4.20 hwloc_bitmap_intersects() oo 146
22.24.4.21 hwloc_bitmap_isequal() o 147
22.24.4.22 hwloc_bitmap_isfull() 147
22.24.4.23 hwloc_bitmap_isincluded()o 147
22.24.4.24 hwloc_bitmap_isset() L 147
22.24.4.25 hwloc_bitmap_iszero() 147
22.24.4.26 hwloc_bitmap_last() 148
22.24.4.27 hwloc_bitmap_last_unset() oo 148
22.24.4.28 hwloc_bitmap_list_asprintf()o 148
22.24.4.29 hwloc_bitmap_list_snprintf()o oo 148
22.24.4.30 hwloc_bitmap_list_sscanf() 148

Generated by Doxygen

xi

22.24.4.31 hwloc_bitmap_next() 149
22.24.4.32 hwloc_bitmap_next_unset()o 149
22.24.4.33 hwloc_bitmap_not() 149
22.24.4.34 hwloc_bitmap_nr_ulongs() 149
22.24.4.35 hwloc_bitmap_only() 149
22.24.4.36 hwloc_bitmap_or() 150
22.24.4.37 hwloc_bitmap_set() 150
22.24.4.38 hwloc_bitmap_set_ith_ulong() 150
22.24.4.39 hwloc_bitmap_set_range() Lo 150
22.24.4.40 hwloc_bitmap_singlify() oo 150
22.24.4.41 hwloc_bitmap_snprintf()o 150
22.24.4.42 hwloc_bitmap_sscanf() 151
22.24.4.43 hwloc_bitmap_taskset_asprintf() oo 151
22.24.4.44 hwloc_bitmap_taskset_snprintf() L. 151
22.24.4.45 hwloc_bitmap_taskset_sscanf() 151
22.24.4.46 hwloc_bitmap_to_ith_ulong()o 152
22.24.4.47 hwloc_bitmap_to_ulong() 152
22.24.4.48 hwloc_bitmap_to_ulongs() L 152
22.24.4.49 hwloc_bitmap_weight() 152
22.24.450 hwloc_bitmap_xor() 152
22.24.4.51 hwloc_bitmap_zero() 152

22.25 Exporting Topologies to XML e 153
22.25.1 Detailed Description e e 153
22.25.2 Enumeration Type Documentationo 153
22.25.2.1 hwloc_topology_export_xml_flags_.e 153
22.25.3 Function Documentationo 153
22.25.3.1 hwloc_export_obj_userdata()o 153
22.25.3.2 hwloc_export_obj_userdata_base64() 154
22.25.3.3 hwloc_free_xmlbuffer() 154
22.25.3.4 hwloc_topology_export_xml()o 154
22.25.3.5 hwloc_topology_export_xmlbuffer() 155
22.25.3.6 hwloc_topology_set_userdata_export_callback() 155
22.25.3.7 hwloc_topology_set_userdata_import_callback() 155

22.26 Exporting Topologies to Synthetic 157
22.26.1 Detailed Description L 157
22.26.2 Enumeration Type Documentation 157
22.26.2.1 hwloc_topology_export_synthetic flags_ e 157
22.26.3 Function Documentation 157
22.26.3.1 hwloc_topology_export_synthetic() 157

22.27 Retrieve distances between objectso 159
22.27.1 Detailed Description L e e 159
22.27.2 Enumeration Type Documentation L 159

Generated by Doxygen

xii

22.27.2.1 hwloc_distances kind_ e 159

22.27.3 Function Documentationo 160
22.27.3.1 hwloc_distances_get() 160

22.27.3.2 hwloc_distances_get_by depth() 160

22.27.3.3 hwloc_distances_get_ by name() 160

22.27.3.4 hwloc_distances_get_by type() oL 160

22.27.3.5 hwloc_distances_get_ name() o 161

22.27.3.6 hwloc_distances_release() 161

22.28 Helpers for consulting distance matriceso L Lo 162
22.28.1 Detailed Description e e 162
22.28.2 Function Documentation Lo 162
22.28.2.1 hwloc_distances_obj_index() oo 162

22.28.2.2 hwloc_distances_obj_pair_values()o 162

22.29 Add or remove distances betweenobjects L. oL 163
22.29.1 Detailed Description e 163
22.29.2 Enumeration Type Documentationo o 163
22.29.2.1 hwloc_distances_add flag. e L. 163

22.29.3 Function Documentation 163
22.29.3.1 hwloc_distances_add() 163

22.29.3.2 hwloc_distances_release_remove() o 164

22.29.3.3 hwloc_distances_remove()o 164

22.29.3.4 hwloc_distances_remove_by depth() 164

22.29.3.5 hwloc_distances_remove_by type() 164

22.30 Linux-specifichelpers e 165
22.30.1 Detailed Description e e 165
22.30.2 Function Documentationo 165
22.30.2.1 hwloc_linux_get_tid cpubind() oo 165

22.30.2.2 hwloc_linux_get_tid last_cpu_location() 165

22.30.2.3 hwloc_linux_read_path_as_cpumask() 165

22.30.2.4 hwloc_linux_set_tid_cpubind()o 166

22.31 Interoperability with Linux libnuma unsigned longmasks 167
22.31.1 Detailed Description e e 167
22.31.2 Function Documentationo 167
22.31.2.1 hwloc_cpuset_from_linux_libnuma_ulongs() 167

22.31.2.2 hwloc_cpuset_to_linux_libnuma_ulongs() 167

22.31.2.3 hwloc_nodeset_from_linux_libnuma_ulongs() 167

22.31.2.4 hwloc_nodeset_to_linux_libnuma_ulongs() 168

22.32 Interoperability with Linux libnuma bitmask oo 169
22.32.1 Detailed Description L e e 169
22.32.2 Function Documentationo 169
22.32.2.1 hwloc_cpuset_from_linux_libnuma_bitmask() 169

22.32.2.2 hwloc_cpuset_to_linux_libnuma_bitmask() 169

Generated by Doxygen

22.32.2.3 hwloc_nodeset_from_linux_libnuma_bitmask() 169

22.32.2.4 hwloc_nodeset_to_linux_libnuma_bitmask() 170

22.33 Interoperability with glibc sched affinity o 171
22.33.1 Detailed Description e 171
22.33.2 Function Documentationo 171
22.33.2.1 hwloc_cpuset_from_glibc_sched_affinity() 171

22.33.2.2 hwloc_cpuset_to_glibc_sched_affinity() 171

22.34 Interoperability with OpenCL e 172
22.34.1 Detailed Description e e 172
22.34.2 Function Documentation 172
22.34.2.1 hwloc_opencl_get_device_cpuset() oL 172

22.34.2.2 hwloc_opencl_get_device_osdev()o oo 172

22.34.2.3 hwloc_opencl_get_device_osdev_by_index() 173

22.34.2.4 hwloc_opencl_get_device_pci_busid() 173

22.35 Interoperability with the CUDA Driver APl o 174
22.35.1 Detailed Description e e 174
22.35.2 Function Documentationo 174
22.35.2.1 hwloc_cuda_get_device_cpuset()o 174

22.35.2.2 hwloc_cuda_get_device_osdev() oo 174

22.35.2.3 hwloc_cuda_get_device_osdev_by_index() 174

22.35.2.4 hwloc_cuda_get_device_pci_ids() oo oo 175

22.35.2.5 hwloc_cuda_get_device_pcidev() 175

22.36 Interoperability with the CUDA Runtime APl 176
22.36.1 Detailed Description e e 176
22.36.2 Function Documentationo 176
22.36.2.1 hwloc_cudart_get_device_cpuset() L. 176

22.36.2.2 hwloc_cudart_get_device_osdev_by index() 176

22.36.2.3 hwloc_cudart_get_device_pci_ids() 176

22.36.2.4 hwloc_cudart_get_device_pcidev() 177

22.37 Interoperability with the NVIDIA Management Library 178
22.37.1 Detailed Description e e 178
22.37.2 Function Documentation 178
22.37.2.1 hwloc_nvml_get_device_cpuset()o 178

22.37.2.2 hwloc_nvml_get_device_osdev()o 178

22.37.2.3 hwloc_nvml_get_device_osdev_by_index() 178

22.38 Interoperability with OpenGL displays 180
22.38.1 Detailed Description e e 180
22.38.2 Function Documentation 180
22.38.2.1 hwloc_gl_get_display_by osdev() 180

22.38.2.2 hwloc_gl_get_display_osdev_by name() 180

22.38.2.3 hwloc_gl_get_display_osdev_by_port_device() 180

22.39 Interoperability with OpenFabrics 182

Generated by Doxygen

Xiv

22.39.1 Detailed Description e 182
22.39.2 Function Documentation 182
22.39.2.1 hwloc_ibv_get_device_cpuset()o 182

22.39.2.2 hwloc_ibv_get device_osdev() Lo 182

22.39.2.3 hwloc_ibv_get_device_osdev_by name() 182

22.40 Topology differences L e e 184
22.40.1 Detailed Description 184
22.40.2 Typedef Documentation L e e 184
22.40.2.1 hwloc_topology_diff obj_attr type_t 184

22.40.2.2 hwloc_topology_diff t 185

22.40.2.3 hwloc_topology_diff type t 185

22.40.3 Enumeration Type Documentationo 185
22.40.3.1 hwloc_topology_diff_apply_flags_.e 185

22.40.3.2 hwloc_topology_diff obj_attr type e 185

22.40.3.3 hwloc_topology_diff type e 185

22.40.4 Function Documentation 186
22.40.4.1 hwloc_topology_diff_apply() o o o 186

22.40.4.2 hwloc_topology_diff build() 186

22.40.4.3 hwloc_topology_diff _destroy() o 186

22.40.4.4 hwloc_topology_diff_export_xml() 187

22.40.4.5 hwloc_topology_diff_export_xmlbuffer() 187

22.40.4.6 hwloc_topology_diff load xml(), 187

22.40.4.7 hwloc_topology_diff load_xmlbuffer() 187

22.41 Sharing topologies between processes e 188
22.41.1 Detailed Description e e 188
22.41.2 Function Documentationo 188
22.41.2.1 hwloc_shmem_topology_adopt() 188

22.41.2.2 hwloc_shmem_topology get length() 189

22.41.2.3 hwloc_shmem_topology write() 189

22.42 Components and Plugins: Discovery componentso e 190
22.42.1 Detailed Description e e 190
22.43 Components and Plugins: Discovery backends oL 191
22.43.1 Detailed Description L 191
22.43.2 Typedef Documentation L 191
22.43.2.1 hwloc_disc_phase_t 191

22.43.3 Enumeration Type Documentation 191
22.43.3.1 hwloc_disc_phase_e 191

22.43.3.2 hwloc_disc_status flag_ e L Lo 192

22.43.4 Function Documentationo 192
22.43.41 hwloc_backend_alloc() o 192

22.43.4.2 hwloc_backend_enable() 192

22.44 Components and Plugins: Genericcomponents Lo 193

Generated by Doxygen

XV

22.44 .1 Detailed Description 193
22.44.2 Typedef Documentation 193
22.44.21 hwloc_component_type_t 193

22.44.3 Enumeration Type Documentationo 193
22.44.3.1 hwloc_component_type_e 193

22.45 Components and Plugins: Core functions to be used by components 194
22.45.1 Detailed Description 194
22.45.2 Typedef Documentation L e 194
224521 hwloc_report_error_t 194

22.45.3 Function Documentationo 194
22.45.3.1 hwloc__insert_object_by cpuset()o 194

22.45.3.2 hwloc_alloc_setup_object() oo 194

22.45.3.3 hwloc_hide_errors() e e 195

22.45.3.4 hwloc_insert_object_by cpuset() 195

22.45.3.5 hwloc_insert_object_by parent() 195

22.45.3.6 hwloc_obj_add_children_sets() L. 195

22.45.3.7 hwloc_plugin_check_namespace()« o v i 195

22.45.3.8 hwloc_report_os_error() v o 196

22.45.3.9 hwloc_topology_reconnect() oo 196

22.46 Components and Plugins: Filteringobjects L oo 197
22.46.1 Detailed Description L 197
22.46.2 Function Documentation L e 197
22.46.2.1 hwloc_filter_check_keep_object() L. 197

22.46.2.2 hwloc_filter_check_keep_object_type() 197

22.46.2.3 hwloc_filter_check_osdev_subtype_important() 197

22.46.2.4 hwloc_filter_check_pcidev_subtype_important() 197

22.47 Components and Plugins: helpers for PCldiscovery 198
22.47.1 Detailed Description 198
22.47.2 Function Documentation 198
22.47.2.1 hwloc_pcidisc_check_bridge_type()o 198

22.47.2.2 hwloc_pcidisc_find_bridge_buses() oL 198

22.47.2.3 hwloc_pcidisc_find_cap()o 198

22.47.2.4 hwloc_pcidisc_find_linkspeed() oL 198

22.47.2.5 hwloc_pcidisc_tree_attach()o o 199

22.47.2.6 hwloc_pcidisc_tree_insert_by busid() 199

22.48 Components and Plugins: finding PCI objects during other discoveries 200
22.48.1 Detailed Description e e 200
22.48.2 Function Documentation 200
22.48.2.1 hwloc_pci_find_parent_by busid() oL 200

22.49 Netloc APl . . L L e 201
22.49.1 Detailed Description L e e 201
22.49.2 Enumeration Type Documentationo 201

Generated by Doxygen

Xvi

22.49.2.1 @an0ONymMOUS €NUM ot vt i e e e e e e e e 201

23 Data Structure Documentation 203
23.1 hwloc_backend Struct Reference e 203
23.1.1 Detailed Description L 203
23.1.2 Field Documentation L 203
23.1.21disable e e 203
23.1.2.2diSCOVEr 203
23.1.23flags 204

23.1.2.4 get_pci_busid_cpuset 204
23.1.2.510s_thissystem 204
23.1.2.6Pphases L 204

23127 private_data L 204

23.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 204
23.2.1 Detailed Description e 205
23.2.2 Field Documentation L 205
28.2.21depth. 205
23.222domain 205
23.2.2.3downstream L 205

23.2.2.4 downstream_type 205

23.2.25PCH [1/2] v v v o e e 205

28.22.6PCi [2/2] o v i e e e e e 205
23.2.2.7secondary_bus 205

23.2.2.8 subordinate bus 205
23.22.9uUpstream L 205

23.2.2 10 upstream_type e 205

23.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference 206
23.3.1 Detailed Description L 206
23.3.2 Field Documentationo 206
23.3.2.1 associativity 206
23.3.2.2depth. 206
28.3.231inesize e 206

23.3.248ize e e 206

28.3.251type . . . e 206

23.4 hwloc_cl_device_topology_amd Union Reference 206
23.4.1 Field Documentation L 207
28.4.1.1bUS . . . L e 207
28.4.1.2data L e 207
28.4.1.3deviCe 207

23414 function L 207

23.4.1.5pcie . .. L e 207

28.4.1.671aW . . . L 207

Generated by Doxygen

28.41.71YPC . . e 207
23.4.1.8uUnusedo L 207

23.5 hwloc_component Struct Reference e 208
23.5.1 Detailed Description L 208
23.5.2 Field Documentationo 208
28.5.21ab0 . .. e 208
28.5.2.2data 208
23.5.23finalize 208
28.5.241Mlags 208

23.5.2510nit . .o 209

285268 1YPE . . e e 209

23.6 hwloc_disc_component Struct Reference Lo 209
23.6.1 Detailed Description L e 209
23.6.2 Field Documentation L e 209
23.6.2.1 enabled_by default 209
23.6.2.2excluded phases 210
23.6.23instantiate L 210
23.6.2.4NaME e e e e 210
23.6.25phases e 210

28.6.2.6 priority e 210

23.7 hwloc_disc_status Struct Reference 210
23.7.1 Detailed Description e e e 210
23.7.2 Field Documentation 210
23.7.21 excluded phases 211
23.7.221Mlags e e 211
23.7.23phase 211

23.8 hwloc_distances_s Struct Reference 211
23.8.1 Detailed Description e 211
23.8.2 Field Documentation 211
23.8.2.1Kind . .. e 211
23.8.2.2nbobjs L 211

23.8.2.30bjs e 212
23.8.24values e e 212

23.9 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference 212
23.9.1 Detailed Description e e 212
23.9.2 Field Documentation L e 212
23.9.21depth. 212
23.9.22dont_merge 212

23.9.23kind e 212

23.9.24 subkind e e 212

23.10 hwloc_info_s Struct Reference e 213
23.10.1 Detailed Description 213

Generated by Doxygen

Xviii

23.10.2 Field Documentation e e e 213
23.10.2.1NaMe e e e e 213
23.10.2.2value e e e e e e 213

23.11 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference 213

283.11.1 Detailed Description L 213
23.11.2 Field Documentation 213
231120 count . ..o 214
28.11.2.28iZ8 L e 214

23.12 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference 214
23.12.1 Detailed Description e e 214
23.12.2 Field Documentation e 214
23.12.2.1 local_memory L 214
23.12.2.2page_types e 214
23.12.23 page_types_len 214

23.13 hwloc_obj Struct Reference e 214
23.13.1 Detailed Description e e 215
23.13.2 Field Documentation e 215
231821 arity e e 216
23.13.2.2attr . . . e e e 216
23.13.23children L 216
23.13.24 complete_cpuset 216
23.13.2.5complete_nodeset 216
23.13.2.6 cpuset . ..o 216
23.13.2.7depth 217
23.18.28first_child e 217
23.13.29gp_index 217
23.13.2100nfos . . . L L 217
23.18.2.111infos_count L e 217
23.18.2.1200_arity e 217
23.13.2.13o_first_child 217
23.13.214 last_child L. 218
23.13.2.15 logical_index L 218
23.13.216 memory_arity L e 218
23.13.2.17 memory_first_child 218
23.13.218 misc_arity 218
23.18.2.19 misc first child 218
23.13.220name L 218
23.18.221 next_cousin L. e e 218
23.13.2.22 next_sibling L 218
23.13.2.23 nodeset L L L 219
23.13.2.24 0S8 _iNAEX i i e e e e e e 219
23.13.225 parent . . . L. L 219

Generated by Doxygen

Xix

2318226 Prev_CoUSIN . . . o o o e e e e e e e 219
23.13.227 prev_sibling L 219
23.13.2.28 sibling_rank L 219
2343.229 SUBLYPE . . o o o e e e 219
23.13.2.30 symmetric_subtree 220
23.13.231total_memory L 220
28.13.2321YPE . . o 220
23.18.233userdata 220

23.14 hwloc_obj_attr u Union Reference L 220
23.14.1 Detailed Description e e 220
23.14.2 Field Documentation e 220
231421 bridge . .. L e 221
23.14.22cache L 221
231423 QgroUpo 221
23.14.24 numanode L o e e e 221
23.14.2508dev L e 221
23.14.26pcidev . . . L e 221

23.15 hwloc_obj_attr_u::hwloc_osdev_attr s Struct Reference 221
28.15.1 Detailed Description L 221
23.15.2 Field Documentation L 221
28.15.2.1type . . . e 221

23.16 hwloc_obj_attr_u::hwloc_pcidev_attr s Struct Reference 221
23.16.1 Detailed Description e e 222
23.16.2 Field Documentation e 222
23.16.2.1bus e 222
23.16.2.2class_id. e e 222
28.16.23dEV . . . 222
28.16.2.4device_id e 222
23.16.25domain L e e 222
23.16.26funC. e 222
23.16.2.7linkspeed L 222
28.16.2.81evViSiON . . . L. L 223
23.16.2.9 subdevice_id e e 223
23.16.2.10 subvendor_id L e e e e e e 223
23.16.2.11vendor_id L e e 223

23.17 hwloc_topology_cpubind_support Struct Reference 223
23.17.1 Detailed Description e e e 223
23.17.2 Field Documentation e 223
23.17.21 get_proc_cpubind L 223
23.17.2.2 get_proc_last_cpu_locationo 223
23.17.2.3 get_thisproc_cpubind 224
23.17.2.4 get_thisproc_last_cpu_location 224

Generated by Doxygen

XX

23.17.2.5 get_thisthread_cpubindo 224

23.17.2.6 get_thisthread_last_cpu_location 0oL 224

23.17.2.7 get_thread_cpubind 224

23.17.2.8 set_proc_cpubind L 224

23.17.2.9 set_thisproc_cpubind 224

23.17.2.10 set_thisthread_cpubindo 224
23.17.211set_thread_cpubind 224

23.18 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference 224
23.18.1 Field Documentation e 225
231810 next . . . e e e 225

2848 1.21YPC .« e e e e 225

23.19 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference 225
23.19.1 Field Documentation L 225
281901 type . . . e 225

23.20 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference 225
23.20.1 Field Documentation e 225
23.201. 1 diff ... L 226
23.20.1.2Nnext e e e e e e 226
23.20.1.30bj_depth 226
23.20.1.40bj_index 226
28.20.1.5tYPe . . . 226

23.21 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff _obj_attr_string_s Struct Reference 226
23.21.1 Detailed Description e e 226
23.21.2 Field Documentation e 226
23.21.21N0ame e e 226
23.21.22newvalue L. e 226
23.21.230ldvalue 227
28.21.2.418ype . . . L 227

23.22 hwloc_topology_diff_obj_attr_u Union Reference 227
23.22.1 Detailed Description e e 227
23.22.2 Field Documentation e 227
28.22.21G€NEIIC . .« . v o e 227
28.22.2.2string e 227

282223 UINtB4 227

23.23 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference 228
23.23.1 Detailed Description e 228
23.23.2 Field Documentation e 228
23.23.2.110NdeX L 228
23.23.22newvalue 228
23.28.23o0ldvalue e e 228
28.23.2.41YPE 228

23.24 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference 228

Generated by Doxygen

xxi

23.24.1 Field Documentation L 229
282400 next . . L L e 229
232412000 depth. oo 229
23.241.30bj_index e e 229
2324 141YPC i 229

23.25 hwloc_topology_diff_u Union Referenceo 229

23.25.1 Detailed Description 229

23.25.2 Field Documentation L 229
23.25.2.1g€NErIC L e 229
23.25.2.20bj_attr L 229
23.25.2.3t00_complex 230

23.26 hwloc_topology_discovery_support Struct Reference 230

23.26.1 Detailed Description e e 230

23.26.2 Field Documentation L 230
23.26.2.1disallowed_ numa e 230
23.26.2.2disallowed_pu L 230
23.26.23NUMA L e e e 230
23.26.2.4 NUMa_MeMOIY o i e e e e e e e e e e e e e 230
23.26.25PU. . . i e e e e e e 230

23.27 hwloc_topology_membind_support Struct Reference oL 231

23.27.1 Detailed Description 231

23.27.2 Field Documentation L 231
23.27.21 alloc_membind L 231
23.27.2.2bind_membind L 231
23.27.2 3 firsttouch_membind L 231
23.27.2.4 get_area_membind L 231
23.27.25get_area_memlocation 231
23.27.2.6 get_ proc_membind 232
23.27.2.7 get_thisproc_membind 232
23.27.2.8 get_thisthread_membind Lo oL 232
23.27.29 interleave_membind L L L 232
23.27.210 migrate_membind L. 232
23.27.2.11 nexttouch_membind L 232
23.27.2.12set_area_membind L e 232
23.27.2.13 set_proc_membind 232
23.27.2.14 set_thisproc_membind L 232
23.27.2.15 set_thisthread_membindo 232

23.28 hwloc_topology_support Struct Reference Lo 232

23.28.1 Detailed Description e e 233

23.28.2 Field Documentation L 233
23.282. 1 cpubind 233
23.28.2.2dISCOVEIY . .« v o o e e 233

Generated by Doxygen

xxii

23.28.2.3 membind

Generated by Doxygen

Chapter 1

Hardware Locality

Portable abstraction of parallel architectures for high-performance
computing

1.1 Introduction

The Hardware Locality (hwloc) software project aims at easing the process of discovering hardware resources
in parallel architectures. It offers command-line tools and a C API for consulting these resources, their locality,
attributes, and interconnection. hwloc primarily aims at helping high-performance computing (HPC) applications,
but is also applicable to any project seeking to exploit code and/or data locality on modern computing platforms.
hwloc is actually made of two subprojects distributed together:

» The original hwloc project for describing the internals of computing nodes. It is described in details
starting at section Hardware Locality (hwloc) Introduction.

» The network-oriented companion called netloc (Network Locality), described in details starting with sec-
tion Network Locality (netloc).

Netloc may be disabled, but the original hwloc cannot. Both hwloc and netloc APIs are documented after these
sections.

1.2 Installation

hwloc (https://www.open-mpi.org/projects/hwloc/) is available under the BSD license. It is
hosted as a sub-project of the overall Open MPI project (https://www.open-mpi.org/). Note that hwloc
does not require any functionality from Open MPI — it is a wholly separate (and much smaller!) project and code
base. It just happens to be hosted as part of the overall Open MPI project.

1.2.1 Basic Installation
Installation is the fairly common GNU-based process:

shell$./configure —-prefix=...
shell$ make
shell$ make install

hwloc- and netloc-specific configure options and requirements are documented in sections hwloc Installation and
Netloc Installation respectively.

Also note that if you install supplemental libraries in non-standard locations, hwloc's configure script may not be
able to find them without some help. You may need to specify additional CPPFLAGS, LDFLAGS, or PKG_CONF+«
IG_PATH values on the configure command line.

For example, if libpciaccess was installed into /opt/pciaccess, hwloc's configure script may not find it be default. Try
adding PKG_CONFIG_PATH to the ./configure command line, like this:

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/

2 Hardware Locality

./configure PKG_CONFIG_PATH=/opt/pciaccess/lib/pkgconfig ...

Running the "Istopo” tool is a good way to check as a graphical output whether hwloc properly detected the archi-
tecture of your node. Netloc command-line tools can be used to display the network topology interconnecting your
nodes.

1.2.2 Installing from a Git clone
Additionally, the code can be directly cloned from Git:

shell$ git clone https://github.com/open-mpi/hwloc.git
shell$ cd hwloc
shell$./autogen.sh

Note that GNU Autoconf >=2.63, Automake >=1.11 and Libtool >=2.2.6 are required when building from a Git
clone.

Nightly development snapshots are available on the web site, they can be configured and built without any need for
Git or GNU Autotools.

1.3 Questions and Bugs

Bugs should be reported in the tracker (https://github.com/open-mpi/hwloc/1issues). Opening a

new issue automatically displays lots of hints about how to debug and report issues.

Questions may be sent to the users or developers mailing lists (https://www.open-mpi.org/community/lists/hwloc
php).

There is also a #hwloc IRC channel on Freenode (irc.freenode.net).

Generated by Doxygen

https://github.com/open-mpi/hwloc/issues
https://www.open-mpi.org/community/lists/hwloc.php
https://www.open-mpi.org/community/lists/hwloc.php
irc.freenode.net

Chapter 2

Hardware Locality (hwloc) Introduction

Portable abstraction of hierarchical architectures for high-performance
computing

See also Further Reading for links to more sections about hwloc concepts.

2.1 hwloc Summary

hwloc provides command line tools and a C API to obtain the hierarchical map of key computing elements within
a node, such as: NUMA memory nodes, shared caches, processor packages, dies and cores, processing units
(logical processors or "threads") and even I/O devices. hwloc also gathers various attributes such as cache and
memory information, and is portable across a variety of different operating systems and platforms.

hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable to any project
seeking to exploit code and/or data locality on modern computing platforms.

hwloc supports the following operating systems:

* Linux (including old kernels not having sysfs topology information, with knowledge of cpusets, ScaleMP vSMP
support, etc.) on all supported hardware, including Intel Xeon Phi and NumaScale NumaConnect.

+ Solaris (with support for processor sets and logical domains)
« AIX

« Darwin/ OS X

» FreeBSD and its variants (such as kFreeBSD/GNU)

+ NetBSD

« HP-UX

* Microsoft Windows

» IBM BlueGene/Q Compute Node Kernel (CNK)

Since it uses standard Operating System information, hwloc's support is mostly independant from the processor
type (x86, powerpc, ...) and just relies on the Operating System support. The main exception is BSD operating
systems (NetBSD, FreeBSD, etc.) because they do not provide support topology information, hence hwloc uses an
x86-only CPUID-based backend (which can be used for other OSes too, see the Components and plugins section).

To check whether hwloc works on a particular machine, just try to build itand run 1 stopo or 1stopo-no—-graphics.
If some things do not look right (e.g. bogus or missing cache information), see Questions and Bugs.

hwloc only reports the number of processors on unsupported operating systems; no topology information is avail-
able.

For development and debugging purposes, hwloc also offers the ability to work on "fake" topologies:

« Symmetrical tree of resources generated from a list of level arities, see Synthetic topologies.

4 Hardware Locality (hwloc) Introduction

+ Remote machine simulation through the gathering of topology as XML files, see Importing and exporting topologies from/to XML

hwloc can display the topology in a human-readable format, either in graphical mode (X11), or by exporting in one
of several different formats, including: plain text, PDF, PNG, and FIG (see Command-line Examples below). Note
that some of the export formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also brings a powerful CPU bitmap
APl that is used to describe topology objects location on physical/logical processors. See the Programming Interface
below. It may also be used to binding applications onto certain cores or memory nodes. Several utility programs
are also provided to ease command-line manipulation of topology objects, binding of processes, and so on.

Perl bindings are available from Bernd Kallies on CPAN.

Python bindings are available from Guy Streeter:

e Fedora RPM and tarball.

e git tree(html).

2.2 hwloc Installation

The generic installation procedure for both hwloc and netloc is described in Installation.

The hwloc command-line tool "Istopo™ produces human-readable topology maps, as mentioned above. It can also
export maps to the "fig" file format. Support for PDF, Postscript, and PNG exporting is provided if the "Cairo"
development package (usually cairo-devel or libcairo2-dev) can be found in "Istopo” when hwloc is
configured and build.

The hwloc core may also benefit from the following development packages:

« libpciaccess for full I/O device discovery (1ibpciaccess—devel or libpciaccess—dev package).
On Linux, PCI discovery may still be performed (without vendor/device names) even if libpciaccess cannot be
used.

+ AMD or NVIDIA OpenCL implementations for OpenCL device discovery.
+ the NVIDIA CUDA Toolkit for CUDA device discovery.

+ the NVIDIA Management Library (NVML) for NVML device discovery. It is included in CUDA since ver-
sion 8.0. Older NVML releases were available within the NVIDIA GPU Deployment Kit from https«
://developer.nvidia.com/gpu-deployment—-kit .

» the NV-CONTROL X extension library (NVCtrl) for NVIDIA display discovery. The relevant development pack-

ageis usually 11bXNVCtrl-devel or libxnvctrl-dev. Itis also available within nvidia-settings from

ftp://download.nvidia.com/XFree86/nvidia-settings/and https://github.+«
com/NVIDIA/nvidia-settings/ .

« libxml2 for full XML import/export support (otherwise, the internal minimalistic parser will only be able to import
XML files that were exported by the same hwloc release). See Importing and exporting topologies from/to XML files
for details. The relevant development package is usually 1ibxml2-devel or 1ibxml2-dev.

+ libudev on Linux for easier discovery of OS device information (otherwise hwloc will try to manually parse
udev raw files). The relevant development package is usually 1ibudev-devel or 1ibudev-dev.

« libtool's Itdl library for dynamic plugin loading if the native dlopen cannot be used. The relevant development
package is usually 1ibtool-1tdl-devel or 1ibltdl-dev.

PCIl and XML support may be statically built inside the main hwloc library, or as separate dynamically-loaded plugins
(see the Components and plugins section).

Note that because of the possibility of GPL taint, the pciutils library 1ibpci will not be used (remember that
hwloc is BSD-licensed).

2.3 Command-line Examples

On a 4-package 2-core machine with hyper-threading, the 1 st opo tool may show the following graphical output:

Generated by Doxygen

http://search.cpan.org/~bka/Sys-Hwloc-0.10/
http://people.redhat.com/streeter/
git://git.fedorahosted.org/python-hwloc.git
http://git.fedorahosted.org/git/python-hwloc.git
https://developer.nvidia.com/gpu-deployment-kit
https://developer.nvidia.com/gpu-deployment-kit
ftp://download.nvidia.com/XFree86/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/

2.3 Command-line Examples 5

Machine
| NUMANcde P#O |
Package P#D Package P#1 Package P#2 Package P#3
L3 (4096KE)		L3 (4096KE)		L3 (4096KE)		L3 (4096KE)								
L2 (1024KB)		L2 (1024KB)		L2 (1024KB)		L2 (1024KB)		L2 (1024KB)		L2 (1024KB)		L2 (1024KB)		L2 (1024KB)
L1 (16KEB)		L1 (16KB)		L1 (16KE)		L1 (16KE)		L1 (16KB)		L1 (16KE)		L1 (16KE)		L1 (16KE)
Core P#0 Core P#1 Core P#0 Core P#1 Core P#0 Core P#1 Core P#0 Core P#1
PU PO PU P#4 PU P#L PU P#S PU P#2 PU P#E PU P#3 PU PET
PU P8 PU P12 PU P2 PUP#13 PU P#1D PU P14 PUP#11 PU P15

Here's the equivalent output in textual form:

Machine
NUMANode L#0 (P#0)
Package L#0 + L3 L#0 (4096KB)
L2 L#0 (1024KB) + L1 L#0 (16KB) + Core L#0
PU L#0 (P#0)
PU L#1 (P#8)
L2 L#1 (1024KB) + L1 L#1 (16KB) + Core L#l
PU L#2 (P#4)
PU L#3 (P#12)
Package L#1 + L3 L#1 (4096KB)
L2 L#2 (1024KB) + L1 L#2 (16KB) + Core L#2
PU L#4 (P#1)
PU L#5 (P#9)
L2 L#3 (1024KB) + L1 L#3 (16KB) + Core L#3
PU L#6 (P#5)
PU L#7 (P#13)
Package L#2 + L3 L#2 (4096KB)
L2 L#4 (1024KB) + L1 L#4 (16KB) + Core L#4
PU L#8 (P#2)
PU L#9 (P#10)
L2 L#5 (1024KB) + L1 L#5 (16KB) + Core L#5
PU L#10 (P#6)
PU L#11 (P#14)
Package L#3 + L3 L#3 (4096KB)
L2 L#6 (1024KB) + L1 L#6 (16KB) + Core L#6
PU L#12 (P#3)
PU L#13 (P#11)
L2 L#7 (1024KB) + L1 L#7 (1l6KB) + Core L#7
PU L#14 (P#7)
PU L#15 (P#15)

Note that there is also an equivalent output in XML that is meant for exporting/importing topologies but it is hardly
readable to human-beings (see Importing and exporting topologies from/to XML files for details).

On a 4-package 2-core Opteron NUMA machine (with two core cores disallowed by the administrator), the 1 st opo
tool may show the following graphical output (with ——disallowed for displaying disallowed objects):

Generated by Doxygen

Hardware Locality (hwloc) Introduction

Machine (32GB total)

Package P#0

Package P#1

Package P#2

Package P#3

| NUMANode P#0 (B190MEB)

| NUMANode P#1 (B192MB) |

| NUMANode P2 (B192MB) |

| NUMANode P#3 (8192MEB) |

| L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB)
| L1 (64KB) | | L1 (64KB) | | L1 (B4KE) | | L1 (B4KEB) | | L1 (B4KE) | | L1 (B4KE) | | L1 (64KB) | | L1 (64KB) |
Core P#0 Core P#1 Core P#0 Core P#1 Core P#0 Core P#1 Core P#0 Core P#1
| PU P#0 | | PU P#1 | | PU P2 | | PU P#3 | - - | PU P#6 | | PUP#T |

Here's the equivalent output in textual form:

Machine (32GB total)
Package L#0
NUMANode L#0 (P#0
L2 L#0 (1024KB) +
L2 L#1 (1024KB) +
Package L#1
NUMANode L#1 (P#1
L2 L#2 (1024KB) +
L2 L#3 (1024KB) +
Package L#2
NUMANode L#2 (P#2
L2 L#4 (1024KB) +
L2 L#5 (1024KB) +
Package L#3
NUMANode L#3 (P#3
L2 L#6 (1024KB) +
L2 L#7 (1024KB) +

8190MB)
L1 L#0 (64KB) + Core L#0
L1 L#1 (64KB) + Core L#l
8192MB)
L1 L#2 (64KB) + Core L#2
L1 L#3 (64KB) + Core L#3
8192MB)
L1 L#4 (64KB) + Core L#4
L1 L#5 (64KB) + Core L#5
8192MRB)
L1 L#6 (64KB) + Core L#6
L1 L#7 (64KB) + Core L#7

+ PU L#0 (P#0)
+ PU L#1 (P#1)
+ PU L#2 (P#2
+ PU L#3 (P#3)
+ PU L#4 (P#4)
+ PU L#5 (P#5)
+ PU L#6 (P#6
+ PU L#7 (P#7)

On a 2-package quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each package):

Machine [16GB total)
NUMANode P#0 [16GB)
Package P#0 Package P#1
L2 (4096KB) L2 (4096KB) L2 (4096KE) L2 (4096KB)
L1{32KB) L1{32KB) L1 (32KB) L1 (32KE) L1{32KB) L1{32KB) L1 (32KE) L1 (32KE)
Core P#£0 Core P#1 Core P#2 Core P#3 Core P#£0 Core P#1 Core P#2 Core P#3
PU P#D PU P#4 PU P32 PU P#6 PU P#1 PU P#5 PU P#3 PU P#T
Here's the same output in textual form:
Machine (total 16GB)
NUMANode L#0 (P#0 16GB)
Package L#0
L2 L#0 (4096KB)
L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L1 L#1 (32KB) + Core L#1 + PU L#1 (P#4)
L2 L#1 (4096KB)
L1 L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L1 L#3 (32KB) + Core L#3 + PU L#3 (P#6)
Package L#1
L2 L#2 (4096KB)
L1 L#4 (32KB) + Core L#4 + PU L#4 (P#1)
L1 L#5 (32KB) + Core L#5 + PU L#5 (P#5)
L2 L#3 (4096KB)
L1 L#6 (32KB) + Core L#6 + PU L#6 (P#3)
L1 L#7 (32KB) + Core L#7 + PU L#7 (P#7)

Generated by Doxygen

2.4 Programming Interface 7

2.4 Programming Interface

The basic interface is available in hwloc.h. Some higher-level functions are available in hwloc/helper.h to reduce the
need to manually manipulate objects and follow links between them. Documentation for all these is provided later in
this document. Developers may also want to look at hwloc/inlines.h which contains the actual inline code of some
hwloc.h routines, and at this document, which provides good higher-level topology traversal examples.

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is available and should probably
be read first.

Each hwloc object contains a cpuset describing the list of processing units that it contains. These bitmaps
may be used for CPU binding and Memory binding. hwloc offers an extensive bitmap manipulation interface in
hwloc/bitmap.h.

Moreover, hwloc also comes with additional helpers for interoperability with several commonly used environments.
See the Interoperability With Other Software section for details.

The complete API documentation is available in a full set of HTML pages, man pages, and self-contained PDF files
(formatted for both both US letter and A4 formats) in the source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Git clone, you will need to have Doxygen and pdflatex installed
— the documentation will be built during the normal "make" process. The documentation is installed during "make
install" to $prefix/share/doc/hwloc/ and your systems default man page tree (under $prefix, of course).

2.4.1 Portability

Operating System have varying support for CPU and memory binding, e.g. while some Operating Systems provide
interfaces for all kinds of CPU and memory bindings, some others provide only interfaces for a limited number of
kinds of CPU and memory binding, and some do not provide any binding interface at all. Hwloc's binding functions
would then simply return the ENOSYS error (Function not implemented), meaning that the underlying Operating
System does not provide any interface for them. CPU binding and Memory binding provide more information on
which hwloc binding functions should be preferred because interfaces for them are usually available on the sup-
ported Operating Systems.

Similarly, the ability of reporting topology information varies from one platform to another. As shown in
Command-line Examples, hwloc can obtain information on a wide variety of hardware topologies. However,
some platforms and/or operating system versions will only report a subset of this information. For example, on
an PPC64-based system with 8 cores (each with 2 hardware threads) running a default 2.6.18-based kernel from
RHEL 5.4, hwloc is only able to glean information about NUMA nodes and processor units (PUs). No information
about caches, packages, or cores is available.

Here's the graphical output from Istopo on this platform when Simultaneous Multi-Threading (SMT) is enabled:

Machine (61GB total)

Group0 Group0

| NUMAHNode L#0 (30GE) | | NUMAHNode L#1 (31GE) |

| PUL#D || PUL#1 || PUL#2 || PUL#3 || PU L#4 || PUL#S || PUL#6 || PUL#T | | PUL#E || PUL#Z || PUL#10 || PU L#11 || PUL#12 || PUL#13 || PUL#14 | | PUL#15 |

And here's the graphical output from Istopo on this platform when SMT is disabled:

Machine (61GE total)

Group0 Groupl

| NUMANode L#0 (30GB) | | NUMANode L#1 (31GB) |

| PU L#0 || PUL#1 | | PUL#2 || PUL#3 | | PU L#4 || PUL#5 || PU L#6 || PUL#T |

Notice that hwloc only sees half the PUs when SMT is disabled. PU L#6, for example, seems to change location
from NUMA node #0 to #1. In reality, no PUs "moved" — they were simply re-numbered when hwloc only saw
half as many (see also Logical index in Indexes and Sets). Hence, PU L#6 in the SMT-disabled picture probably
corresponds to PU L#12 in the SMT-enabled picture.

This same "PUs have disappeared" effect can be seen on other platforms — even platforms / OSs that provide much
more information than the above PPC64 system. This is an unfortunate side-effect of how operating systems report
information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to 2.6.34, hwloc is able to
discover all the topology information. The following picture shows the entire topology layout when SMT is enabled:

Generated by Doxygen

8 Hardware Locality (hwloc) Introduction

Machine (61GB total)
Groupd Groupd
| NUMANode L#0 (30GB) | | NUMANode L#1 (31GB) |
Package L0 Package L¥1 Package L¥#2 Package L#3
L3 (32M8)		L3 (32M8)		L3 (32M8)		L3 (32M8)								
L2 (4096KB)		L2 (4096KEB)		L2 (4096KEB)		L2 (4096KEB)								
L1 (64KB)		L1 (B4KB)		L1 (64KB)		L1 (64KB)		L1 (64KB)		L1 (64KB)		L1 (64KB)		L1 (B4KB)
Core L#0 Core L1 Core L#2 Core L#3 Core L4 Core L#5 Core L#6 Core L#7														
wm	wu4	wm	wm		mﬂ	wm		m%	wm		mﬂ	wm	hmmlwmd	mm

Developers using the hwloc API or XML output for portable applications should therefore be extremely careful to
not make any assumptions about the structure of data that is returned. For example, per the above reported PPC
topology, it is not safe to assume that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available in this version of hwloc. Long-
lived applications that are meant to span multiple different hardware platforms should also be careful about making
structure assumptions. For example, a new element may someday exist between a core and a PU.

2.4.2 API Example

The following small C example (available in the source tree as ““doc/examples/hwloc-hello.c") prints the topology of
the machine and performs some thread and memory binding. More examples are available in the doc/examples/

directory of the source tree.

/% Example hwloc API program.

*

* See other examples under doc/examples/ in the source tree
for more details.

Copyright © 2009-2016 Inria. All rights reserved.

Copyright © 2009-2011 Université Bordeaux

Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved.
See COPYING in top-level directory.

* ok ok ok b %

* hwloc-hello.c

*/

#include "hwloc.h"

#include <errno.h>

#include <stdio.h>

#include <string.h>

static void print_children (hwloc_topology_t topology, hwloc_obj_t obj,

int depth)

{
char type[32], attr([1024];
unsigned 1i;
hwloc_obj_type_snprintf (type, sizeof (type), obj, 0);
printf ("%$xs%s", 2«depth, "", type);
if (obj->os_index != (unsigned) -1)

printf ("#%u", obj->os_index);
hwloc_obj_attr_snprintf (attr, sizeof (attr), obj, " ", 0);
if (xattr)
printf (" (%s)", attr);
printf ("\n");
for (1 = 0; 1 < obj->arity; i++) {
print_children (topology, obj->children([i], depth + 1);

}

}

int main(void)

{
int depth;
unsigned i, n;
unsigned long size;
int levels;
char string[128];
int topodepth;
void =*m;
hwloc_topology_t topology;
hwloc_cpuset_t cpuset;
hwloc_obj_t obj;
/+ Allocate and initialize topology object. =/
hwloc_topology_init (&topology) ;
/* ... Optionally, put detection configuration here to ignore

some objects types, define a synthetic topology, etc....

The default is to detect all the objects of the machine that
the caller is allowed to access. See Configure Topology
Detection. */

/+ Perform the topology detection. */

Generated by Doxygen

2.4 Programming Interface

hwloc_topology_load(topology) ;
/* Optionally, get some additional topology information
in case we need the topology depth later. =/
topodepth = hwloc_topology_get_depth (topology) ;
/***************************************k*************************
« First example:
* Walk the topology with an array style, from level 0 (always
* the system level) to the lowest level (always the proc level).
***/
for (depth = 0; depth < topodepth; depth++) {
printf ("«x+ Objects at level %d\n", depth);
for (1 = 0; 1 < hwloc_get_nbobjs_by_depth(topology, depth);
i++) {
hwloc_obj_type_snprintf (string, sizeof (string),
hwloc_get_obj_by_depth (topology, depth, i), 0);
printf ("Index %u: %s\n", i, string);
}
}
/*********k**********************k********************************
* Second example:
« Walk the topology with a tree style.
***/
printf ("sx+ Printing overall tree\n");
print_children (topology, hwloc_get_root_obj(topology), 0);
/***
* Third example:
* Print the number of packages.
***/
depth = hwloc_get_type_depth (topology, HWLOC_OBJ_PACKAGE) ;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
printf ("+x* The number of packages is unknown\n");
} else {
printf ("x+x %Su package(s)\n",
hwloc_get_nbobjs_by_depth (topology, depth));
}
/***
* Fourth example:
« Compute the amount of cache that the first logical processor
* has above it.
***/
levels = 0;
size = 0;
for (obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_PU, 0);
obj;
obj = obj->parent)
if (hwloc_obj_type_is_cache (obj->type)) {
levels++;
size += obj->attr->cache.size;
}
printf ("+x+ Logical processor 0 has %d caches totaling %1uKB\n",
levels, size / 1024);
/***
«+ Fifth example:
* Bind to only one thread of the last core of the machine.

* First find out where cores are, or else smaller sets of CPUs if
+ the OS doesn’t have the notion of a "core".
***/
depth = hwloc_get_type_or_below_depth (topology, HWLOC_OBJ_CORE) ;
/* Get last core. x/
obj = hwloc_get_obj_by_depth (topology, depth,
hwloc_get_nbobjs_by_depth (topology, depth) - 1);
Lf (obJ) |
/* Get a copy of its cpuset that we may modify. %/
cpuset = hwloc_bitmap_dup (obj->cpuset);
/* Get only one logical processor (in case the core is
SMT/hyper-threaded) . */
hwloc_bitmap_singlify (cpuset);
/* And try to bind ourself there. %/
if (hwloc_set_cpubind(topology, cpuset, 0)) {
char xstr;
int error = errno;
hwloc_bitmap_asprintf (&str, obj->cpuset);
printf ("Couldn’t bind to cpuset %s: %s\n", str, strerror(error));
free(str);
}
/+ Free our cpuset copy */
hwloc_bitmap_free (cpuset);
}
/***
* Sixth example:
* Allocate some memory on the last NUMA node, bind some existing
* memory to the last NUMA node.
***/
/* Get last node. There’s always at least one. %/
n = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_NUMANODE) ;
obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, n - 1);

Generated by Doxygen

10 Hardware Locality (hwloc) Introduction

size = 1024%1024;

m = hwloc_alloc_membind(topology, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

hwloc_free (topology, m, size);

m = malloc(size);

hwloc_set_area_membind(topology, m, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

free(m);

/* Destroy topology object. */

hwloc_topology_destroy (topology);

return 0;

}

hwloc provides a pkg—conf ig executable to obtain relevant compiler and linker flags. For example, it can be used
thusly to compile applications that utilize the hwloc library (assuming GNU Make):

CFLAGS += $(shell pkg-config --cflags hwloc)
LDLIBS += $(shell pkg-config --1libs hwloc)

hwloc-hello: hwloc-hello.c
$(CC) hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)

On a machine 2 processor packages — each package of which has two processing cores — the output from running
hwloc-hello could be something like the following:

shell$./hwloc-hello
x*% Objects at level 0
Index 0: Machine
x*x Objects at level 1
Index 0: Package#0
Index 1: Package#l
x%% Objects at level 2
Index 0: Core#0
Index 1: Core#l
Index 2: Core#3
Index 3: Core#2
*x% Objects at level 3
Index 0: PU#0
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3
*x% Printing overall tree
Machine
Package#0
Core#0
PU#0
Core#l
PU#1
Package#l
Core#3
PU#2
Core#2
PU#3
*x*x 2 package (s)
*%% Logical processor 0 has 0 caches totaling OKB
shells$

2.5 History / Credits

hwloc is the evolution and merger of the libtopology project and the Portable Linux Processor Affinity (PLPA) (
https://www.open-mpi.org/projects/plpa/) project. Because of functional and ideological overlap,
these two code bases and ideas were merged and released under the name "hwloc" as an Open MPI sub-project.
libtopology was initially developed by the Inria Runtime Team-Project. PLPA was initially developed by the Open
MPI development team as a sub-project. Both are now deprecated in favor of hwloc, which is distributed as an Open
MPI sub-project.

2.6 Further Reading

The documentation chapters include

Generated by Doxygen

https://www.open-mpi.org/projects/plpa/
https://www.open-mpi.org/projects/plpa/

2.6 Further Reading

11

+ Terms and Definitions

« Command-Line Tools

» Environment Variables

« CPU and Memory Binding Overview
+ 1/O Devices

» Miscellaneous objects

» Object attributes

+ Importing and exporting topologies from/to XML files
 Synthetic topologies

+ Interoperability With Other Software
» Thread Safety

+ Components and plugins

» Embedding hwloc in Other Software
+ Frequently Asked Questions

» Upgrading to the hwloc 2.0 API

Make sure to have had a look at those too!

Generated by Doxygen

12

Hardware Locality (hwloc) Introduction

Generated by Doxygen

Chapter 3

Terms and Definitions

3.1 Obijects

Object Interesting kind of part of the system, such as a Core, a L2Cache, a NUMA memory node, etc. The
different types detected by hwloc are detailed in the hwloc_obj_type_t enumeration.

There are four kinds of Objects: Memory (NUMA nodes and Memory-side caches), I/O (Bridges, PCl and OS
devices), Misc, and Normal (everything else, including Machine, Package, Die, Core, PU, CPU Caches, etc.).
Normal and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc don't.

Objects are topologically sorted by locality (CPU and node sets) into a tree (see Hierarchy, Tree and Levels).

Processing Unit (PU) The smallest processing element that can be represented by a hwloc object. It may be a
single-core processor, a core of a multicore processor, or a single thread in a SMT processor (also sometimes
called "Logical processor", not to be confused with "Logical index of a processor"). hwloc's PU acronym
stands for Processing Unit.

Package A processor Package is the physical package that usually gets inserted into a socket on the motherboard.
It is also often called a physical processor or a CPU even if these names bring confusion with respect to cores
and processing units. A processor package usually contains multiple cores (and may also be composed of
multiple dies). hwloc Package objects were called Sockets up to hwloc 1.10.

NUMA Node An object that contains memory that is directly and byte-accessible to the host processors. It
is usually close to some cores as specified by its CPU set. Hence it is attached as a memory child
of the object that groups those cores together, for instance a Package objects with 4 Core children (see
Hierarchy, Tree and Levels).

Memory-side Cache A cache in front of a specific memory region (e.g. a range of physical addresses). It caches
all accesses to that region without caring about which core issued the request. This is the opposite of usual
CPU caches where only accesses from the local cores are cached, without caring about the target memory.

In hwloc, memory-side caches are memory objects placed between their local CPU objects (parent) and the
target NUMA node memory (child).

3.2 Indexes and Sets

OS or physical index The index that the operating system (OS) uses to identify the object. This may be com-
pletely arbitrary, non-unique, non-contiguous, not representative of logical proximity, and may depend on the
BIOS configuration. That is why hwloc almost never uses them, only in the default Istopo output (P #x) and
cpuset masks. See also Should | use logical or physical/OS indexes? and how?.

Logical index Index to uniquely identify objects of the same type and depth, automatically computed by hwloc
according to the topology. It expresses logical proximity in a generic way, i.e. objects which have adjacent
logical indexes are adjacent in the topology. That is why hwloc almost always uses it in its API, since it
expresses logical proximity. They can be shown (as L#x) by 1stopo thanks to the —1 option. This index
is always linear and in the range [0, num_objs_same_type_same_level-1]. Think of it as ““cousin rank." The
ordering is based on topology first, and then on OS CPU numbers, so it is stable across everything except

14 Terms and Definitions

firmware CPU renumbering. "Logical index" should not be confused with "Logical processor". A "Logical
processor" (which in hwloc we rather call "processing unit" to avoid the confusion) has both a physical index
(as chosen arbitrarily by BIOS/OS) and a logical index (as computed according to logical proximity by hwloc).
See also Should | use logical or physical/OS indexes? and how?.

CPU set The set of processing units (PU) logically included in an object (if it makes sense). They are always
expressed using physical processor numbers (as announced by the OS). They are implemented as the
hwloc_bitmap_t opaque structure. hwloc CPU sets are just masks, they do not have any relation with an
operating system actual binding notion like Linux' cpusets. I/O and Misc objects do not have CPU sets while
all Normal and Memory objects have non-NULL CPU sets.

Node set The set of NUMA memory nodes logically included in an object (if it makes sense). They are al-
ways expressed using physical node numbers (as announced by the OS). They are implemented with the
hwloc_bitmap_t opaque structure. as bitmaps. /O and Misc objects do not have Node sets while all Normal
and Memory objects have non-NULL nodesets.

Bitmap A possibly-infinite set of bits used for describing sets of objects such as CPUs (CPU sets) or memory
nodes (Node sets). They are implemented with the hwloc_bitmap_t opaque structure.

3.3 Hierarchy, Tree and Levels

Parent object The object logically containing the current object, for example because its CPU set includes the
CPU set of the current object. All objects have a non-NULL parent, except the root of the topology (Machine
object).

Ancestor object The parent object, or its own parent, and so on.

Children object(s) The object (or objects) contained in the current object because their CPU set is included in the
CPU set of the current object. Each object may also contain separated lists for Memory, I/O and Misc object
children.

Arity The number of normal children of an object. There are also specific arities for Memory, I/0 and Misc children.

Sibling objects Objects in the same children list, which all of them are normal children of the same parent, or all
of them are Memory children of the same parent, or I/O children, or Misc. They usually have the same type
(and hence are cousins, as well). But they may not if the topology is asymmetric.

Sibling rank Index to uniquely identify objects which have the same parent, and is always in the range [0, arity-1]
(respectively memory_arity, io_arity or misc_arity for Memory, 1/0 and Misc children of a parent).

Cousin objects Obijects of the same type (and depth) as the current object, even if they do not have the same
parent.

Level Set of objects of the same type and depth. All these objects are cousins.

Memory, I/O and Misc objects also have their own specific levels and (virtual) depth.

Depth Nesting level in the object tree, starting from the root object. If the topology is symmetric, the depth of a
child is equal to the parent depth plus one, and an object depth is also equal to the number of parent/child
links between the root object and the given object. If the topology is asymmetric, the difference between
some parent and child depths may be larger than one when some intermediate levels (for instance groups)
are missing in only some parts of the machine.

The depth of the Machine object is always 0 since it is always the root of the topology. The depth of PU
objects is equal to the number of levels in the topology minus one.

Memory, I/O and Misc objects also have their own specific levels and depth.

The following diagram can help to understand the vocabulary of the relationships by showing the example of a
machine with two dual core packages (with no hardware threads); thus, a topology with 5 levels. Each box with
rounded corner corresponds to one hwloc_obj_t, containing the values of the different integer fields (depth, logical«
_index, etc.), and arrows show to which other hwloc_obj_t pointers point to (first_child, parent, etc.).

The topology always starts with a Machine object as root (depth 0) and ends with PU objects at the bottom (depth
4 here).

Generated by Doxygen

3.3 Hierarchy, Tree and Levels

15

Objects of the same level (cousins) are listed in red boxes and linked with red arrows. Children of the same parent
(siblings) are linked with blue arrows.

The L2 cache of the last core is intentionally missing to show how asymmetric topologies are handled. See

What happens if my topology is asymmetric? for more information about such strange topologies.

children[1] parent
last_child
parent
Package Package
level next_sibling .depth=1
depth=1 Jogical_index =0 —— Jogical_index = 1
.os_index =0 next_cousin prev_sibling .0s_index =1
.sibling_rank=0 — .sibling_rank=1
.arity=2 prev_cousin .arity=2
children[0] children[0]
first_child first_child

Machine
level
depth=0

.depth=0
Jogical_index
.os_index = -1

.arity=2
.memory_arity:

.sibling_rank=0

=0

=1

NUMA Node
.depth = -3
Jogical_index =0
.0s_index =0
.sibling_rank =0

parent parent
Cache Cache o Cache Cache
level .depth =2 next_sibling .depth =2 .depth =2
depth=2 Jogical_index =0 prev_sibling | -logical_index = 1 Jogical_index =2 \ next_sibling
.o's&%ndex =]? 0 next_cousin .o‘sb_ll'ndex =k1 | next_cousin .OE{ndex =]? 0
.sibling_rank= .sibling_rank= .sibling_rank=
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0] children[0] children[0]
first_child first_child first_child
last_child last_child last_child
parent parent parent parent
Core Core Core Core \ Core
level .depth=3 .depth=3 .depth=3 prev_siblin .depth=3
depth=3 Jogical_index =0 Jogical_index = 1 Jogical_index =2 - Jogical_index =3
.os_index =0 I .0os_index = 1 R - .0s_index =0 ot .os_index = 1
. next_cousin i next_cousin . next_cousin i
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0] children[0] children[0] children[0]
first_child first_child first_child first_child
last_child last_child last_child last_child
parent parent parent parent
PU PU PU PU PU
level .depth =4 .depth =4 .depth =4 .depth =4
depth=4 Jogical_index =0 Jogical_index =1 Jogical_index =2 Jogical_index =3
.o's_%ndex =0 next_cousin .o's_l'ndex =2 next_cousin .o's_l'ndex =1 next_cousin .o's_{ndex =3
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=0 prev_cousin | .arity=0 prev_cousin | .arity=0 prev_cousin | .arity=0

It should be noted that for PU objects, the logical index — as computed linearly by hwloc — is not the same as the

OS index.

The NUMA node is on the side because it is not part of the main tree but rather attached to the object that corre-
sponds to its locality (the entire machine here, hence the root object). It is attached as a Memory child (in green)
and has a virtual depth (negative). It could also have siblings if there were multiple local NUMA nodes, or cousins if
other NUMA nodes were attached somewhere else in the machine.
I/O or Misc objects could be attached in a similar manner.

Generated by Doxygen

16

Terms and Definitions

Generated by Doxygen

Chapter 4

Command-Line Tools

hwloc comes with an extensive C programming interface and several command line utilities. Each of them is fully
documented in its own manual page; the following is a summary of the available command line tools.

4.1 Istopo and Istopo-no-graphics

Istopo (also known as hwloc-Is) displays the hierarchical topology map of the current system. The output may
be graphical, ascii-art or textual, and can also be exported to numerous file formats such as PDF, PNG, XML,
and others. Advanced graphical outputs require the "Cairo" development package (usually cairo-devel or
libcairo2-dev).

Istopo and Istopo-no-graphics accept the same command-line options. However, graphical outputs are only available
in Istopo. Textual outputs (those that do not depend on heavy external libraries such as Cairo) are supported in both
Istopo and Istopo-no-graphics.

This command can also display the processes currently bound to a part of the machine (via the ——ps option).
Note that Istopo can read XML files and/or alternate chroot filesystems and display topological maps representing
those systems (e.g., use Istopo to output an XML file on one system, and then use Istopo to read in that XML file
and display it on a different system).

4.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A simple example is binding an
executable to specific cores (or packages or bitmaps or ...). The hwloc-bind(1) man page provides much more detail
on what is possible.

hwloc-bind can also be used to retrieve the current process' binding, or retrieve the last CPU(s) where a process
ran, or operate on memory binding.

Just like hwloc-calc, the input locations given to hwloc-bind may be either objects or cpusets (bitmaps as reported
by hwloc-calc or hwloc-distrib).

4.3 hwloc-calc

hwloc-calc is hwloc's Swiss Army Knife command-line tool for converting things. The input may be either objects or
cpusets (bitmaps as reported by another hwloc-calc instance or by hwloc-distrib), that may be combined by addition,
intersection or subtraction. The output kinds include:

* a cpuset bitmap: This compact opaque representation of objects is useful for shell scripts etc. It may passed
to hwloc command-line tools such as hwloc-calc or hwloc-bind, or to hwloc command-line options such as
lstopo —-restrict.

» the amount of the equivalent hwloc objects from a specific type, or the list of their indexes. This is useful for
iterating over all similar objects (for instance all cores) within a given part of a platform.

« a hierarchical description of objects, for instance a thread index within a core within a package. This gives a
better view of the actual location of an object.

18 Command-Line Tools

Moreover, input and/or output may be use either physical/OS object indexes or as hwloc's logical object indexes.
It eases cooperation with external tools such as taskset or numactl by exporting hwloc specifications into list of
processor or NUMA node physical indexes. See also Should | use logical or physical/OS indexes? and how?.

4.4 hwloc-info

hwloc-info dumps information about the given objects, as well as all its specific attributes. It is intended to be used
with tools such as grep for filtering certain attribute lines. When no object is specified, or when ——topology is
passed, hwloc-info prints a summary of the topology. When ——support is passed, hwloc-info lists the supported
features for the topology.

4.5 hwloc-distrib

hwloc-distrib generates a set of cpuset bitmaps that are uniformly distributed across the machine for the given
number of processes. These strings may be used with hwloc-bind to run processes to maximize their memory
bandwidth by properly distributing them across the machine.

4.6 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on the local machine. By default,
hwloc-ps only lists processes that are bound; unbound process (and Linux kernel threads) are not displayed.

4.7 hwloc-annotate

hwloc-annotate may modify object (and topology) attributes such as string information (see Custom string infos for
details) or Misc children objects. It reads an input topology from a XML file and outputs the annotated topology as
another XML file.

4.8 hwloc-diff, hwloc-patch and hwloc-compress-dir

hwloc-diff computes the difference between two topologies and outputs it to another XML file.

hwloc-patch reads such a difference file and applies to another topology.

hwloc-compress-dir compresses an entire directory of XML files by using hwloc-diff to save the differences between
topologies instead of entire topologies.

4.9 hwloc-dump-hwdata

hwloc-dump-hwdata is a Linux and x86-specific tool that dumps (during boot, privileged) some topology and locality

information from raw hardware files (SMBIOS and ACPI tables) to human-readable and world-accessible files that

the hwloc library will later reuse.

Currently only used on Intel Xeon Phi processor platforms. See Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi proc
See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

4.10 hwloc-gather-topology and hwloc-gather-cpuid

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of the current machine into a
tarball (and the corresponding Istopo outputs).

hwloc-gather-cpuid is a x86-specific tool that dumps the result of CPUID instructions on the current machine into a
directory.

The output of hwloc-gather-cpuid is included in the tarball saved by hwloc-gather-topology when running on
Linux/x86.

These files may be used later (possibly offline) for simulating or debugging a machine without actually running on
it.

Generated by Doxygen

Chapter 5

Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following environment variables.

HWLOC_XMLFILE=/path/to/file.xml enforces the discovery from the given XML file as if hwloc_topology_set_xml()
had been called. This file may have been generated earlier with Istopo file.xml. For convenience, this backend
provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks,
HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really the
underlying system. See also Importing and exporting topologies from/to XML files.

HWLOC_SYNTHETIC=synthetic_description enforces the discovery through a synthetic description string as
if hwloc_topology_set_synthetic() had been called. For convenience, this backend provides empty binding
hooks which just return success. See also Synthetic topologies.

HWLOC_XML_VERBOSE=1

HWLOC_SYNTHETIC_VERBOSE=1 enables verbose messages in the XML or synthetic topology backends.
hwloc XML backends (see Importing and exporting topologies from/to XML files) can emit some error mes-
sages to the error output stream. Enabling these verbose messages within hwloc can be useful for un-
derstanding failures to parse input XML topologies. Similarly, enabling verbose messages in the synthetic
topology backend can help understand why the description string is invalid. See also Synthetic topologies.

HWLOC_THISSYSTEM=1 enforces the return value of hwloc_topology_is_thissystem(), as if HWLOC_TOPOLOGY_FLAG_IS_THIS

was set with hwloc_topology_set flags(). It means that it makes hwloc assume that the selected backend
provides the topology for the system on which we are running, even if it is not the OS-specific backend but
the XML backend for instance. This means making the binding functions actually call the OS-specific system
calls and really do binding, while the XML backend would otherwise provide empty hooks just returning
success. This can be used for efficiency reasons to first detect the topology once, save it to an XML file, and
quickly reload it later through the XML backend, but still having binding functions actually do bind. This also
enables support for the variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES.

HWLOC_THISSYSTEM_ALLOWED_RESOURCES=1 Get the set of allowed resources from the na-
tive operating system even if the topology was loaded from XML or synthetic description, as if
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES was set with hwloc_topology_set_flags().
This variable requires the topology to match the current system (see the variable HWLOC_THISSYSTEM).
This is useful when the topology is not loaded directly from the local machine (e.g. for performance reason)
and it comes with all resources, but the running process is restricted to only a part of the machine (for
instance because of Linux Cgroup/Cpuset).

HWLOC_ALLOW=all Totally ignore administrative restrictions such as Linux Cgroups and consider all resources
(PUs and NUMA nodes) as allowed. This is different from setting HWLOC_TOPOLOGY_FLAG_INCLUDE«
_DISALLOWED which gathers all resources but marks the unavailable ones as disallowed.

HWLOC_HIDE_ERRORS=0 enables or disables verbose reporting of errors. The hwloc library may issue warn-
ings to the standard error stream when it detects a problem during topology discovery, for instance if the
operating system (or user) gives contradictory topology information. Setting this environment variable to 1
removes the actual displaying of these error messages.

20 Environment Variables

HWLOC_USE_NUMA_DISTANCES=7 enables or disables the use of NUMA distances. NUMA distances and
memory target/initiator information may be used to improve the locality of NUMA nodes, especially CPU-less
nodes. Bits in the value of this environment variable enable different features: Bit 0 enables the gathering of
NUMA distances from the operating system. Bit 1 further enables the use of NUMA distances to improve the
locality of CPU-less nodes. Bit 2 enables the use of target/initiator information.

HWLOC_GROUPING=1 enables or disables objects grouping based on distances. By default, hwloc uses dis-
tance matrices between objects (either read from the OS or given by the user) to find groups of close objects.
These groups are described by adding intermediate Group objects in the topology. Setting this environment
variable to 0 will disable this grouping. This variable supersedes the obsolete HWLOC_IGNORE_DISTAN«
CES variable.

HWLOC_GROUPING_ACCURACY=0.05 relaxes distance comparison during grouping. By default, objects may
be grouped if their distances form a minimal distance graph. When setting this variable to 0.02, and when
HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE is given, these distances do not have to be
strictly equal anymore, they may just be equal with a 2% error. If set to t ry instead of a numerical value,
hwloc will try to group with perfect accuracy (0, the default), then with 0.01, 0.02, 0.05 and finally 0.1. Num-
bers given in this environment variable should always use a dot as a decimal mark (for instance 0.01 instead
of 0,01).

HWLOC_GROUPING_VERBOSE=0 enables or disables some verbose messages during grouping. If this variable
is set to 1, some debug messages will be displayed during distance-based grouping of objects even if debug
was not specific at configure time. This is useful when trying to find an interesting distance grouping accuracy.

HWLOC_PCI_LOCALITY=<domain/bus> <cpuset>;...

HWLOC_PCI_LOCALITY=/path/to/pci/locality/file changes the locality of /O devices behing the specified PCI
buses. If no I/O locality information is available or if the BIOS reports incorrect information, it is possible to
move a I/O device tree (OS and/or PCl devices with optional bridges) near a custom set of processors.
Localities are given either inside the environment variable itself, or in the pointed file. They may be separated
either by semi-colons or by line-breaks.

Each locality contains a domain/bus specification (in hexadecimal numbers as usual) followed by a whitespace
and a cpuset:

*+ 0001 <cpuset> specifies the locality of all buses in PCI domain 0000.
*+ 0000:0f <cpuset> specifies only PCI bus 0f in domain 0000.
*+ 0002:04-0a <cpuset> specifies a range of buses (from 04 to 0a) within domain 0002.

Domain/bus specifications should usually match entire hierarchies of buses behind a bridge (including pri-
mary, secondary and subordinate buses). For instance, if hostbridge 0000:00 is above other bridges/switches
with buses 0000:01 to 0000:09, the variable should be HWLOC_PCI_LOCALITY="0000:00-09 <cpuset>".
It supersedes the old HWLOC_PCI_0000_00_LOCALCPUS=<cpuset> which only works when hostbridges
exist in the topology.

If the variable is defined to empty or invalid, no forced PCI locality is applied but hwloc's internal automatic
locality quirks are disabled, which means the exact PCl locality reported by the platform is used.

HWLOC_X86_TOPOEXT_NUMANODES=0 use AMD topoext CPUID leaf in the x86 backend to detect NUMA
nodes. When using the x86 backend, setting this variable to 1 enables the building of NUMA nodes from
AMD processor CPUID instructions. However this strategy does not always reflect BIOS configuration such
as NUMA interleaving. And node indexes may be different from those of the operating system. Hence this
should only be used when OS backends are wrong and the user is sure that CPUID returns correct NUMA
information.

HWLOC_KEEP_NVIDIA_GPU_NUMA_NODES=0 show or hide NUMA nodes that correspond to NVIDIA GPU
memory. By default they are ignored to avoid interleaved memory being allocated on GPU by mistake. Setting
this environment variable to 1 exposes these NUMA nodes. They may be recognized by the GPUMemory
subtype. They also have a PCIBusID info attribute to identify the corresponding GPU.

HWLOC_KNL_MSCACHE_L3=0 Expose the KNL MCDRAM in cache mode as a Memory-side Cache instead of a
L3. hwloc releases prior to 2.1 exposed the MCDRAM cache as a CPU-side L3 cache. Now that Memory-side
caches are supported by hwloc, it is still exposed as a L3 by default to avoid breaking existing applications.
Setting this environment variable to 1 will expose it as a proper Memory-side cache.

Generated by Doxygen

21

HWLOC_ANNOTATE_GLOBAL_COMPONENTS=0 Allow components to annotate the topology even if they are
usually excluded by global components by default. Setting this variable to 1 and also setting HRLOC_ COMP «+-
ONENTS=xml, pci, stop enables the addition of PCl vendor and model info attributes to a XML topology
that was generated without those names (if pciaccess was missing).

HWLOC_FSROOT=/path/to/linux/filesystem-root/ switches to reading the topology from the specified Linux
filesystem root instead of the main file-system root. This directory may have been saved previously from
another machine with hwloc-gather—-topology.

One should likely also set HRLOC_COMPONENTS=11inux, stop so that non-Linux backends are disabled
(the —1 option of command-line tools takes care of both).

Not using the main file-system root causes hwloc_topology_is_thissystem() to return 0. For convenience, this
backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific
hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really
the underlying system.

HWLOC_CPUID_PATH=/path/to/cpuid/ forces the x86 backend to read dumped CPUIDs from the given directory
instead of executing actual x86 CPUID instructions. This directory may have been saved previously from
another machine with hwloc-gather—cpuid.

One should likely also set HWLOC_COMPONENTS=x86, st op so that non-x86 backends are disabled (the
—1 option of command-line tools takes care of both).

It causes hwloc_topology_is_thissystem() to return 0. For convenience, this backend provides empty binding
hooks which just return success. To have hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM
should be set 1 in the environment too, to assert that the loaded CPUID dump is really the underlying system.

HWLOC_DUMPED_HWDATA_DIR=/path/to/dumped/files/ loads files dumped by hwloc—dump-hwdata (on
Linux) from the given directory. The default dump/load directory is configured during build based on --
runstatedir, --localstatedir, and --prefix options. It usually points to /var/run/hwloc/ in Linux distribution
packages, but it may also pointto Sprefix/var/run/hwloc/ when manually installing and only speci-
fying --prefix.

HWLOC_COMPONENTS=list,of,components forces a list of components to enable or disable. Enable or disable
the given comma-separated list of components (if they do not conflict with each other). Component names
prefixed with — are disabled (a single phase may also be disabled).

Once the end of the list is reached, hwloc falls back to enabling the remaining components (sorted by priority)
that do not conflict with the already enabled ones, and unless explicitly disabled in the list. If stop is met,
the enabling loop immediately stops, no more component is enabled.

If xm1 or synthetic components are selected, the corresponding XML filename or synthetic description
string should be pass in HWLOC_XMLFILE or HWLOC_SYNTHETIC respectively.

Since this variable is the low-level and more generic way to select components, it takes precedence over
environment variables for selecting components.

If the variable is set to an empty string (or set to a single comma), no specific component is loaded first, all
components are loaded in priority order.

See Selecting which components to use for details.

HWLOC_COMPONENTS_VERBOSE=1 displays verbose information about components. Display messages
when components are registered or enabled. This is the recommended way to list the available components
with their priority (all of them are registered at startup).

HWLOC_PLUGINS_PATH=/path/to/hwloc/plugins/:... changes the default search directory for plugins. By de-
fault, $1ibdir/hwloc is used. The variable may contain several colon-separated directories.

HWLOC_PLUGINS_VERBOSE=1 displays verbose information about plugins. List which directories are scanned,
which files are loaded, and which components are successfully loaded.

HWLOC_PLUGINS_BLACKLIST=filename1,filename2,... prevents plugins from being loaded if their filename
(without path) is listed. Plugin filenames may be found in verbose messages outputted when HWLOC_PL+«
UGINS_VERBOSE-=1.

HWLOC_DEBUG_VERBOSE=0 disables all verbose messages that are enabled by default when —enable—-debug
is passed to configure.

Generated by Doxygen

22

Environment Variables

Generated by Doxygen

Chapter 6

CPU and Memory Binding Overview

Some operating systems do not systematically provide separate functions for CPU and memory binding. This means
that CPU binding functions may have have effects on the memory binding policy. Likewise, changing the memory
binding policy may change the CPU binding of the current thread. This is often not a problem for applications, so by
default hwloc will make use of these functions when they provide better binding support.

If the application does not want the CPU binding to change when changing the memory policy, it needs to use the
HWLOC_MEMBIND_NOCPUBIND flag to prevent hwloc from using OS functions which would change the CPU
binding. Additionally, HWLOC_CPUBIND_NOMEMBIND can be passed to CPU binding function to prevent hwloc
from using OS functions would change the memory binding policy. Of course, using these flags will reduce hwloc's
overall support for binding, so their use is discouraged.

One can avoid using these flags but still closely control both memory and CPU binding by allocating memory,
touching each page in the allocated memory, and then changing the CPU binding. The already-really-allocated
memory will then be "locked" to physical memory and will not be migrated. Thus, even if the memory binding policy
gets changed by the CPU binding order, the already-allocated memory will not change with it. When binding and
allocating further memory, the CPU binding should be performed again in case the memory binding altered the
previously-selected CPU binding.

Not all operating systems support the notion of a "current" memory binding policy for the current process, but
such operating systems often still provide a way to allocate data on a given node set. Conversely, some operating
systems support the notion of a "current” memory binding policy and do not permit allocating data on a specific
node set without changing the current policy and allocate the data. To provide the most powerful coverage of these
facilities, hwloc provides:

« functions that set/get the current memory binding policies (if supported): hwloc_set/get. membind() and
hwloc_set/get_proc_membind()

+ a function that allocates memory bound to specific node set without changing the current memory binding
policy (if supported): hwloc_alloc_membind().

» a helper which, if needed, changes the current memory binding policy of the process in order to obtain
memory binding: hwloc_alloc_membind_policy().

An application can thus use the two first sets of functions if it wants to manage separately the global process binding
policy and directed allocation, or use the third set of functions if it does not care about the process memory binding
policy.

See CPU binding and Memory binding for hwloc's API functions regarding CPU and memory binding, respectively.
There are some examples under doc/examples/ in the source tree.

24

CPU and Memory Binding Overview

Generated by Doxygen

Chapter 7

I/O Devices

hwloc usually manipulates processing units and memory but it can also discover I/O devices and report their locality
as well. This is useful for placing I/O intensive applications on cores near the 1/O devices they use, or for gathering
information about all platform components.

7.1 Enabling and requirements

I/O discovery is disabled by default (except in Istopo) for performance reasons. It can be enabled by changing the fil-
tering of 1/0O object types to HWLOC_TYPE_FILTER_KEEP_IMPORTANT or HWLOC_TYPE_FILTER_KEEP_ALL
before loading the topology, for instance with hwloc_topology_set_io_types_filter ().

Note that 1/O discovery requires significant help from the operating system. The pciaccess library (the development
package is usually 1ibpciaccess—-devel or libpciaccess—dev) is needed to fully detect PCI devices
and bridges/switches. On Linux, PCI discovery may still be performed even if 1ibpciaccess cannot be used.
But it misses PCl device names. Moreover, some operating systems require privileges for probing PCl devices, see
Does hwloc require privileged access? for details.

The actual locality of /0O devices is only currently detected on Linux. Other operating system will just report 1/10
devices as being attached to the topology root object.

7.2 1/0 objects

When 1/O discovery is enabled and supported, some additional objects are added to the topology. The correspond-
ing I/O object types are:

* HWLOC_OBJ_OS_DEVICE describes an operating-system-specific handle such as the sda drive or the ethO
network interface. See OS devices.

* HWLOC_OBJ_PCI_DEVICE and HWLOC_OBJ_BRIDGE build up a PCI hierarchy made of bridges (that
may be actually be switches) and devices. See PCI devices and bridges.

Any of these types may be filtered individually with hwloc_topology_set_type_filter ().

hwloc tries to attach these new objects to normal objects (usually NUMA nodes) to match their actual physical
location. For instance, if a /0 hub (or root complex) is physically connected to a package, the corresponding hwloc
bridge object (and its PCI bridges and devices children) is inserted as a child of the corresponding hwloc Package
object. These children are not in the normal children list but rather in the 1/0-specific children list.

I/O objects also have neither CPU sets nor node sets (NULL pointers) because they are not directly usable by the
user applications for binding. Moreover I/O hierarchies may be highly complex (asymmetric trees of bridges). So I/O
objects are placed in specific levels with custom depths. Their lists may still be traversed with regular helpers such
as hwloc_get_next_obj_by_type(). However, hwloc offers some dedicated helpers such as hwloc_get_next_pcidev()
and hwloc_get_next_osdev() for convenience (see Finding I/O objects).

7.3 OS devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), a user-space application can
hardly find out which PCI device it is actually using. Applications rather use software handles (such as the ethO

26 1/0 Devices

network interface, the sda hard drive, or the mix4_0 OpenFabrics HCA). Therefore hwloc tries to add software
devices (HWLOC_OBJ_OS_DEVICE, also known as OS devices).

OS devices may be attached below PCI devices, but they may also be attached directly to normal objects. Indeed
some OS devices are not related to PCI. For instance, NVDIMM block devices (such as pmem0Os on Linux) are
directly attached near their NUMA node (I/O child of the parent whose memory child is the NUMA node). Also,
if hwloc could not discover PCI for some reason, PCl-related OS devices may also be attached directly to normal
objects.

hwloc first tries to discover OS devices from the operating system, e.g. eth0, sda or mix4_0. However, this ability is
currently only available on Linux for some classes of devices.

hwloc then tries to discover software devices through additional /0O components using external libraries. For in-
stance proprietary graphics drivers do not expose any named OS device, but hwloc may still create one OS object
per software handle when supported. For instance the opencl and cuda components may add some opencl/0d0
and cuda0 OS device objects.

Here is a list of OS device objects commonly created by hwloc components when 1/O discovery is enabled and
supported.

» Hard disks or non-volatile memory devices (HWLOC_OBJ_OSDEV_BLOCK)
— 8da or dax2.0 (Linux component)
* Network interfaces (HWLOC_OBJ_OSDEV_NETWORK)
— eth0, wlan0, ib0 (Linux component)
» OpenFabrics (InfiniBand, Omni-Path, usNIC, etc) HCAs (HWLOC_OBJ_OSDEV_OPENFABRICS)

— mix5_0, hfi1_0, qib0, usnic_0 (Linux component)

GPUs (HWLOC_OBJ_OSDEV_GPU)

— nvml0 for the first NVML device (NVML component, using the NVIDIA Management Library)
— :0.0for the first display (GL component, using the NV-CONTROL X extension library, NVCirl)
» Co-Processors (HWLOC_OBJ_OSDEV_COPROC)
— openclodo for the first device of the first OpenCL platform, opencl1d3 for the fourth device of the second
OpenCL platform (OpenCL component)
— cuda0 for the first NVIDIA CUDA device (CUDA component, using the NVIDIA CUDA Library)
— DMA engine channel (HWLOC_OBJ_OSDEV_DMA)
» dmaOchan0 (Linux component) when all OS devices are enabled (HWLOC_TYPE_FILTER_KEEP_ALL)

Note that some PCI devices may contain multiple software devices (see the example below).

See also Interoperability With Other Software for managing these devices without considering them as hwloc
objects.

7.4 PCI devices and bridges

A PCI hierarchy is usually organized as follows: A hostbridge object (HWLOC_OBJ_BRIDGE object with upstream
type Host and downstream type PCI) is attached below a normal object (usually the entire machine or a NUMA
node). There may be multiple hostbridges in the machine, attached to different places, but all PCI devices are
below one of them (unless the Bridge object type is filtered-out).

Each hostbridge contains one or several children, either other bridges (usually PCI to PCI switches) or PCI devices
(HWLOC_OBJ_PCI_DEVICE). The number of bridges between the hostbridge and a PCI device depends on the
machine.

Generated by Doxygen

7.5 Consulting I/0 devices and binding 27

7.5 Consulting I/0 devices and binding

I/O devices may be consulted by traversing the topology manually (with usual routines such as hwloc_get_obj_by type())
or by using dedicated helpers (such as hwloc_get_pcidev_by_busid(), see Finding 1/O objects).

I/O objects do not actually contain any locality information because their CPU sets and node sets are NULL. Their
locality must be retrieved by walking up the object tree (through the parent link) until an non-I/O object is found
(see hwloc_get_non_io_ancestor_obj()). This normal object should have non-NULL CPU sets and node sets which
describe the processing units and memory that are immediately close to the 1/O device. For instance the path from
a OS device to its locality may go across a PCI device parent, one or several bridges, up to a Package node with
the same locality.

Command-line tools are also aware of 1/O devices. Istopo displays the interesting ones by default (passing
——-no-1io disables it).

hwloc-calc and hwloc-bind may manipulate 1/0 devices specified by PCl bus ID or by OS device name.

* pci=0000:02:03.0 is replaced by the set of CPUs that are close to the PCI device whose bus ID is
given.

+ os=ethO is replaced by CPUs that are close to the I/O device whose software handle is called et hO.

This enables easy binding of I/0O-intensive applications near the device they use.

7.6 Examples

The following picture shows a dual-package dual-core host whose PCI bus is connected to the first package and
NUMA node.

Generated by Doxygen

1/0 Devices

Machine (24GE total)
Package P#1 Package P#0
MUMANcde P#0 (12GE) NUMANode P#1 (12GE)
0.4 0.2
L3 (B192KB) —} PCI 01:00.0 L3 (B192KB)
ethi
L2 (256KE) L2 (256KE) L2 (256KE) L2 (256KE)
0.2
L1 (32KE) L1 (32KB) PC| 01:00.1 L1 (32KE) L1 (32KE)
ethl
Core P#0 Core P#1 Core P#0 Core P#1
PU P#0 PU P#2 02 _ 02 PU P#1 PU P#£3
{1} PC| 03:00.0
sda
1 PC| 04:03.0
0.1
PCI D0:1f.2
2.0
PCI 51:00.0
ibD ibl
mil=d 0

Six interesting PCI devices were discovered. However, hwloc found some corresponding software devices (eth0,
eth1, sda, mix4_0, ib0, and ib1) for only four of these physical devices. The other ones (PCI 102b:0532 and PCI
8086:3a20) are an unused IDE controller (no disk attached) and a graphic card (no corresponding software device
reported to the user by the operating system).

On the contrary, it should be noted that three different software devices were found for the last PCI device (P«
Cl 15b3:634a). Indeed this OpenFabrics HCA PCI device object contains one one OpenFabrics software device
(mix4_0) and two virtual network interface software devices (ib0 and ib7).

Here is the corresponding textual output:

Machine (24GB total)
Package L#0
NUMANode L#0 (P#0 12GB)
L3 L#0 (8192KB)
L2 L#0 (256KB) + L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (256KB) + L1 L#1 (32KB) + Core L#1 + PU L#1 (P#2)
HostBridge
PCIBridge
PCI 01:00.0 (Ethernet)
Net "ethO"
PCI 01:00.1 (Ethernet)
Net "ethl"
PCIBridge
PCI 03:00.0 (RAID)
Block "sda"
PCIBridge

Generated by Doxygen

7.6 Examples

29

PCI 00:1f.2 (IDE)
PCI 51:00.0 (InfiniBand)
Net "ibO"
Net "ibl"
Net "mlx4_0"
Package L#l
NUMANode L#1 (P#1 12GB)
L3 L#1 (8192KB)
L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#1)
L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)

PCI 04:03.0 (VGA)
(
(

Generated by Doxygen

30

I/O Devices

Generated by Doxygen

Chapter 8

Miscellaneous objects

hwloc topologies may be annotated with Misc objects (of type HWLOC_OBJ_MI SC) either automatically or by the
user. This is an flexible way to annotate topologies with large sets of information since Misc objects may be inserted
anywhere in the topology (to annotate specific objects or parts of the topology), even below other Misc objects, and
each of them may contain multiple attributes (see also How do | annotate the topology with private notes?).

These Misc objects may have a subtype field to replace Misc with something else in the Istopo output.

8.1 Misc objects added by hwloc

hwloc only uses Misc objects when other object types are not sufficient, and when the Misc object type is not
filtered-out anymore. This currently includes:

* Memory modules (DIMMs), on Linux when privileged and when dmi-sysfs is supported by the kernel.
These objects have a subtype field of value MemoryModule. They are currently always attached to the

root object. Their attributes describe the DIMM vendor, model, etc. 1stopo -v displays them as:
Misc (MemoryModule) (P#1 DeviceLocation="Bottom-Slot 2 (right)" BankLocation="BANK 2" Vendor=Elpida
SerialNumber=21733667 AssetTag=9876543210 PartNumber="EBJ81UG8EFUO-GN-F ")

Displaying process binding in 1stopo —-top. These objects have a subtype field of value Process
and a name attribute made of their PID and program name. They are attached below the object they are

bound to. The textual 1 stopo displays them as:
PU L#0 (P#0)
Misc (Process) 4445 myprogram

8.2 Annotating topologies with Misc objects

The user may annotate hwloc topologies with its own Misc objects. This can be achieved withhwloc_topology_insert_misc_
as well as hwloc-annotate command-line tool.

32

Miscellaneous objects

Generated by Doxygen

Chapter 9

Object attributes

9.1 Normal attributes

hwloc objects have many generic attributes in the hwloc_obj structure, for instance their Llogical_index or
os_index (see Should | use logical or physical/OS indexes? and how?), depth or name.

The kind of object is first described by the obj->type generic attribute (an integer). OS devices also have
a specific obj—->attr->osdev. type integer for distinguishing between NICs, GPUs, etc. Objects may also
have an optional ob j—->subtype pointing to a better description string. For instance subtype is useful to say what
Group objects are actually made of (e.g. Book for Linux S/390 books). It may also specify that a Block OS device
is a Disk, or that a CoProcessor OS device is a CUDA device. This subtype is displayed by Istopo either in place or
after the main ob j—>t ype attribute. NUMA nodes that correspond GPU memory may also have GPUMemory as
subtype.

Each object also contains an attr field that, if non NULL, points to a union hwloc_obj_attr u of type-
specific attribute structures. For instance, a L2Cache object ob7j contains cache-specific information in
obj->attr—->cache, such as its size and associativity, cache type. See hwloc_obj_attr_u for details.

9.2 Custom string infos

Aside os these generic attribute fields, hwloc annotates many objects with string attributes that are made of a key
and a value. Each object contains a list of such pairs that may be consulted manually (looking at the object infos
array field) or using the hwloc_obj_get_info_by_name(). The user may additionally add new key-value pairs to any
object using hwloc_obj_add_info() or the hwloc-annotate program.

Here is a non-exhaustive list of attributes that may be automatically added by hwloc. Note that these attributes
heavily depend on the ability of the operating system to report them. Many of them will therefore be missing on
some OS.

9.2.1 Hardware Platform Information
These info attributes are attached to the root object (Machine).
PlatformName, PlatformModel, PlatformVendor, PlatformBoardID, PlatformRevision,

SystemVersionRegister, ProcessorVersionRegister (Machine) Some POWER/PowerPC-specific attributes de-
scribing the platform and processor. Currently only available on Linux. Usually added to Package objects, but
can be in Machine instead if hwloc failed to discover any package.

DMIBoardVendor, DMIBoardName, etc. DMI hardware information such as the motherboard and chassis models
and vendors, the BIOS revision, etc., as reported by Linux under /sys/class/dmi/id/.

MemoryMode, ClusterMode Intel Xeon Phi processor configuration modes. Available if hwloc-dump-hwdata was
used (see Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?) or if hwloc man-
aged to guess them from the NUMA configuration.

The memory mode may be Cache, Flat, Hybrid50 (half the MCDRAM is used as a cache) or Hybrid25 (25%
of MCDRAM as cache). The cluster mode may be Quadrant, Hemisphere, All2All, SNC2 or SNC4. See
doc/examples/get-knl-modes.c in the source directory for an example of retrieving these attributes.

34 Object attributes

9.2.2 Operating System Information

These info attributes are attached to the root object (Machine).

OSName, OSRelease, OSVersion, HostName, Architecture The operating system name, release, version, the
hostname and the architecture name, as reported by the Unix uname command.

LinuxCgroup The name the Linux control group where the calling process is placed.

9.2.3 hwloc Information

Unless specified, these info attributes are attached to the root object (Machine).

Backend (topology root, or specific object added by that backend) The name of the hwloc backend/component
that filled the topology. If several components were combined, multiple Backend keys may exist, with different
values, for instance x86 and Linux in the root object and CUDA in CUDA OS device objects.

SyntheticDescription The description string that was given to hwloc to build this synthetic topology.

hwlocVersion The version number of the hwloc library that was used to generate the topology. If the topology was
loaded from XML, this is not the hwloc version that loaded it, but rather the first hwloc instance that exported
the topology to XML earlier.

ProcessName The name of the process that contains the hwloc library that was used to generate the topology.
If the topology was from XML, this is not the hwloc process that loaded it, but rather the first process that
exported the topology to XML earlier.

9.2.4 CPU Information

These info attributes are attached to Package objects, or to the root object (Machine) if package locality information
is missing.

CPUModel The processor model name.

CPUVendor, CPUModelNumber, CPUFamilyNumber, CPUStepping The processor vendor name, model num-
ber, family number, and stepping number. Currently available for x86 and Xeon Phi processors on most
systems, and for ia64 processors on Linux (except CPUStepping).

CPURevision A POWER/PowerPC-specific general processor revision number, currently only available on Linux.

CPUType A Solaris-specific general processor type name, such as "i86pc".

9.2.5 OS Device Information

These info attributes are attached to OS device objects specified in parentheses.

Vendor, Model, Revision, SerialNumber, Size, SectorSize (Block OS devices) The vendor and model names,
revision, serial number, size (in kB) and SectorSize (in bytes).

LinuxDevicelD (Block OS devices) The major/minor device number such as 8:0 of Linux device.
GPUVendor, GPUModel (GPU or Co-Processor OS devices) The vendor and model names of the GPU device.
OpenCLDeviceType, OpenCLPlatformindex,

OpenCLPlatformName, OpenCLPIlatformDevicelndex (OpenCL OS devices) The type of OpenCL device, the
OpenCL platform index and name, and the index of the device within the platform.

OpenCLComputeUnits, OpenCLGlobalMemorySize (OpenCL OS devices) The number of compute units and
global memory size (in kB) of an OpenCL device.

NVIDIAUUID, NVIDIASerial (NVML GPU OS devices) The UUID and serial number of NVIDIA GPUs.
CUDAMultiProcessors, CUDACoresPerMP,

Generated by Doxygen

9.2 Custom string infos 35

CUDAGIobalMemorySize, CUDAL2CacheSize, CUDASharedMemorySizePerMP (CUDA OS devices) The
number of shared multiprocessors, the number of cores per multiprocessor, the global memory size, the
(global) L2 cache size, and size of the shared memory in each multiprocessor of a CUDA device. Sizes are
in kB.

Address, Port (Network interface OS devices) The MAC address and the port number of a software network
interface, such as et h4 on Linux.

NodeGUID, SysimageGUID, Port1State, Port2LID, Port2LMC, Port3GID1 (OpenFabrics OS devices) The
node GUID and GUID mask, the state of a port #1 (value is 4 when active), the LID and LID mask
count of port #2, and GID #1 of port #3.

9.2.6 Other Object-specific Information

These info attributes are attached to objects specified in parentheses.

DAXDevice (NUMA Nodes) The name of the Linux DAX device that was used to expose a non-volatile memory
region as a volatile NUMA node.

PCIBusID (GPUMemory NUMA Nodes) The PCI bus ID of the GPU whose memory is exposed in this NUMA
node.

Inclusive (Caches) The inclusiveness of a cache (1 if inclusive, 0 otherwise). Currently only available on x86
processors.

SolarisProcessorGroup (Group) The Solaris kstat processor group name that was used to build this Group ob-
ject.

PClVendor, PCIDevice (PCI devices and bridges) The vendor and device names of the PCI device.

PCISlot (PCI devices or Bridges) The name/number of the physical slot where the device is plugged. If the
physical device contains PCI bridges above the actual PCIl device, the attribute may be attached to the
highest bridge (i.e. the first object that actually appears below the physical slot).

Vendor, AssetTag, PartNumber, DeviceLocation, BankLocation (MemoryModule Misc objects) Information
about memory modules (DIMMs) extracted from SMBIOS.

9.2.7 User-Given Information

Here is a non-exhaustive list of user-provided info attributes that have a special meaning:

IstopoStyle Enforces the style of an object (background and text colors) in the graphical output of Istopo. See
CUSTOM COLORS in the Istopo(1) manpage for details.

Generated by Doxygen

36

Object attributes

Generated by Doxygen

Chapter 10

Importing and exporting topologies from/to XML
files

hwloc offers the ability to export topologies to XML files and reload them later. This is for instance useful for loading
topologies faster (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process),
manipulating other nodes' topology, or avoiding the need for privileged processes (see Does hwloc require privileged access?).
Topologies may be exported to XML files thanks to hwloc_topology_export_xml(), or to a XML memory buffer with
hwloc_topology_export_xmlbuffer(). The Istopo program can also serve as a XML topology export tool.

XML topologies may then be reloaded later with hwloc_topology_set_xml() and hwloc_topology_set_xmlbuffer().

The HWLOC_XMLFILE environment variable also tells hwloc to load the topology from the given XML file (see
Environment Variables).

Note

Loading XML topologies disables binding because the loaded topology may not correspond to the
physical machine that loads it. This behavior may be reverted by asserting that loaded file re-
ally matches the underlying system with the HWLOC_THISSYSTEM environment variable or the
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

The topology flag HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES may be used to
load a XML topology that contains the entire machine and restrict it to the part that is actually available to the
current process (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources).

hwloc also offers the ability to export/import Topology differences.

XML topology files are not localized. They use a dot as a decimal separator. Therefore any exported topology
can be reloaded on any other machine without requiring to change the locale.

XML exports contain all details about the platform. It means that two very similar nodes still have different
XML exports (e.g. some serial numbers or MAC addresses are different). If a less precise exporting/importing
is required, one may want to look at Synthetic topologies instead.

10.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features full XML support, for instance
when those files have to be manipulated by non-hwloc software (e.g. a XSLT parser). The libxml2 backend
is enabled by default if libxmlI2 development headers are available (the relevant development package is usually
libxml2-devel or libxml2-dev).

If libxmlI2 is not available at configure time, or if ——disable-1ibxml2 is passed, hwloc falls back to a custom
backend. Contrary to the aforementioned full XML backend with libxmlI2, this minimalistic XML backend cannot
be guaranteed to work with external programs. It should only be assumed to be compatible with the same hwloc
release (even if using the libxmI2 backend). Its advantage is, however, to always be available without requiring any
external dependency.

If libxml2 is available but the core hwloc library should not directly depend on it, the libxmI2 support may be built as
a dynamicall-loaded plugin. One should pass ——enable—-plugins to enable plugin support (when supported)
and build as plugins all component that support it. Or pass ——enable-plugins=xml_1libxml to only build
this libxml2 support as a plugin.

38 Importing and exporting topologies from/to XML files

10.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax, non-hwloc-valid XML contents,

or incompatibilities between hwloc releases (see Are XML topology files compatible between hwloc releases?).

Both backend cannot detect all these errors when the input XML file or buffer is selected (when hwloc_topology_set_xml()
or hwloc_topology_set_xmilbuffer() is called). Some errors such non-hwloc-valid contents can only be detected later
when loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_topology set xml() (or
hwloc_topology_set_xmlbuffer()) and hwloc_topology_load() to handle all these errors.

Generated by Doxygen

Chapter 11

Synthetic topologies

hwloc may load fake or remote topologies so as to consult them without having the underlying hardware available.
Aside from loading XML topologies, hwloc also enables the building of synthetic topologies that are described by a
single string listing the arity of each levels.

For instance, Istopo may create a topology made of 2 packages, containing a single NUMA node and a L2 cache
above two single-threaded cores:

$ lstopo -1 "pack:2 node:1 12:1 core:2 pu:l" -
Machine (2048MB)
Package L#0
NUMANode L#0 (P#0 1024MB)
L2 L#0 (4096KB)
Core L#0 + PU L#0 (P#0)
Core L#l1 + PU L#l (P#1)
Package L#1
NUMANode L#1 (P#1 1024MB)
L2 L#1 (4096KB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Replacing — with £ile.xml in this command line will export this topology to XML as usual.

Note

Synthetic topologies offer a very basic way to export a topology and reimport it on another machine. It is a lot
less precise than XML but may still be enough when only the hierarchy of resources matters.

11.1 Synthetic description string

Each item in the description string gives the type of the level and the number of such children under each object of
the previous level. That is why the above topology contains 4 cores (2 cores times 2 nodes).

These type names must be written as numanode, package, core, 12u, 111, pu, group (hwloc_obj_type_+«
sscanf() is used for parsing the type names). They do not need to be written case-sensitively, nor entirely (as long
as there is no ambiguity, 2 characters such as ma select a Machine level). Note that I/O and Misc objects are not

available.
Instead of specifying the type of each level, it is possible to just specify the arities and let hwloc choose all types
according to usual topologies. The following examples are therefore equivalent:

$ lstopo -1 "2 3 4 5 6"
$ lstopo -i "Package:2 NUMANode:3 L2Cache:4 Core:5 PU:6"

NUMA nodes are handled in a special way since they are not part of the main CPU hierarchy but rather attached
below it as memory children. Thus, NUMANode : 3 actually means Group : 3 where one NUMA node is attached
below each group. These groups are merged back into the parent when possible (typically when a single NUMA

node is requested below each parent).
It is also possible the explicitly attach NUMA nodes to specific levels. For instance, a topology similar to a Intel Xeon
Phi processor (with 2 NUMA nodes per 16-core group) may be created with:

$ lstopo —1i "package:1l group:4 [numa] [numa] core:16 pu:4"

40 Synthetic topologies

The root object does not appear in the synthetic description string since it is always a Machine object. Therefore
the Machine type is disallowed in the description as well.

A NUMA level (with a single NUMA node) is automatically added if needed.

Each item may be followed parentheses containing a list of space-separated attributes. For instance:

* L2iCache:2 (size=32kB) specifies 2 children of 32kB level-2 instruction caches. The size may be
specified in bytes (without any unit suffix) or as TB, GB, MB or kB.

* NUMANode: 3 (memory=16MB) specifies 3 NUMA nodes with 16MB each. The size may be specified in
bytes (without any unit suffix) or as TB, GB, MB or kB.

* PU:2 (indexes=0,2,1, 3) specifies 2 PU children and the full list of OS indexes among the entire set of
4 PU objects.

* PU:2 (indexes=numa:core) specifies 2 PU children whose OS indexes are interleaved by NUMA node
first and then by package.

Attributes in parentheses at the very beginning of the description apply to the root object.

11.2 Loading a synthetic topology

Aside from Istopo, the hwloc programming interface offers the same ability by passing the synthetic description
string to hwloc_topology_set_synthetic() before hwloc_topology_load().

Synthetic topologies are created by the synthetic component. This component may be enabled by force by
setting the HWLOC_SYNTHETIC environment variable to something such as node:2 core:3 pu:4.

Loading a synthetic topology disables binding support since the topology usually does not match the underlying
hardware. Binding may be reenabled as usual by setting HWLOC_THISSYSTEM=1 in the environment or by setting
the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

11.3 Exporting a topology as a synthetic string

The function hwloc_topology_export_synthetic() may export a topology as a synthetic string. It offers a convenient
way to quickly describe the contents of a machine. The Istopo tool may also perform such an export by forcing the
output format.

$ lstopo —--of synthetic --no-io
Package:1 L3Cache:1 L2Cache:2 LldCache:1 LliCache:1 Core:1 PU:2

The exported string may be passed back to hwloc for recreating another similar topology (see also
Are synthetic strings compatible between hwloc releases?). The entire tree will be similar, but some attributes
such as the processor model will be missing.

Such an export is only possible if the topology is totally symmetric. It means that the symmetric_subtree
field of the root object is set. Also memory children should be attached in a symmetric way (e.g. the same number
of memory children below each Package object, etc.). However, 1/O devices and Misc objects are ignored when
looking at symmetry and exporting the string.

Generated by Doxygen

Chapter 12

Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with specific or non-portable li-
braries that manipulate similar kinds of objects. hwloc therefore offers several specific "helpers" to assist converting
between those specific interfaces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be available. The hwloc core
therefore generally does not explicitly depend on these types of libraries. However, when a custom application uses
or otherwise depends on such a library, it may optionally include the corresponding hwloc helper to extend the hwloc
interface with dedicated helpers.

Most of these helpers use structures that are specific to these external libraries and only meaningful on the local
machine. If so, the helper requires the input topology to match the current machine. Some helpers also require 1/0
device discovery to be supported and enabled for the current topology.

Linux specific features hwloc/linux.h offers Linux-specific helpers that utilize some non-portable features of the
Linux system, such as binding threads through their thread ID ("tid") or parsing kernel CPU mask files.

Linux libnuma hwloc/linux-libnuma.h provides conversion helpers between hwloc CPU sets and libnuma-specific
types, such as bitmasks. It helps you use libnuma memory-binding functions with hwloc CPU sets.

Glibc hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU sets in order to use hwloc with
functions such as sched_getaffinity() or pthread_attr_setaffinity_np().

OpenFabrics Verbs hwloc/openfabrics-verbs.h helps interoperability with the OpenFabrics Verbs interface. For
example, it can return a list of processors near an OpenFabrics device. It may also return the corresponding
OS device hwloc object for further information (if I/O device discovery is enabled).

OpenCL hwloc/opencl.h enables interoperability with the OpenCL interface. Only the AMD and NVIDIA imple-
mentations currently offer locality information. It may return the list of processors near a GPU given as a
cl_device_id. It may also return the corresponding OS device hwloc object for further information (if I/O
device discovery is enabled).

NVIDIA CUDA hwloc/cuda.h and hwloc/cudart.h enable interoperability with NVIDIA CUDA Driver and Runtime
interfaces. For instance, it may return the list of processors near NVIDIA GPUs. It may also return the
corresponding OS device hwloc object for further information (if /O device discovery is enabled).

NVIDIA Management Library (NVML) hwloc/nvml.h enables interoperability with the NVIDIA NVML interface. It
may return the list of processors near a NVIDIA GPU given as a nvmlDevice_t. It may also return the
corresponding OS device hwloc object for further information (if /O device discovery is enabled).

NVIDIA displays hwloc/gl.h enables interoperability with NVIDIA displays using the NV-CONTROL X extension
(NVCitrl library). If /O device discovery is enabled, it may return the OS device hwloc object that corresponds
to a display given as a name such as :0.0 or given as a port/device pair (server/screen).

Taskset command-line tool The taskset command-line tool is widely used for binding processes. It manipulates
CPU set strings in a format that is slightly different from hwloc's one (it does not divide the string in fixed-
size subsets and separates them with commas). To ease interoperability, hwloc offers routines to convert
hwloc CPU sets from/to taskset-specific string format. Most hwloc command-line tools also support the
—-taskset option to manipulate taskset-specific strings.

42

Interoperability With Other Software

Generated by Doxygen

Chapter 13

Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather reentrant: all state is held in a
hwloc_topology_t instance without mutex protection. That means, for example, that two threads can safely operate
on and modify two different hwloc_topology_t instances, but they should not simultaneously invoke functions that
modify the same instance. Similarly, one thread should not modify a hwloc_topology_t instance while another thread
is reading or traversing it. However, two threads can safely read or traverse the same hwloc_topology_t instance
concurrently.

When running in multiprocessor environments, be aware that proper thread synchronization and/or memory co-
herency protection is needed to pass hwloc data (such as hwloc_topology_t pointers) from one processor to another
(e.g., a mutex, semaphore, or a memory barrier). Note that this is not a hwloc-specific requirement, but it is worth
mentioning.

For reference, hwloc_topology_t modification operations include (but may not be limited to):

Creation and destruction hwloc_topology_init (), hwloc_topology_load(), hwloc_topology_destroy |
(see Topology Creation and Destruction) imply major modifications of the structure, including freeing some
objects. No other thread cannot access the topology or any of its objects at the same time.

Also references to objects inside the topology are not valid anymore after these functions return.

Runtime topology modifications hwloc_topology_insert_misc_object (),hwloc_topology_alloc_group_c
and hwloc_topology_insert_group_object () (see Modifying a loaded Topology) may modify
the topology significantly by adding objects inside the tree, changing the topology depth, etc.

hwloc_distances_add () andhwloc_distances_remove () (see Add or remove distances between objects)
modify the list of distance structures in the topology, and the former may even insert new Group objects.

hwloc_topology_restrict () modifies the topology even more dramatically by removing some ob-
jects.

Although references to former objects may still be valid after insertion or restriction, it is strongly advised to
not rely on any such guarantee and always re-consult the topology to reacquire new instances of objects.

Consulting distances hwloc_distances_get () and its variants are thread-safe except if the topology was
recently modified (because distances may involve objects that were removed).

Whenever the topology is modified (see above), one dummy (but valid) hwloc_distances_get () call
should be performed in the same thread-safe context to force the refresh of internal distances structures.

Once this refresh has been performed, multiple hwloc_distances_get () may then be performed con-
currently by multiple threads.

Locating topologies hwloc_topology_set_x (see Topology Detection Configuration and Query) do not
modify the topology directly, but they do modify internal structures describing the behavior of the upcoming
invocation of hwloc_topology_load (). Hence, all of these functions should not be used concurrently.

44

Thread Safety

Generated by Doxygen

Chapter 14

Components and plugins

hwloc is organized in components that are responsible for discovering objects. Depending on the topology con-
figuration, some components will be used, some will be ignored. The usual default is to enable the native oper-
ating system component, (e.g. 1inux or solaris) and the pci miscellaneous component. If available, an
architecture-specific component (such as x86) may also improve the topology detection.

If a XML topology is loaded, the xm1 discovery component will be used instead of all other components. It inter-
nally uses a specific class of components for the actual XML import/export routines (xml1_libxml and xml_<
nolibxml) but these will not be discussed here (see libxml2 and minimalistic XML backends).

14.1 Components enabled by default

The hwloc core contains a list of components sorted by priority. Each one is enabled as long as it does not conflict
with the previously enabled ones. This includes native operating system components, architecture-specific ones,
and if available, /0O components such as pci.

Usually the native operating system component (when it exists, e.g. 1inux or aix) is enabled first. Then hwloc
looks for an architecture specific component (e.g. x86). Finally there also exist a basic component (no_os) that
just tries to discover the number of PUs in the system.

Each component discovers as much topology information as possible. Most of them, including most native OS
components, do nothing unless the topology is still empty. Some others, such as x86 and pci, can complete and
annotate what other backends found earlier. Discovery is performed by phases: CPUs are first discovered, then
memory is attached, then PCI, etc.

Default priorities ensure that clever components are invoked first. Native operating system components have higher
priorities, and are therefore invoked first, because they likely offer very detailed topology information. If needed, it
will be later extended by architecture-specific information (e.g. from the x86 component).

If any configuration function such as hwloc_topology_set_xml() is used before loading the topology, the correspond-
ing component is enabled first. Then, as usual, hwloc enables any other component (based on priorities) that does
not conflict.

Certain components that manage a virtual topology, for instance XML topology import or synthetic topol-
ogy description, conflict with all other components. Therefore, one of them may only be loaded (e.g. with
hwloc_topology_set_xml ()) if no other component is enabled.

The environment variable HWLOC_COMPONENTS_VERBOSE may be set to get verbose messages about compo-
nent registration (including their priority) and enabling.

14.2 Selecting which components to use

If no topology configuration functions such as hwloc_topology_set_synthetic () have been called, plu-
gins may be selected with environment variables such as HWLOC_XMLFILE, HWLOC_SYNTHETIC, HWLOC_«
FSROOT, or HWLOC_CPUID_PATH (see Environment Variables).

Finally, the environment variable HWRLOC_COMPONENTS resets the list of selected components. If the variable is
set and empty (or set to a single comma separating nothing, since some operating systems do not accept empty
variables), the normal plugin priority order is used.

If the variable is set to x86 in this variable will cause the x86 component to take precedence over any other
component, including the native operating system component. It is therefore loaded first, before hwloc tries to load

46 Components and plugins

all remaining non-conflicting components. In this case, x86 would take care of discovering everything it supports,
instead of only completing what the native OS information. This may be useful if the native component is buggy on
some platforms.

It is possible to prevent some components from being loaded by prefixing their name with — in the list. For instance
%86, —pci will load the x86 component, then let hwloc load all the usual components except pci. A single
component phase may also be blacklisted, for instance with —1inux:io. hwloc_topology_set_components() may
also be used inside the program to prevent the loading of a specific component (or phases) for the target topology.
It is possible to prevent all remaining components from being loaded by placing st op in the environment variable.
Only the components listed before this keyword will be enabled.

14.3 Loading components from plugins

Components may optionally be built as plugins so that the hwloc core library does not directly depend on
their dependencies (for instance the libpciaccess library). Plugin support may be enabled with the
—-—-enable-plugins configure option. All components buildable as plugins will then be built as plugins.
The configure option may be given a comma-separated list of component names to specify the exact list of
components to build as plugins.

Plugins are built as independent dynamic libraries that are installed in $1ibdir/hwloc. All plugins found in this
directory are loaded during topology_init () (unless blacklisted in HWLOC_PLUGINS_BLACKLIST, see
Environment Variables). A specific list of directories (colon-separated) to scan may be specified in the HWLOC_P+«
LUGINS_PATH environment variable.

Note that loading a plugin just means that the corresponding component is registered to the hwloc core. Compo-
nents are then only enabled if the topology configuration requests it, as explained in the previous sections.

Also note that plugins should carefully be enabled and used when embedding hwloc in another project, see
Embedding hwloc in Other Software for details.

14.4 Existing components and plugins

All components distributed within hwloc are listed below. The list of actually available components may be listed at
running with the HWLOC__COMPONENTS_VERBOSE environment variable (see Environment Variables).

linux The official component for discovering CPU, memory and I/O devices on Linux. It discovers PCI devices
without the help of external libraries such as libpciaccess, but requires the pci component for adding ven-
dor/device names to PCI objects. It also discovers many kinds of Linux-specific OS devices.

aix, darwin, freebsd, hpux, netbsd, solaris, windows Each officially supported operating system has its own
native component, which is statically built when supported, and which is used by default.

x86 The x86 architecture (either 32 or 64 bits) has its own component that may complete or replace the previously-
found CPU information. It is statically built when supported.

bgq This component is specific to IBM BlueGene/Q compute node (running CNK). It is built and enabled by default
when ——-host=powerpc64-bgg-1inux is passed to configure (see How do | build hwloc for BlueGene/Q?).

no_os A basic component that just tries to detect the number of processing units in the system. It mostly serves
on operating systems that are not natively supported. It is always statically built.

pci PCI object discovery uses the external pciaccess library (aka libpciaccess); see I/O Devices. It may also
annotate existing PCI devices with vendor and device names. It may be built as a plugin.

opencl The OpenCL component creates co-processor OS device objects such as openclodo (first device of the
first OpenCL platform) or openci1d3 (fourth device of the second platform). Only the AMD and NVIDIA
OpenCL implementations currently offer locality information. It may be built as a plugin.

cuda This component creates co-processor OS device objects such as cuda0 that correspond to NVIDIA GPUs
used with CUDA library. It may be built as a plugin.

nvml Probing the NVIDIA Management Library creates OS device objects such as nvml0 that are useful for batch
schedulers. It also detects the actual PCle link bandwidth without depending on power management state
and without requiring administrator privileges. It may be built as a plugin.

Generated by Doxygen

14.4 Existing components and plugins 47

gl Probing the NV-CONTROL X extension (NVCirl library) creates OS device objects such as :0.0 corresponding
to NVIDIA displays. They are useful for graphical applications that need to place computation and/or data
near a rendering GPU. It may be built as a plugin.

synthetic Synthetic topology support (see Synthetic topologies) is always built statically.

xml XML topology import (see Importing and exporting topologies from/to XML files) is always built statically. It
internally uses one of the XML backends (see libxml2 and minimalistic XML backends).

« xml_nolibxml is a basic and hwloc-specific XML import/export. It is always statically built.

« xml_libxml relies on the external libxml2 library for provinding a feature-complete XML import/export.
It may be built as a plugin.

fake A dummy plugin that does nothing but is used for debugging plugin support.

Generated by Doxygen

48

Components and plugins

Generated by Doxygen

Chapter 15

Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out the LICENSE file) so that
users don't have to separately download and install it before installing your software. This can be advantageous to
ensure that your software uses a known-tested/good version of hwloc, or for use on systems that do not have hwloc
pre-installed.

When used in "embedded" mode, hwloc will:

* not install any header files
* not build any documentation files
* not build or install any executables or tests

* not build Libhwloc.* — instead, it will build 1ibhwloc_embedded. *

There are two ways to put hwloc into "embedded" mode. The first is directly from the configure command line:

shell$./configure —--enable-embedded-mode ...

The second requires that your software project uses the GNU Autoconf / Automake / Libtool tool chain to build your
software. If you do this, you can directly integrate hwloc's m4 configure macro into your configure script. You can
then invoke hwloc's configuration tests and build setup by calling an m4 macro (see below).

Although hwloc dynamic shared object plugins may be used in embedded mode, the embedder project will have to
manually setup dlopen or libltdl in its build system so that hwloc can load its plugins at run time. Also, embedders
should be aware of complications that can arise due to public and private linker namespaces (e.g., if the embedder
project is loaded into a private namespace and then hwloc tries to dynamically load its plugins, such loading may
fail since the hwloc plugins can't find the hwloc symbols they need). The embedder project is strongly advised not
to use hwloc's dynamically loading plugins / dlopen / libltdl capability.

15.1 Using hwloc's M4 Embedding Capabilities

Every project is different, and there are many different ways of integrating hwloc into yours. What follows is one
example of how to do it.

If your project uses recent versions Autoconf, Automake, and Libtool to build, you can use hwloc's embedded m4
capabilities. We have tested the embedded m4 with projects that use Autoconf 2.65, Automake 1.11.1, and Libtool
2.2.6b. Slightly earlier versions of may also work but are untested. Autoconf versions prior to 2.65 are almost certain
to not work.

You can either copy all the config/hwlocxm4 files from the hwloc source tree to the directory where your project's
m4 files reside, or you can tell aclocal to find more m4 files in the embedded hwloc's "config" subdirectory (e.g., add
"-lpath/to/embedded/hwloc/config" to your Makefile.am's ACLOCAL_AMFLAGS).

The following macros can then be used from your configure script (only HWLOC_SETUP_CORE must be invoked
if using the m4 macros):

+ HWLOC_SETUP_CORE(config-dir-prefix, action-upon-success, action-upon-failure, print_banner_or_not)«
: Invoke the hwloc configuration tests and setup the hwloc tree to build. The first argument is the prefix to
use for AC_OUTPUT files — it's where the hwloc tree is located relative to $top_srcdir. Hence, if your

50 Embedding hwloc in Other Software

embedded hwloc is located in the source tree at contrib/hwloc, you should pass [contrib/hwloc] as
the first argument. If HWLOC_SETUP_CORE and the rest of configure completes successfully, then
"make" traversals of the hwloc tree with standard Automake targets (all, clean, install, etc.) should behave
as expected. For example, it is safe to list the hwloc directory in the SUBDIRS of a higher-level Makefile.am.
The last argument, if not empty, will cause the macro to display an announcement banner that it is starting
the hwloc core configuration tests.

HWLOC_SETUP_CORE will set the following environment variables and AC_SUBST them: HWLOC_EM«
BEDDED_CFLAGS, HWLOC_EMBEDDED_CPPFLAGS, and HWLOC_EMBEDDED_LIBS. These flags are
filled with the values discovered in the hwloc-specific m4 tests, and can be used in your build process as
relevant. The _CFLAGS, _CPPFLAGS, and _LIBS variables are necessary to build libhwloc (or libhwloc_«
embedded) itself.

HWLOC_SETUP_CORE also sets HWLOC_EMBEDDED_LDADD environment variable (and AC_SUBSTs
it) to contain the location of the libhwloc_embedded.la convenience Libtool archive. It can be used in your
build process to link an application or other library against the embedded hwloc library.

NOTE: If the HWLOC_SET_SYMBOL_PREFIX macro is used, it must be invoked before HWLOC_SE«-
TUP_CORE.

+ HWLOC_BUILD_STANDALONE: HWLOC_SETUP_CORE defaults to building hwloc in an "embedded"
mode (described above). If HWLOC_BUILD_STANDALONE is invoked xbeforex HWLOC_SETUP_CO+«
RE, the embedded definitions will not apply (e.g., libhwloc.la will be built, not libhwloc_embedded.la).

+ HWLOC_SET_SYMBOL_PREFIX(foo_): Tells the hwloc to prefix all of hwloc's types and public symbols
with "foo_"; meaning that function hwloc_init() becomes foo_hwloc_init(). Enum values are prefixed with an
upper-case translation if the prefix supplied; HWLOC_OBJ_CORE becomes FOO_hwloc_OBJ_CORE. This
is recommended behavior if you are including hwloc in middleware — it is possible that your software will be
combined with other software that links to another copy of hwloc. If both uses of hwloc utilize different symbol
prefixes, there will be no type/symbol clashes, and everything will compile, link, and run successfully. If you
both embed hwloc without changing the symbol prefix and also link against an external hwloc, you may get
multiple symbol definitions when linking your final library or application.

+ HWLOC_SETUP_DOCS, HWLOC_SETUP_UTILS, HWLOC_SETUP_TESTS: These three macros only ap-
ply when hwloc is built in "standalone" mode (i.e., they should NOT be invoked unless HWLOC_BUILD_ S+
TANDALONE has already been invoked).

« HWLOC_DO_AM_CONDITIONALS: If you embed hwloc in a larger project and build it conditionally with
Automake (e.g., if HWLOC_SETUP_CORE is invoked conditionally), you must unconditionally invoke HWL
OC_DO_AM_CONDITIONALS to avoid warnings from Automake (for the cases where hwloc is not selected
to be built). This macro is necessary because hwloc uses some AM_CONDITIONALs to build itself, and
AM_CONDITIONALs cannot be defined conditionally. Note that it is safe (but unnecessary) to call HWLO«
C_DO_AM_CONDITIONALS even if HWLOC_SETUP_CORE is invoked unconditionally. If you are not using
Automake to build hwloc, this macro is unnecessary (and will actually cause errors because it invoked AM_x
macros that will be undefined).

NOTE: When using the HWLOC_SETUP_CORE m4 macro, it may be necessary to explicitly invoke AC_CANO«
NICAL_TARGET (which requires config.sub and config.guess) and/or AC_USE_SYSTEM_EXTENSIONS macros
early in the configure script (e.g., after AC_INIT but before AM_INIT_AUTOMAKE). See the Autoconf documentation
for further information.

Also note that hwloc's top-level configure.ac script uses exactly the macros described above to build hwloc in a
standalone mode (by default). You may want to examine it for one example of how these macros are used.

15.2 Example Embedding hwloc

Here's an example of integrating with a larger project named sandbox that already uses Autoconf, Automake, and
Libtool to build itself:

First, cd into the sandbox project source tree

shell$ cd sandbox

shell$ cp -r /somewhere/else/hwloc-<version> my-embedded-hwloc
shell$ edit Makefile.am

Generated by Doxygen

15.2 Example Embedding hwloc 51

1. Add "-Imy-embedded-hwloc/config" to ACLOCAL_AMFLAGS

2. Add "my-embedded-hwloc" to SUBDIRS

3. Add "$ (HWLOC_EMBEDDED_LDADD)" and "$ (HWLOC_EMBEDDED_LIBS)" to
sandbox’s executable’s LDADD line. The former is the name of the
Libtool convenience library that hwloc will generate. The latter

is any dependent support libraries that may be needed by
$ (HWLOC_EMBEDDED_LDADD) .
4. Add "$ (HWLOC_EMBEDDED_CFLAGS)" to AM_CFLAGS
5. Add "$ (HWLOC_EMBEDDED_CPPFLAGS)" to AM_CPPFLAGS
shell$ edit configure.ac
1. Add "HWLOC_SET_SYMBOL_PREFIX (sandbox_hwloc_)" line
2. Add "HWLOC_SETUP_CORE ([my—-embedded-hwloc],
3. Add error checking for happy=no case
shell$ edit sandbox.c
1. Add #include <hwloc.h>

2. Add calls to sandbox_hwloc_init () and other hwloc API functions

[happy=yes], [happy=no])" line

Now you can bootstrap, configure, build, and run the sandbox as normal — all calls to "sandbox_hwloc_x*" will use
the embedded hwloc rather than any system-provided copy of hwloc.

Generated by Doxygen

52

Embedding hwloc in Other Software

Generated by Doxygen

Chapter 16

Frequently Asked Questions

16.1 Concepts

16.1.1 | only need binding, why should | use hwloc ?

hwloc is its portable API that works on a variety of operating systems. It supports binding of threads, processes
and memory buffers (see CPU binding and Memory binding). Even if some features are not supported on some
systems, using hwloc is much easier than reimplementing your own portability layer.

Moreover, hwloc provides knowledge of cores and hardware threads. It offers easy ways to bind tasks to individual
hardware threads, or to entire multithreaded cores, etc. See How may | ignore symmetric multithreading, hyper-threading, etc. in hwlo
Most alternative software for binding do not even know whether each core is single-threaded, multithreaded or
hyper-threaded. They would bind to individual threads without any way to know whether multiple tasks are in the
same physical core.

However, using hwloc comes with an overhead since a topology must be loaded before gathering information
and binding tasks or memory. Fortunately this overhead may be significantly reduced by filtering non-interesting
information out of the topology. For instance the following code builds a topology that only contains Cores (explicitly
filtered-in below), hardware threads (PUs, cannot be filtered-out), NUMA nodes (cannot be filtered-out), and the
root object (usually a Machine; the root cannot be removed without breaking the tree).

hwloc_topology_t topology;

hwloc_topology_init (&topology);

/* filter everything out =/

hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_NONE) ;

/» filter Cores back in =/

hwloc_topology_set_type_filter (topology, HWLOC_OBJ_CORE, HWLOC_TYPE_FILTER_KEEP_ALL);
hwloc_topology_load(topology);

However, one should remember that filtering such objects out removes locality information from the hwloc tree. For
instance, we do not know anymore which PU is close to which NUMA node. This would be useful to applications
that explicitly want to place specific memory buffers close to specific tasks. Those applications just need to tell
hwloc to keep Group objects that bring structure information:

hwloc_topology_set_type_filter (topology, HWLOC_OBJ_GROUP, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;

Note that the default configuration is to keep all objects enabled, except I/Os and instruction caches.

16.1.2 Should I use logical or physical/OS indexes? and how?

One of the original reasons why hwloc was created is that physical/OS indexes (obj—>o0s_index) are often
crazy and unpredictable: processors numbers are usually non-contiguous (processors 0 and 1 are not physically
close), they vary from one machine to another, and may even change after a BIOS or system update. This numbers
make task placement hardly portable. Moreover some objects have no physical/OS numbers (caches), and some
objects have non-unique numbers (core numbers are only unique within a socket). Physical/OS indexes are only
guaranteed to exist and be unique for PU and NUMA nodes.

hwloc therefore introduces logical indexes (obj—>1ogical_index) which are portable, contiguous and log-
ically ordered (based on the resource organization in the locality tree). In general, one should only use logical
indexes and just let hwloc do the internal conversion when really needed (when talking to the OS and hardware).

54 Frequently Asked Questions

hwloc developers recommends that users do not use physical/OS indexes unless they really know what they are
doing. The main reason for still using physical/OS indexes is when interacting with non-hwloc tools such as numactl
or taskset, or when reading hardware information from raw sources such as /proc/cpuinfo.

Istopo options —1 and —p may be used to switch between logical indexes (prefixed with L#) and physical/OS indexes
(P#). Converting one into the other may also be achieved with hwloc-calc which may manipulate either logical or
physical indexes as input or output. See also hwloc-calc.

Convert PU with physical number 3 into logical number
$ hwloc-calc -I pu --physical-input --logical-output pu:3
5

Convert a set of NUMA nodes from logical to physical

(beware that the output order may not match the input order)

$ hwloc-calc -I numa —--logical-input --physical-output numa:2-3 numa:7
0,2,5

16.1.3 hwiloc is only a structural model, it ignores performance models, memory
bandwidth, etc.?

hwloc is indeed designed to provide applications with a structural model of the platform. This is an orthogonal

approach to describing the machine with performance models, for instance using memory bandwidth or latencies

measured by benchmarks. We believe that both approaches are important for helping application make the most of

the hardware.

For instance, on a dual-processor host with four cores each, hwloc clearly shows which four cores are together.

Latencies between all pairs of cores of the same processor are likely identical, and also likely lower than the latency

between cores of different processors. However, the structural model cannot guarantee such implementation details.

On the other side, performance models would reveal such details without always clearly identifying which cores are

in the same processor.

The focus of hwloc is mainly of the structural modeling side. = However, hwloc lets user adds per-

formance information to the topology through distances (see Retrieve distances between objects and

Add or remove distances between objects) or even custom annotations (see How do | annotate the topology with private notes?).
hwloc may also use such distance information for grouping objects together (see hwloc only has a one-dimensional view of the archite
and What are these Group objects in my topology?).

16.1.4 hwloc only has a one-dimensional view of the architecture, it ignores distances?

hwloc places all objects in a tree. Each level is a one-dimensional view of a set of similar objects. All children of the

same object (siblings) are assumed to be equally interconnected (same distance between any of them), while the

distance between children of different objects (cousins) is supposed to be larger.

Modern machines exhibit complex hardware interconnects, so this tree may miss some information about the actual

physical distances between objects. The hwloc topology may therefore be annotated with distance information that

may be used to build a more realistic representation (multi-dimensional) of each level. For instance, there can be

a distance matrix that representing the latencies between any pair of NUMA nodes if the BIOS and/or operating

system reports them.

For more information about the distance API, see Retrieve distances between objects and Add or remove distances between objects.

16.1.5 What are these Group objects in my topology?

hwloc comes with a set of predefined object types (Core, Package, NUMA node, Caches) that match the vast
majority of hardware platforms. The HWLOC_OBJ_GROUP type was designed for cases where this set is not
sufficient. Groups may be used anywhere to add more structure information to the topology, for instance to show
that 2 out of 4 NUMA nodes are actually closer than the others. When applicable, the subtype field describes
why a Group was actually added (see also Normal attributes).

hwloc currently uses Groups for the following reasons:

* NUMA parents when memory locality does not match any existing object.
+ 1/O parents when 1/O locality does not match any existing object.

« Distance-based groups made of close objects.

Generated by Doxygen

16.1 Concepts 55

+ AMD Bulldozer dual-core compute units (subtype is ComputeUnit, in the x86 backend), but these ob-
jects are usually merged with the L2 caches.

* Intel Extended Topology Enumeration levels (in the x86 backend).

» Windows processor groups (unless they contain a single NUMA node, or a single Package, etc.).

IBM S/390 "Books" on Linux (subtype is Book).

 AIX unknown hierarchy levels.

hwloc Groups are only kept if no other object has the same locality information. It means that a Group containing
a single child is merged into that child. And a Group is merged into its parent if it is its only child. For instance a
Windows processor group containing a single NUMA node would be merged with that NUMA node since it already
contains the relevant hierarchy information.

When inserting a custom Group with hwloc_hwloc_topology_insert_group_object(), this merging may be disabled
by setting its dont_merge attribute.

16.1.6 What happens if my topology is asymmetric?

hwloc supports asymmetric topologies even if most platforms are usually symmetric. For example, there could be
different types of processors in a single machine, each with different numbers of cores, symmetric multithreading,
or levels of caches.

In practice, asymmetric topologies mostly appear when intermediate groups are added for 1/O affinity: on a 4-
package machine, an I/O bus may be connected to 2 packages. These packages are below an additional Group
object, while the other packages are not (see also What are these Group objects in my topology?).

To understand how hwloc manages such cases, one should first remember the meaning of levels and cousin objects.
All objects of the same type are gathered as horizontal levels with a given depth. They are also connected through
the cousin pointers of the hwloc_obj structure. Object attribute (cache depth and type, group depth) are also taken
in account when gathering objects as horizontal levels. To be clear: there will be one level for L1i caches, another
level for L1d caches, another one for L2, etc.

If the topology is asymmetric (e.g., if a group is missing above some processors), a given horizontal level will still
exist if there exist any objects of that type. However, some branches of the overall tree may not have an object
located in that horizontal level. Note that this specific hole within one horizontal level does not imply anything for
other levels. All objects of the same type are gathered in horizontal levels even if their parents or children have
different depths and types.

See the diagram in Terms and Definitions for a graphical representation of such topologies.

Moreover, it is important to understand that a same parent object may have children of different types (and therefore,
different depths). These children are therefore siblings (because they have the same parent), but they are
not cousins (because they do not belong to the same horizontal level).

16.1.7 What happens to my topology if | disable symmetric multithreading,
hyper-threading, etc. in the system?

hwloc creates one PU (processing unit) object per hardware thread. If your machine supports symmetric multi-
threading, for instance Hyper-Threading, each Core object may contain multiple PU objects:

$ lstopo -

Core L#0
PU L#0 (P#0)
PU L#1 (P#2)
Core L#l
PU L#2 (P#1)
PU L#3 (P#3)

x86 machines usually offer the ability to disable hyper-threading in the BIOS. Or it can be disabled on the Linux

kernel command-line at boot time, or later by writing in sysfs virtual files.

If you do so, the hwloc topology structure does not significantly change, but some PU objects will not appear
anymore. No level will disappear, you will see the same number of Core objects, but each of them will contain a
single PU now. The PU level does not disappear either (remember that hwloc topologies always contain a PU level
at the bottom of the topology) even if there is a single PU object per Core parent.

Generated by Doxygen

56 Frequently Asked Questions

$ lstopo —

Core L#0

PU L#0 (P#0)
Core L#1

PU L#1 (P#1)

16.1.8 How may | ignore symmetric multithreading, hyper-threading, etc. in hwloc?

First, see What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in the system?

for more information about multithreading.
If you need to ignore symmetric multithreading in software, you should likely manipulate hwloc Core objects
directly:

/* get the number of cores */
unsigned nbcores = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_CORE) ;

/* get the third core below the first package «*/

hwloc_obj_t package, core;

package = hwloc_get_obj_by_type (topology, HWLOC_OBJ_PACKAGE, O0);

core = hwloc_get_obj_inside_cpuset_by_type (topology, package->cpuset,
HWLOC_OBJ_CORE, 2);

Whenever you want to bind a process or thread to a core, make sure you singlify its cpuset first, so that the task is
actually bound to a single thread within this core (to avoid useless migrations).

/+ bind on the second core */

hwloc_obj_t core = hwloc_get_obj_by_type (topology, HWLOC_OBJ_CORE, 1);
hwloc_cpuset_t set = hwloc_bitmap_dup (core->cpuset) ;
hwloc_bitmap_singlify (set);

hwloc_set_cpubind (topology, set, 0);

hwloc_bitmap_free (set);

With hwloc-calc or hwloc-bind command-line tools, you may specify that you only want a single-thread within each
core by asking for their first PU object:

$ hwloc-calc core:4-7
0x0000££00

$ hwloc-calc core:4-7.pu:0
0x00005500

When binding a process on the command-line, you may either specify the exact thread that you want to use, or ask
hwloc-bind to singlify the cpuset before binding

$ hwloc-bind core:3.pu:0 —-- echo "hello from first thread on core #3"
hello from first thread on core #3

$ hwloc-bind core:3 --single —-- echo "hello from a single thread on core #3"
hello from a single thread on core #3

16.2 Advanced

16.2.1 1do not want hwloc to rediscover my enormous machine topology every time |
rerun a process

Although the topology discovery is not expensive on common machines, its overhead may become significant when
multiple processes repeat the discovery on large machines (for instance when starting one process per core in a
parallel application). The machine topology usually does not vary much, except if some cores are stopped/restarted
or if the administrator restrictions are modified. Thus rediscovering the whole topology again and again may look
useless.

For this purpose, hwloc offers XML import/export and shared memory features.

XML lets you save the discovered topology to a file (for instance with the Istopo program) and reload it later by setting
the HWLOC_XMLFILE environment variable. The HWLOC_THISSYSTEM environment variable should also be set
to 1 to assert that loaded file is really the underlying system.

Loading a XML topology is usually much faster than querying multiple files or calling multiple functions of the
operating system. It is also possible to manipulate such XML files with the C programming interface, and the
import/export may also be directed to memory buffer (that may for instance be transmitted between applications
through a package). See also Importing and exporting topologies from/to XML files.

Generated by Doxygen

16.3 Caveats 57

Note

The environment variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES may be used to load a XML
topology that contains the entire machine and restrict it to the part that is actually available to the current pro-
cess (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources). See Environment Variables.

Shared-memory topologies consist in one process exposing its topology in a shared-memory buffer so that other
processes (running on the same machine) may use it directly. This has the advantage of reducing the memory foot-
print since a single topology is stored in physical memory for multiple processes. However, it requires all processes
to map this shared-memory buffer at the same virtual address, which may be difficult in some cases. This APl is
described in Sharing topologies between processes.

16.2.2 How many topologies may | use in my program?

hwloc lets you manipulate multiple topologies at the same time. However, these topologies consume memory and

system resources (for instance file descriptors) until they are destroyed. It is therefore discouraged to open the

same topology multiple times.

Sharing a single topology between threads is easy (see Thread Safety) since the vast majority of accesses are

read-only.

If multiple topologies of different (but similar) nodes are needed in your program, have a look at How to avoid memory waste when man

16.2.3 How to avoid memory waste when manipulating multiple similar topologies?

hwloc does not share information between topologies. If multiple similar topologies are loaded in memory, for
instance the topologies of different identical nodes of a cluster, lots of information will be duplicated.

hwloc/diff.h (see also Topology differences) offers the ability to compute topology differences, apply or unapply them,
or export/import to/from XML. However, this feature is limited to basic differences such as attribute changes. It does
not support complex modifications such as adding or removing some objects.

16.2.4 How do | annotate the topology with private notes?

Each hwloc object contains a userdata field that may be used by applications to store private point-
ers. This field is only valid during the lifetime of these container object and topology. It becomes in-
valid as soon the topology is destroyed, or as soon as the object disappears, for instance when restrict-
ing the topology. The userdata field is not exported/imported to/from XML by default since hwloc does
not know what it contains. This behavior may be changed by specifying application-specific callbacks with
hwloc_topology_set_userdata_export_callback () andhwloc_topology_set_userdata_import_callk
Each object may also contain some info attributes (key name and value) that are setup by hwloc during discovery
and that may be extended by the user with hwloc_obj_add_info () (see also Object attributes). Contrary to
the userdata field which is unique, multiple info attributes may exist for each object, even with the same name.
These attributes are always exported to XML. However, only character strings may be used as key names and
values.

It is also possible to insert Misc objects with a custom name anywhere as a leaf of the topology (see
Miscellaneous objects). And Misc objects may have their own userdata and info attributes just like any other
object.

The hwloc-annotate command-line tool may be used for adding Misc objects and info attributes.

There is also a topology-specific userdata pointer that can be used to recognize different topologies by
storing a custom pointer. It may be manipulated with hwloc_topology_set_userdata () and
hwloc_topology_get_userdatal().

16.3 Caveats

16.3.1 Why is hwloc slow?

Building a hwloc topology on a large machine may be slow because the discovery of hundreds of hard-
ware cores or threads takes time (especially when reading thousands of sysfs files on Linux). Ignor-
ing some objects (for instance caches) that aren't useful to the current application may improve this
overhead (see | only need binding, why should | use hwloc ?). One should also consider using XML (see

Generated by Doxygen

58 Frequently Asked Questions

| do not want hwloc to rediscover my enormous machine topology every time | rerun a process) to work around
such issues.

Additionally, Istopo enables most hwloc objects and discovery flags by default so that the output topology is as
precise as possible (while hwloc disables many of them by default). This includes I/O device discovery through
PCI libraries as well as external libraries such as NVML. To speed up Istopo, you may disable such features with
command-line options such as ——no-1io.

When NVIDIA GPU probing is enabled with CUDA or NVML, one should make sure that the Persistent mode is
enabled (with nvidia—-smi —pm 1) to avoid significant GPU initialization overhead.

When AMD GPU discovery is enabled with OpenCL and hwloc is used remotely over ssh, some spurious round-
trips on the network may significantly increase the discovery time. Forcing the DISPLAY environment variable to
the remote X server display (usually : 0) instead of only setting the COMPUTE variable may avoid this.

Also remember that these components may be disabled at build-time with configure flags such as
——disable-opencl, ——disable—-cuda or ——disable—-nvml, and at runtime with the environment
variable HWLOC_COMPONENTS=-opencl, —cuda, —nvml or with hwloc_topology_set_components().

16.3.2 Does hwloc require privileged access?

hwloc discovers the topology by querying the operating system. Some minor features may require privileged access
to the operation system. For instance memory module discovery on Linux is reserved to root, and the entire PCI
discovery on Solaris and BSDs requires access to some special files that are usually restricted to root (/dev/pcix or
/devices/pcix).

To workaround this limitation, it is recommended to export the topology as a XML file generated by the administrator
(with the Istopo program) and make it available to all users (see Importing and exporting topologies from/to XML files).
It will offer all discovery information to any application without requiring any privileged access anymore. Only the
necessary hardware characteristics will be exported, no sensitive information will be disclosed through this XML
export.

This XML-based model also has the advantage of speeding up the discovery because reading a XML topology is
usually much faster than querying the operating system again.

The utility hwloc-dump-hwdata is also involved in gathering privileged information at boot time and making it
available to non-privileged users (note that this may require a specific SELinux MLS policy module). However, it only
applies to Intel Xeon Phi processors for now (see Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?).
See also HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

16.3.3 What should | do when hwloc reports "operating system’ warnings?

When the operating system reports invalid locality information (because of either software or hardware bugs),
hwloc may fail to insert some objects in the topology because they cannot fit in the already built tree of
resources. If so, hwloc will report a warning like the following. The object causing this error is ignored,
the discovery continues but the resulting topology will miss some objects and may be asymmetric (see also
What happens if my topology is asymmetric?).

B R e R R R

hwloc received invalid information from the operating system.

L3 (cpuset 0x000003f0) intersects with NUMANode (P#0 cpuset 0x0000003f) without inclusion!
Error occurred in topology.c line 940

Please report this error message to the hwloc user’s mailing list,
along with the files generated by the hwloc-gather-topology script.

hwloc will now ignore this invalid topology information and continue.
LRSS SRS S S SRS SR SRR SRR RS SR SRR R R R RS RS SR SRR R R R R R RS RS S S SRR RS RS SRS EEE RS SIS SRS S S

These errors are common on large AMD platforms because of BIOS and/or Linux kernel bugs causing invalid L3
cache information. In the above example, the hardware reports a L3 cache that is shared by 2 cores in the first
NUMA node and 4 cores in the second NUMA node. That's wrong, it should actually be shared by all 6 cores in a
single NUMA node. The resulting topology will miss some L3 caches.

If your application does not care about cache sharing, or if you do not plan to request cache-aware binding in
your process launcher, you may likely ignore this error (and hide it by setting HWLOC_HIDE_ERRORS=1 in your
environment).

Some platforms report similar warnings about conflicting Packages and NUMANodes.

Generated by Doxygen

16.4 Platform-specific 59

On x86 hosts, passing HWLOC_COMPONENTS=x86 in the environment may workaround some of these issues by
switching to a different way to discover the topology.

Upgrading the BIOS and/or the operating system may help. Otherwise, as explained in the message, reporting this
issue to the hwloc developers (by sending the tarball that is generated by the hwloc-gather-topology script on this
platform) is a good way to make sure that this is a software (operating system) or hardware bug (BIOS, etc).

See also Questions and Bugs. Opening an issue on GitHub automatically displays hints on what information you
should provide when reporting such bugs.

16.3.4 Why does Valgrind complain about hwloc memory leaks?

If you are debugging your application with Valgrind, you want to avoid memory leak reports that are caused by hwloc
and not by your program.

hwloc itself is often checked with Valgrind to make sure it does not leak memory. However, some global variables
in hwloc dependencies are never freed. For instance libz allocates its global state once at startup and never frees it
so that it may be reused later. Some libxml2 global state is also never freed because hwloc does not know whether

it can safely ask libxml2 to free it (the application may also be using libxmlI2 outside of hwloc).
These unfreed variables cause leak reports in Valgrind. hwloc installs a Valgrind suppressions file to hide them.
You should pass the following command-line option to Valgrind to use it:

-—suppressions=/path/to/hwloc-valgrind. supp

16.4 Platform-specific

16.4.1 How do | find the local MCDRAM NUMA node on Intel Xeon Phi processor?

Intel Xeon Phi processors introduced a new memory architecture by possibly having two distinct local memories«
some normal memory (DDR) and some high-bandwidth on-package memory (MCDRAM). Processors can
be configured in various clustering modes to have up to 4 Clusters. Moreover, each Cluster (quarter, half or
whole processor) of the processor may have its own local parts of the DDR and of the MCDRAM. This mem-
ory and clustering configuration may be probed by looking at MemoryMode and ClusterMode attributes, see
Hardware Platform Information and doc/examples/get-knl-modes.c in the source directory.
Starting with version 2.0, hwloc properly exposes this memory configuration. DDR and MCDRAM are attached as
two memory children of the same parent, DDR first, and MCDRAM second if any. Depending on the processor
configuration, that parent may be a Package, a Cache, or a Group object of type Cluster.
Hence cores may have one or two local NUMA nodes, listed by the core nodeset. An application may allocate local
memory from a core by using that nodeset. The operating system will actually allocate from the DDR when possible,
or fallback to the MCDRAM.
To allocate specifically on one of these memories, one should walk up the parent pointers until finding an object with
some memory children. Looking at these memory children will give the DDR first, then the MCDRAM if any. Their
nodeset may then be used for allocating or binding memory buffers.
One may also traverse the list of NUMA nodes until finding some whose cpuset matches the target core or PUs.
The MCDRAM NUMA nodes may be identified thanks to the subt ype field which is set to MCDRAM.
Command-line tools such as hwloc-bind may bind memory on the MCDRAM by using the hbm keyword. For
instance, to bind on the first MCDRAM NUMA node:

$ hwloc-bind —-membind —-hbm numa:0 -- myprogram
$ hwloc-bind --membind numa:0 -- myprogram

16.4.2 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?

Intel Xeon Phi processors may use the on-package memory (MCDRAM) as either memory or a memory-side cache

(reported as a L3 cache by hwloc by default, see HWLOC_KNL_MSCACHE_L3 in Environment Variables). There

are also several clustering modes that significantly affect the memory organization (see How do | find the local MCDRAM NUMA node
for more information about these modes). Details about these are currently only available to privileged users. With-

out them, hwloc relies on a heuristic for guessing the modes.

The hwloc-dump-hwdata utility may be used to dump this privileged binary information into human-readable and
world-accessible files that the hwloc library will later load. The utility should usually run as root once during boot,

in order to update dumped information (stored under /var/run/hwloc by default) in case the MCDRAM or clustering

configuration changed between reboots.

Generated by Doxygen

60 Frequently Asked Questions

When SELinux MLS policy is enabled, a specific hwloc policy module may be required so that all users get access to
the dumped files (in /var/run/hwloc by default). One may use hwloc policy files from the SELinux Reference Policy at
https://github.com/TresysTechnology/refpolicy—-contrib (see also the documentation at

https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted).
hwloc-dump-hwdata requires dmi-sysfs kernel module loaded.

The utility is currently unneeded on platforms without Intel Xeon Phi processors.

See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

16.4.3 How do | build hwloc for BlueGene/Q?

IBM BlueGene/Q machines run a standard Linux on the login/frontend nodes and a custom CNK (Compute Node
Kernel) on the compute nodes.

To discover the topology of a login/frontend node, hwloc should be configured as usual, without any BlueGene/Q-
specific option.

However, one would likely rather discover the topology of the compute nodes where parallel jobs are actually run-
ning. If so, hwloc must be cross-compiled with the following configuration line:

./configure --host=powerpc64-bgg-linux —--disable-shared —--enable-static \
CPPFLAGS='-I/bgsys/drivers/ppcfloor -I/bgsys/drivers/ppcfloor/spi/include/kernel/cnk/’

CPPFLAGS may have to be updated if your platform headers are installed in a different directory.

16.4.4 How do | build hwloc for Windows?

hwloc releases are available as pre-built ZIPs for Windows on both 32bits and 64bits x86 platforms. They are built
using MSYS2 and MinGW on a Windows host. Such an environment allows using the Unix-like configure,
make and make install steps without having to tweak too many variables or options. One may look at
contrib/ci.inria.fr/job-3-mingw. sh in the hwloc repository for an example used for nightly testing.
hwloc releases also contain a basic Microsoft Visual Studio solution under contrib/windows/.

16.4.5 How to get useful topology information on NetBSD?

The NetBSD (and FreeBSD) backend uses x86-specific topology discovery (through the x86 component). This
implementation requires CPU binding so as to query topology information from each individual processor. This
means that hwloc cannot find any useful topology information unless user-level process binding is allowed by the
NetBSD kernel. The security.models.extensions.user_set_cpu_affinity sysctl variable must
be set to 1 to do so. Otherwise, only the number of processors will be detected.

16.4.6 Why does binding fail on AIX?

The AIX operating system requires specific user capabilities for attaching processes to resource sets (CAP_NU<«
MA_ATTACH,). Otherwise functions such as hwloc_set_cpubind() fail (return -1 with errno set to EPERM).
This capability must also be inherited (through the additional CAP_PROPAGATE capability) if you plan to bind a

process before forking another process, for instance with hwloc-bind.
These capabilities may be given by the administrator with:

chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" <username>

16.5 Compatibility between hwloc versions

16.5.1 How do | handle API changes?

The hwloc interface is extended with every new major release. Any application using the hwloc API should be

prepared to check at compile-time whether some features are available in the currently installed hwloc distribution.
For instance, to check whether the hwloc version is at least 2.0, you should use:

#include <hwloc.h>
#if HWLOC_API_VERSION >= 0x00020000

#endif

Generated by Doxygen

https://github.com/TresysTechnology/refpolicy-contrib
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted

16.5 Compatibility between hwloc versions 61

To check for the API of release X.Y.Z at build time, you may compare HWLOC_API_VERSION with
(X<<16) +(Y<<L8) +2Z.

For supporting older releases that do not have HWLOC_OBJ_NUMANODE and HWLOC_OBJ_PACKAGE yet, you
may use:

#include <hwloc.h>

#if HWLOC_API_VERSION < 0x00010b00

#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
#endif

Once a program is built against a hwloc library, it may also dynamically link with compatible libraries from
other hwloc releases. The version of that runtime library may be queried with hwloc_get_api_version(). See
How do | handle ABI breaks? for using this function for testing ABI compatibility.

16.5.2 What is the difference between API and library version numbers?

HWLOC_API_VERSION is the version of the API. It changes when functions are added, modified, etc. However it
does not necessarily change from one release to another. For instance, two releases of the same series (e.g. 2.0.3
and 2.0.4) usually have the same HWLOC_API_VERSION (0x00020000). However their HWLOC_VERSION
strings are different ("2.0.3" and "2.0.4" respectively).

16.5.3 How do | handle ABI breaks?

The hwloc interface was deeply modified in release 2.0 to fix several issues of the 1.x interface (see
Upgrading to the hwloc 2.0 APl and the NEWS file in the source directory for details). The ABI was broken,
which means applications must be recompiled against the new 2.0 interface.

To check that you are not mixing old/recent headers with a recent/old runtime library, check the major revision
number in the API version:

#include <hwloc.h>
unsigned version = hwloc_get_api_version();
if ((version >> 16) != (HWLOC_API_VERSION >> 16)) {
fprintf (stderr,
"$s compiled for hwloc API 0x%x but running on library API 0Ox%x.\n"
"You may need to point LD_LIBRARY_PATH to the right hwloc library.\n"
"Aborting since the new ABI is not backward compatible.\n",
callname, HWLOC_API_VERSION, version);
exit (EXIT_FAILURE) ;
}

To specifically detect v2.0 issues:

#include <hwloc.h>
#1f HWLOC_API_VERSION >= 0x00020000
/* headers are recent =/
if (hwloc_get_api_version() < 0x20000)
. error out, the hwloc runtime library is older than 2.0 ...
#else
/* headers are pre-2.0 x/
if (hwloc_get_api_version() >= 0x20000)
. error out, the hwloc runtime library is more recent than 2.0 ...
#endif

In theory, library sonames prevent linking with incompatible libraries. However custom hwloc installations or improp-
erly configured build environments may still lead to such issues. Hence running one of the above (cheap) checks
before initializing hwloc topology may be useful.

16.5.4 Are XML topology files compatible between hwloc releases?

XML topology files are forward-compatible: a XML file may be loaded by a hwloc library that is more recent than the
hwloc release that exported that file.

However, hwloc XMLs are not always backward-compatible: Topologies exported by hwloc 2.x cannot be imported
by 1.x by default (see XML changes for working around such issues). There are also some corner cases where
backward compatibility is not guaranteed because of changes between major releases (for instance 1.11 XMLs
could not be imported in 1.10).

Generated by Doxygen

62 Frequently Asked Questions

XMLs are exchanged at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (cluster-wide) hwloc installation is a
good way to avoid such incompatibilities.

16.5.5 Are synthetic strings compatible between hwloc releases?

Synthetic strings (see Synthetic topologies) are forward-compatible: a synthetic string generated by a release may
be imported by future hwloc libraries.

However they are often not backward-compatible because new details may have been added to synthetic descrip-
tions in recent releases. Some flags may be given to hwloc_topology_export_synthetic() to avoid such details and
stay backward compatible.

16.5.6 Is it possible to share a shared-memory topology between different hwloc
releases?

Shared-memory topologies (see Sharing topologies between processes) have strong requirements on compatibility
between hwloc libraries. Adopting a shared-memory topology fails if it was exported by a non-compatible hwloc
release. Releases with same major revision are usually compatible (e.g. hwloc 2.0.4 may adopt a topology exported
by 2.0.3) but different major revisions may be incompatible (e.g. hwloc 2.1.0 cannot adopt from 2.0.x).

Topologies are shared at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (system-wide) hwloc installation is a
good way to avoid such incompatibilities.

Generated by Doxygen

Chapter 17

Upgrading to the hwloc 2.0 API

See Compatibility between hwloc versions for detecting the hwloc version that you are compiling and/or running
against.

17.1 New Organization of NUMA nodes and Memory

17.1.1 Memory children

In hwloc v1.x, NUMA nodes were inside the tree, for instance Packages contained 2 NUMA nodes which contained
a L3 and several cache.

Starting with hwloc v2.0, NUMA nodes are not in the main tree anymore. They are attached under objects as
Memory Children on the side of normal children. This memory children list starts at obj—>memory_first_«
child and its size is obj—>memory_arity. Hence there can now exist two local NUMA nodes, for instance
on Intel Xeon Phi processors.

The normal list of children (starting at obj->first_child, ending at obj->last_child, of size
obj->arity, and available as the array obj->children) now only contains CPU-side objects: PUs,
Cores, Packages, Caches, Groups, Machine and System. hwloc_get_next_child() may still be used to iterate over
all children of all lists.

Hence the CPU-side hierarchy is built using normal children, while memory is attached to that hierarchy depending
on its affinity.

17.1.2 Examples

* a UMA machine with 2 packages and a single NUMA node is now modeled as a "Machine" object with two
"Package" children and one "NUMANode" memory children (displayed first in Istopo below):

Machine (1024MB total)
NUMANode L#0 (P#0 1024MB)
Package L#0

Core L#0 + PU L#0 (P#0)

Core L#1 + PU L#1 (P#1)
Package L#1l

Core L#2 + PU L#2 (P#2)

Core L#3 + PU L#3 (P#3)

+ a machine with 2 packages with one NUMA node and 2 cores in each is now:

Machine (2048MB total)
Package L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
Package L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

« if there are two NUMA nodes per package, a Group object may be added to keep cores together with their
local NUMA node:

64 Upgrading to the hwloc 2.0 API

Machine (4096MB total)
Package L#0
GroupO L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
GroupO L#l
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1l
[...]

« if the platform has L3 caches whose localities are identical to NUMA nodes, Groups aren't needed:

Machine (4096MB total)
Package L#0
L3 L#0 (16MB)
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
L3 L#1 (1leMB)
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1
[...]

17.1.3 NUMA level and depth

NUMA nodes are not in "main” tree of normal objects anymore. Hence, they don't have a meaningful depth anymore
(like I/0O and Misc objects). They have a virtual (negative) depth (HWLOC_TYPE_DEPTH_NUMANODE) so that
functions manipulating depths and level still work, and so that we can still iterate over the level of NUMA nodes just

like for any other level.
For instance we can still use lines such as

int depth = hwloc_get_type_depth (topology, HWLOC_OBJ_NUMANODE) ;
hwloc_obj_t obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, 4);
hwloc_obj_t node = hwloc_get_next_obj_by_depth (topology, HWLOC_TYPE_DEPTH_NUMANODE, prev);

The NUMA depth should not be compared with others. An unmodified code that still compares NUMA and Package
depths (to find out whether Packages contain NUMA or the contrary) would now always assume Packages contain
NUMA (because the NUMA depth is negative).

However, the depth of the Normal parents of NUMA nodes may be used instead. In the last example above, NUMA
nodes are attached to L3 caches, hence one may compare the depth of Packages and L3 to find out that NUMA
nodes are contained in Packages. This depth of parents may be retrieved with hwloc_get._memory_parents_depth().
However, this function may return HWLOC_TYPE_DEPTH_MULTIPLE on future platforms if NUMA nodes are
attached to different levels.

17.1.4 Finding Local NUMA nodes and looking at Children and Parents

Applications that walked up/down to find NUMANode parent/children must now be updated. Instead of looking
directly for a NUMA node, one should now look for an object that has some memory children. NUMA node(s) will
be be attached there. For instance, when looking for a NUMA node above a given core core:

hwloc_obj_t parent = core->parent;
while (parent && !parent—->memory_arity)
parent = parent->parent; /% no memory child, walk up */
if (parent)
/* use parent->memory_first_child (and its siblings if there are multiple local NUMA nodes) =/

The list of local NUMA nodes (usually a single one) is also described by the nodeset attribute of each object
(which contains the physical indexes of these nodes). lterating over the NUMA level is also an easy way to find local
NUMA nodes:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, HWLOC_OBJ_NUMANODE, tmp)) != NULL) {
if (hwloc_bitmap_isset (obj->nodeset, tmp->os_index))
/* tmp is a NUMA node local to obj, use it x/

Generated by Doxygen

17.2 4 Kinds of Objects and Children 65

Similarly finding objects that are close to a given NUMA nodes should be updated too. Instead of looking at the
NUMA node parents/children, one should now find a Normal parent above that NUMA node, and then look at its
parents/children as usual:

hwloc_obj_t tmp = obj->parent;

while (hwloc_obj_type_is_memory (tmp))
tmp = tmp->parent;

/* now use tmp instead of obj x/

To avoid such hwloc v2.x-specific and NUMA-specific cases in the code, a generic lookup for any kind of object,
including NUMA nodes, might also be implemented by iterating over a level. For instance finding an object of type
type which either contains or is included in object obj can be performed by traversing the level of that type and
comparing CPU sets:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, type, tmp)) != NULL) {
if (hwloc_bitmap_intersects (tmp->cpuset, obj->cpuset))
/+ tmp matches, use it x/

}

This generic lookup works whenever type or obj are Normal or Memory objects since both have CPU
sets. Moreover, it is compatible with the hwloc v1.x APL.

17.2 4 Kinds of Objects and Children

17.2.1 1/0 and Misc children

I/O children are not in the main object children list anymore either. They are in the list starting at obj->io0_+«
first_child and whose size if obj—>io_arity

Misc children are not in the main object children list anymore. They are in the list starting at obj->misc_«+
first_child nd whose size if obj—>misc_arity.

See hwloc_obj for details about children lists.

hwloc_get_next_child() may still be used to iterate over all children of all lists.

17.2.2 Kinds of objects

Given the above, objects may now be of 4 kinds:

» Normal (everything not listed below, including Machine, Package, Core, PU, CPU Caches, etc);
* Memory (currently NUMA nodes or Memory-side Caches), attached to parents as Memory children;
+ 1/O (Bridges, PCI and OS devices), attached to parents as I/O children;

+ Misc objects, attached to parents as Misc children.

See hwloc_obj for details about children lists.

For a given object type, the kind may be found with hwloc_obj_type_is_normal(), hwloc_obj_type_is_memory(),
hwloc_obj_type_is_normal(), or comparing with HWLOC_OBJ_MISC.

Normal and Memory objects have (non-NULL) CPU sets and nodesets, while /0O and Misc objects don't have any
sets (they are NULL).

17.3 HWLOC_OBJ_CACHE replaced

Instead of a single HWLOC_OBJ_CACHE, there are now 8 types HWLOC_OBJ_L1CACHE, ..., HWLOC_OBJ_L5CACHE,
HWLOC_OBJ_L1ICACHE, ..., HWLOC_OBJ_L3ICACHE.

Cache object attributes are unchanged.

hwloc_get_cache_type_depth() is not needed to disambiguate cache types anymore since new types can be passed

to hwloc_get_type_depth() without ever getting HWLOC_TYPE_DEPTH_MULTIPLE anymore.
hwloc_obj_type_is_cache(), hwloc_obj_type_is_dcache() and hwloc_obj_type_is_icache() may be used to check
whether a given type is a cache, data/unified cache or instruction cache.

Generated by Doxygen

66 Upgrading to the hwloc 2.0 API

17.4 allowed_cpuset and allowed_nodeset only in the main topology

Objects do not have allowed_cpuset and allowed_nodeset anymore. They are only available for the

entire topology using hwloc_topology get_allowed_cpuset() and hwloc_topology_get_allowed_nodeset().
As usual, those are only needed when the INCLUDE_DISALLOWED topology flag is given, which means disallowed
objects are kept in the topology. If so, one may find out whether some PUs inside an object is allowed by checking

hwloc_bitmap_intersects (obj->cpuset, hwloc_topology_get_allowed_cpuset (topology))

Replace cpusets with nodesets for NUMA nodes. To find out which ones, replace intersects() with and() to get the
actual intersection.

17.5 Object depths are now signed int

obj->depth as well as depths given to functions such as hwloc_get_obj by depth() or returned by
hwloc_topology_get_depth() are now signed int.
Other depth such as cache-specific depth attribute are still unsigned.

17.6 Memory attributes become NUMANode-specific

Memory attributes such as obj->memory.local_memory are now only available in NUMANode-specific at-
tributes in obj—->attr->numanode.local_memory.

obj->memory.total_memory is available in all objects as obj—->total_memory.

See hwloc_obj_attr_u::hwloc_numanode_attr_s and hwloc_obj for details.

17.7 Topology configuration changes

The old ignoring API as well as several configuration flags are replaced with the new filtering API, see
hwloc_topology_set_type_filter() and its variants, and hwloc_type_filter_e for details.

» hwloc_topology_ignore_type(), hwloc_topology_ignore_type_keep_structure() and hwloc_topology_ignore«
_all_keep_structure() are respectively superseded by

hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_NONE) ;
hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;
hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;

Also, the meaning of KEEP_STRUCTURE has changed (only entire levels may be ignored, instead of single
objects), the old behavior is not available anymore.

*+ HWLOC_TOPOLOGY_FLAG_ICACHES is superseded by

hwloc_topology_set_icache_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL);

« HWLOC_TOPOLOGY_FLAG_WHOLE_IO, HWLOC_TOPOLOGY_FLAG_IO_DEVICES and HWLOC_TO«
POLOGY_FLAG_IO_BRIDGES replaced.

To keep all I/O devices (PCI, Bridges, and OS devices), use:
hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL) ;
To only keep important devices (Bridges with children, common PCI devices and OS devices):

hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_IMPORTANT) ;

17.8 XML changes

2.0 XML files are not compatible with 1.x
2.0 can load 1.x files, but only NUMA distances are imported. Other distance matrices are ignored (they were never
used by default anyway).

Generated by Doxygen

17.9 Distances API totally rewritten 67

2.0 can export 1.x-compatible files, but only distances attached to the root object are exported (i.e. distances that
cover the entire machine). Other distance matrices are dropped (they were never used by default anyway).

Users are advised to negociate hwloc versions between exporter and importer: If the importer isn't 2.x, the
exporter should export to 1.x. Otherwise, things should work by default.

Hence hwloc_topology_export_xml() and hwloc_topology_export_xmlbuffer() have a new flags argument. to force
a hwloc-1.x-compatible XML export.

« If both always support 2.0, don't pass any flag.

* When the importer uses hwloc 1.x, export with HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1. Otherwise
the importer will fail to import.

» When the exporter uses hwloc 1.x, it cannot pass any flag, and a 2.0 importer can import without problem.

#if HWLOC_API_VERSION >= 0x20000
if (need 1.x compatible XML export)

hwloc_topology_export_xml(...., HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1);
else /» need 2.x compatible XML export =/
hwloc_topology_export_xml(...., 0);
#else
hwloc_topology_export_xml(....);
#endif

Additionally, hwloc_topology_diff_load_xml(), hwloc_topology_diff_load_xmlbuffer(), hwloc_topology_diff_export_xml(),
hwloc_topology_diff_export_xmlbuffer() and hwloc_topology_diff_destroy() lost the topology argument: The first
argument (topology) isn't needed anymore.

17.9 Distances API totally rewritten

The new distances API is in hwloc/distances.h.

Distances are not accessible directly from objects anymore. One should first call hwloc_distances_get() (or a
variant) to retrieve distances (possibly with one call to get the number of available distances structures, and another
call to actually get them). Then it may consult these structures, and finally release them.

The set of object involved in a distances structure is specified by an array of objects, it may not always cover the
entire machine or so.

17.10 Return values of functions

Bitmap functions (and a couple other functions) can return errors (in theory).

Most bitmap functions may have to reallocate the internal bitmap storage. In v1.x, they would silently crash if realloc
failed. In v2.0, they now return an int that can be negative on error. However, the preallocated storage is 512 bits,
hence realloc will not even be used unless you run hwloc on machines with larger PU or NUMAnode indexes.
hwloc_obj_add_info(), hwloc_cpuset_from_nodeset() and hwloc_cpuset_from_nodeset() also return an int, which
would be -1 in case of allocation errors.

17.11 Misc API changes

» hwloc_type_sscanf() extends hwloc_obj_type_sscanf() by passing a union hwloc_obj_attr_u which may re-
ceive Cache, Group, Bridge or OS device attributes.

» hwloc_type_sscanf_as_depth() is also added to directly return the corresponding level depth within a topol-
ogy.

hwloc_topology_insert_misc_object_by_cpuset() is replaced with hwloc_topology_alloc_group_object() and
hwloc_topology_insert_group_object().

hwloc_topology_insert_misc_object_by_parent() is replaced with hwloc_topology_insert._misc_object().

Generated by Doxygen

68

Upgrading to the hwloc 2.0 API

17.12 API removals and deprecations

HWLOC_OBJ_SYSTEM removed: The root object is always HWLOC_OBJ_MACHINE

_membind_nodeset() memory binding interfaces deprecated: One should use the variant without _nodeset
suffix and pass the HWLOC_MEMBIND_BYNODESET flag.

HWLOC_MEMBIND_REPLICATE removed: no supported operating system supports it anymore.

hwloc_obj_snprintf() removed because it was long-deprecated by hwloc_obj type_snprintf() and
hwloc_obj_attr_snprintf().

hwloc_obj_type_sscanf() deprecated, hwloc_obj_type_of_string() removed.

hwloc_cpuset_from/to_nodeset_strict() deprecated: Now useless since all topologies are NUMA. Use the
variant without the _strict suffix

hwloc_distribute() and hwloc_distributev() removed, deprecated by hwloc_distrib().

The Custom interface (hwloc_topology_set custom(), etc.) was removed, as well as the corresponding
command-line tools (hwloc-assembler, etc.). Topologies always start with object with valid cpusets and node-
sets.

obj->online_cpuset removed: Offline PUs are simply listed in the complete_cpuset as previ-
ously.

obj->os_level removed.

Generated by Doxygen

Chapter 18

Network Locality (netloc)

Portable abstraction of network topologies for high-performance computing.
The netloc documentation spans of these sections:

» Network Locality (netloc), this section below

« Netloc with Scotch

18.1 Netloc Summary

The Portable Network Locality (netloc) software package provides network topology discovery tools, and an abstract
representation of those networks topologies for a range of network types and configurations. It is provided as a
companion to the Portable Hardware Locality (hwloc) package. These two software packages work together to
provide a comprehensive view of the HPC system topology, spanning from the processor cores in one server to the
cores in another - including the complex network(s) in between.

Towards this end, netloc is divided into two sets of components. The first tools are for the admin to extract the
information about the topology of the machines with topology discovery tools for each network type and discovery
technique (called readers). The second set of tools is for the user to exploit the collected information: to display the
topology or create a topology-aware mapping of the processes of an application.

netloc_gather ibraw.txt

&
o
@zg netloc_extract_dats Prog rams
&
topology.txt
=~

Inputs/Outputs

|”Et'“C_draW| | netloc_map ‘ netlocscotch_build_arch
l l netlocscotch_build_subarch

topology.json rank file . - Object
! e é File

netloc_draw.html | , ’
’ USER ul
interactive topology netloc_get_resources

18.1.1 Supported Networks

For now, only InfiniBand (See Setup) is supported, but it is planned to be extended it very soon.

18.2 Netloc Installation

The generic installation procedure for both hwloc and netloc is described in Installation.
Note that netloc is currently not supported on as many platforms as the original hwloc project. netloc is enabled by
default when supported, or can be disabled by passing ——disable-netloc to the configure command-line.

70 Network Locality (netloc)

18.3 Setup

To use Netloc tools, we need two steps. The first step consists in getting information about network directly from
tools distributed by manufacturers. For Infiniband, for instance, this operation needs privileges to access to the
network device. For this step we have wrappers in Netloc that will call the right tools with the right options.

The second step will transform the raw files generated by manufacturer tools, into files in a format readable by
Netloc tools, and that will not depend on network technologies.

To be clear, let's take an example with Infiniband. This first step is handled by netloc_ib_gather_raw that
will call ibnetdiscover and ibroutes tools to generate the necessary raw data files. The step has to be run
by an administrator, since the Infiniband tools need to access to the network device.

shell$ netloc_ib_gather_raw --help
Usage: netloc_ib_gather_raw [options] <outdir>
Dumps topology information to <outdir>/ib-raw/
Subnets are guessed from the <outdir>/hwloc/ directory where
the hwloc XML exports of some nodes are stored.
Options:
—-sudo
Pass sudo to internal ibnetdiscover and ibroute invocations.
Useful when the entire script cannot run as root.
——hwloc—-dir <dir>
Use <dir> instead of <outdir>/hwloc/ for hwloc XML exports.
—-—force-subnet [<subnet>:]<board>:<port> to force the discovery
Do not guess subnets from hwloc XML exports.
Force discovery on local board <board> port <port>
and optionally force the subnet id <subnet>
instead of reading it from the first GID.
Examples: --force-subnet mlx4_0:1
—-—force-subnet fe80:0000:0000:0000:m1x4_0:1
——ibnetdiscover /path/to/ibnetdiscover
—-—ibroute /path/to/ibroute
Specify exact location of programs. Default is /usr/bin/<program>
—--sleep <n>
Sleep for <n> seconds between invocations of programs probing the network
-—ignore-errors
Ignore errors from ibnetdiscover and ibroute, assume their outputs are ok
—-—force -f
Always rediscover to overwrite existing files without asking
—--verbose -v
Add verbose messages
—--dry-run
Do not actually run programs or modify anything
——help -h
Show this help

shell$./netloc_ib_gather_raw /home/netloc/data
WARNING: Not running as root.
Using /home/netloc/data/hwloc as hwloc lstopo XML directory.

Exporting local node hwloc XML...
Running lstopo-no-graphics...

Found 1 subnets in hwloc directory:
Subnet fe80:0000:0000:0000 is locally accessible from board gib0 port 1.

Looking at fe80:0000:0000:0000 (through local board gib0 port 1)...

Running ibnetdiscover...

Getting routes...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L112’ LID 18...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L108" LID 20...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L102’ LID 23...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L104’ LID 25...
Running ibroute for switch ’"QLogic 12800-180 GUID=0x00066a00e8001310 L106’ LID 24...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L114’ LID 22...
Running ibroute for switch ’"QLogic 12800-180 GUID=0x00066a00e8001310 L116’ LID 21...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L109" LID 12...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L111" LID 11...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L107’ LID 13...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L103" LID 17...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L105’ LID 16...
Running ibroute for switch ’QLogic 12800-180 GUID=0x00066a00e8001310 L113" LID 15...

Generated by Doxygen

18.4 Topology display 71

The second step, that can be done by a regular user, is done by the tool netloc_ib_extract_dats.

shell$ netloc_ib_extract_dats --help
Usage: netloc_ib_extract_dats <path to input raw data files> <output path> [--hwloc-dir
<hwloc xml path>]

hwloc-dir can be an absolute path or a relative path from output path

shellS$ netloc_ib_extract_dats /home/netloc/data/ib-raw /home/netloc/data/netloc \
-—-hwloc-dir ../hwloc
Read subnet: fe80:0000:0000:0000
2 partitions found
"node’
admin’

18.4 Topology display

Netloc provides a tool, net loc_draw.html, that displays a topology in a web browser, by using a JSON file.

18.4.1 Generate the JSON file

In order to display a topology, Netloc needs to generate a JSON file corresponding to a topology. For this operation,
the user must run netloc_draw_to_json.

shell$ netloc_draw_to_json —--help
Usage: netloc_draw_to_json <path to topology directory>

shell$ netloc_draw_to_json /home/netloc/data/netloc

The netloc_draw_to_json command will write a JSON file for each topology file found in the input directory.
The output files, written also in the input directory, can be open by net loc_draw.html in a web browser.

18.4.2 Using netloc_draw

Once the JSON file is opened, the rendering is generated by the Javascript vis library for computing the position
of the nodes. From the interface, it is possible to search for a specific node, to color the nodes, to expand merged
switches, to show statistics, to export as an image... The user can interact with the nodes by moving them. For now,
there are bugs and other nodes might move too.

The placement of the nodes is done statically if the topology is detected as a tree. If not, vis.js will use physics to
find good positions, and it can be very time consuming.

Generated by Doxygen

72

Network Locality (netloc)

Browse... | 1B-fe80:0000:0000:0000-draw.json = All
Hostname

Expand selected

~

Search

~

Fit

normal v

Generate image link

Reload

Remove selected

Generated by Doxygen

Chapter 19

Netloc with Scotch

Scotch is a toolbox for graph partitioning [XXX], that can do mapping between a communication graph and an archi-
tecture. Netloc interfaces with Scotch, by getting the topology of the machine and building the Scotch architecture.
It is also possible to directly build a mapping file that can be given to mpirun.

19.1 Introduction

Scotch is able to deal architectures to represent the topology of a complete machine. Scotch handles several types
of topologies: complete graphs, hypercubes, fat trees, meshes, torus, and random graphs. Moreover, Scotch is
able to manage parts of architectures that are called sub-architectures. Thus, from a complete architecture, we can
create a sub-architecture that will represent the available resources of the complete machine.

19.2 Setup

The first step in order to use Netloc tools is to discover the network. For this task, we provide tools called netloc«—
_gather that are wrappers to the dedicated tools provided by the manufacturer of the network, that generate the
raw data given by the devices. This task needs privileges to access to the network devices. Once, this task is
completed, the raw data is converted in a generic format independent to the fabric by extract_dats. Figure 1 shows
how the different modules of Netloc are linked, and what are the tools provided by Netloc.

19.3 Tools and API

When the machine is discovered and all the needed files are generated as seen previously, a user can call the
netlocscotch functions from the API and interact with Scotch.

19.3.1 Build Scotch architectures

Netloc provides a function to export the built topology into the Scotch format. That will give the possibility to the
user to play with the topology in Scotch. Since Netloc matches the discovered topology with known topologies, the
Scotch architecture won’t be random graphs but known topologies also in Scotch that will lead to optimized graph
algorithms. This function is called netlocscotch_build_arch.

When the network topology is a tree, the topology converted by netlocscotch is the complete topology of the machine
containing intranode topologies from hwloc. In this case, merging the two levels results in a bigger tree. For other
network topologies, the global graph created for Scotch is a generic graph since it not not (at this moment) possible
to create nested known architectures.

19.3.2 Build Scotch sub-architectures

Most of the time, the user does not have access to the complete machine. He uses a resource manager to run
his application and he will gain access only to a set of nodes. In this case getting the Scotch architecture of the
complete machine is not relevant. Fortunately, Netloc is also able to build a Scotch sub-architecture that will contain
only the available nodes. For this operation the user needs to run a specific program, netloc_get_resources, that will

74 Netloc with Scotch

record in a file, the lists of available nodes and available cores by using MPI and hwloc. From this file, the function
netlocscotch_build_subarch will build the Scotch sub-architecture.

19.3.3 Mapping of processes

A main goal in having all these data about the network topology, especially in Scotch structures, is to help the
process placement. For that, we use the mapping of a process graph to the architecture provided by Scotch. As
we have seen previously, Netloc is able to detect the structure of the topology and will build the adapted Scotch
architecture that will be more efficient than a random structure.

In case, the network topology is not a tree, netlocscotch converts the complete topology into a generic graph. The
drawback in that is the Scotch graph algorithms are less efficient. To overcome that, netlocscotch does two steps
of mapping: first it maps the processes to the nodes, and then for each node maps the processes to the cores. We
have to conduct tests to check if the method gives better results than using a generic graph directly.

The other input needed in Scotch is the process graph. Since we want to optimize the placement to decrease the
communication time, a good metric for building the application graph is the amount of communications between all
pairs of processes. Studies still have to be done to choose, in the most efficient way, what we take into account to
define the amount of communications between the number of messages, the size of messages... This information
will be transformed into a process graph.

Once we have a good mapping computed by Scotch, we can give it to the user, or Netloc can even generate the
corresponding rank file useful to MPI.

Generated by Doxygen

Chapter 20

Module Index

20.1 Modules

Here is a list of all modules:

APLVErsioN 79
Object Sets (hwloc_cpuset_t and hwloc_nodeset t) 80
ObjeCt TYpeS« o o e e 81
Object Structure and Attributes 86
Topology Creation and Destruction e 87
Object levels, depths and types e 90
Converting between Object Types and Attributes, and Strings 94
Consulting and Adding Key-Value Info Attributes oL 96
CPUDINDING e 97
Memory binding e e e e e e 101
Changing the Source of Topology Discovery o 108
Topology Detection Configurationand Query 111
Modifying a loaded Topology e e e e e 117
Finding Objectsinside a CPU set 121
Finding Objects covering atleast CPU set 124
Looking at Ancestor and Child Objects 126
Kinds of object Type e e 128
Looking at Cache Objects e 130
Finding objects, miscellaneous helpers 131
Distributing items over atopology 134
CPU and node sets of entire topologies e 135
Converting between CPU setsandnode sets 138
Finding /O objects 139
The bitmap APl 141
Exporting Topologies to XML 153
Exporting Topologies to Synthetic 157
Retrieve distances betweenobjects L 159
Helpers for consulting distance matrices L L 162
Add or remove distances betweenobjects L L 163
Linux-specific helpers e e e e e 165
Interoperability with Linux libnuma unsigned longmasks oL 167
Interoperability with Linux libnuma bitmask oo oo 169
Interoperability with glibc sched affinity 171
Interoperability with OpenCL 172
Interoperability with the CUDA Driver APl 174
Interoperability with the CUDA Runtime APl 176
Interoperability with the NVIDIA Management Library 178
Interoperability with OpenGL displays o e 180
Interoperability with OpenFabrics 182

Topology differences L e 184

76 Module Index
Sharing topologies between processes 188
Components and Plugins: Discovery components 190
Components and Plugins: Discovery backends Lo 191
Components and Plugins: Genericcomponents 193
Components and Plugins: Core functions to be used by components 194
Components and Plugins: Filteringobjects 197
Components and Plugins: helpers for PCl discovery 198
Components and Plugins: finding PCI objects during other discoveries 200
Netloc APl e e e 201

Generated by Doxygen

Chapter 21

Data Structure Index

21.1 Data Structures

Here are the data structures with brief descriptions:
hwloc_backend

Discovery backend structure e 203
hwloc_obj_attr_u::hwloc_bridge_attr_s

Bridge specific Object Attribues L 204
hwloc_obj_attr_u::hwloc_cache_attr_s

Cache-specific Object Attributes 206
hwloc_cl_device_topology_amd e 206
hwloc_component

Generic component structure L L 208
hwloc_disc_component

Discovery component structure L. L 209
hwloc_disc_status

Discovery status structure 210
hwloc_distances_s

Matrix of distances between asetofobjects oo oo 211
hwloc_obj_attr_u::hwloc_group_attr_s

Group-specific Object Attributes L 212
hwloc _info_s

Objectinfo 213
hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s

Array of local memory page types, NULL if no local memory and page_typesis0 213
hwloc_obj_attr_u::hwloc_numanode_attr_s

NUMA node-specific Object Attributes 214
hwloc_obj

Structure of atopology object L 214
hwloc_obj_attr_u

Object type-specific Attributes L L 220
hwloc_obj_attr_u::hwloc_osdev_atir_s

OS Device specific Object Attributes 221
hwloc_obj_attr_u::hwloc_pcidev_attr_s

PCI Device specific Object Attributeso 221
hwloc_topology_cpubind_support

Flags describing actual PU binding support for this topology 223
hwloc_topology_diff_u::hwloc_topology_diff_generic_.s 224
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr generic.s 225
hwloc_topology_diff_u::hwloc_topology_diff obj_attr s 225
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s

String attribute modification with an optionalname L. 226

hwloc_topology_diff_obj_attr_u
One object attribute difference L 227

78

Data Structure Index

hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s

Integer attribute modification with an optionalindex 228
hwloc_topology_diff_u::hwloc_topology diff_too_complex_s 228
hwloc_topology_diff u

One element of a difference list between two topologies 229
hwloc_topology_discovery_support

Flags describing actual discovery support for this topology 230
hwloc_topology_membind_support

Flags describing actual memory binding support for this topology 231
hwloc_topology_support

Set of flags describing actual support for thistopology 232

Generated by Doxygen

Chapter 22

Module Documentation

22.1 APl version

Macros

+ #define HWLOC_API_VERSION 0x00020100
+ #define HWLOC_COMPONENT_ABI 6

Functions

+ unsigned hwloc_get_api_version (void)

22.1.1 Detailed Description

22.1.2 Macro Definition Documentation

22.1.21 HWLOC_API_VERSION

#define HWLOC_API_VERSION 0x00020100

Indicate at build time which hwloc API version is being used.

This number is updated to (X< <16)+(Y <<8)+Z when a new release X.Y.Z actually modifies the API.

Users may check for available features at build time using this number (see How do | handle API changes?).

Note

This should not be confused with HWLOC_VERSION, the library version. Two stable releases of the same
series usually have the same HWLOC_API_VERSION even if their HWLOC_VERSION are different.

22.1.2.2 HWLOC_COMPONENT_ABI

#define HWLOC_COMPONENT_ABI 6
Current component and plugin ABI version (see hwloc/plugins.h)

22.1.3 Function Documentation

22.1.3.1 hwloc_get_api_version()

unsigned hwloc_get_api_version (

void)
Indicate at runtime which hwloc API version was used at build time.
Should be HWLOC_API_VERSION if running on the same version.

80 Module Documentation

22.2 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)

Typedefs

« typedef hwloc_bitmap_t hwloc_cpuset_t

« typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
« typedef hwloc_bitmap_t hwloc_nodeset_t

« typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

22.2.1 Detailed Description

Hwloc uses bitmaps to represent two distinct kinds of object sets: CPU sets (hwloc_cpuset_t) and NUMA node sets
(hwloc_nodeset_t). These types are both typedefs to a common back end type (hwloc_bitmap_t), and therefore all
the hwloc bitmap functions are applicable to both hwloc_cpuset_t and hwloc_nodeset_t (see The bitmap API).

The rationale for having two different types is that even though the actions one wants to perform on these types are
the same (e.g., enable and disable individual items in the set/mask), they're used in very different contexts: one for
specifying which processors to use and one for specifying which NUMA nodes to use. Hence, the name difference
is really just to reflect the intent of where the type is used.

22.2.2 Typedef Documentation

22.2.2.1 hwloc_const_cpuset_t

typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
A non-modifiable hwloc_cpuset_t.

22.2.2.2 hwloc_const_nodeset_t

typedef hwloc_const_bitmap_t hwloc_const_nodeset_t
A non-modifiable hwloc_nodeset_t.

22.2.2.3 hwloc_cpuset_t

typedef hwloc_bitmap_t hwloc_cpuset_t

A CPU set is a bitmap whose bits are set according to CPU physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).
Each bit may be converted into a PU object using hwloc_get_pu_obj_by_os_index().

22.2.2.4 hwloc_nodeset_t

typedef hwloc_bitmap_t hwloc_nodeset_t

A node set is a bitmap whose bits are set according to NUMA memory node physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h). Each bit may
be converted into a NUMA node object using hwloc_get_numanode_obj_by_os_index().

When binding memory on a system without any NUMA node, the single main memory bank is considered as NUMA
node #0.

See also Converting between CPU sets and node sets.

Generated by Doxygen

22.3 Object Types 81

22.3 Object Types

Macros
« #define HWLOC_TYPE_UNORDERED

Typedefs

 typedef enum hwloc_obj_cache_type e hwloc_obj_cache_type t
 typedef enum hwloc_obj_bridge_type e hwloc_obj_bridge_type_t
 typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type t

Enumerations

» enum hwloc_obj_type_t {
HWLOC_OBJ_MACHINE, HWLOC_OBJ_PACKAGE, HWLOC_OBJ_CORE, HWLOC_OBJ_PU,
HWLOC_OBJ_L1CACHE, HWLOC_OBJ_L2CACHE, HWLOC_OBJ_L3CACHE, HWLOC_OBJ_L4CACHE,
HWLOC_OBJ_L5CACHE, HWLOC_OBJ_L1ICACHE, HWLOC_OBJ_L2ICACHE, HWLOC_OBJ_L3ICACHE,
HWLOC_OBJ_GROUP, HWLOC_OBJ_NUMANODE, HWLOC_OBJ_BRIDGE, HWLOC_OBJ_PCI_DEVICE,
HWLOC_OBJ_OS_DEVICE, HWLOC_OBJ_MISC, HWLOC_OBJ_MEMCACHE, HWLOC_OBJ_DIE }

« enum hwloc_obj_cache_type e { HWLOC_OBJ_CACHE_UNIFIED, HWLOC_OBJ_CACHE_DATA,
HWLOC_OBJ_CACHE_INSTRUCTION }

+ enum hwloc_obj_bridge_type_e { HWLOC_OBJ_BRIDGE_HOST, HWLOC_OBJ_BRIDGE_PCI }

» enum hwloc_obj_osdev_type_e {
HWLOC_ OBJ_OSDEV_BLOCK, HWLOC_OBJ_OSDEV_GPU, HWLOC_OBJ_OSDEV_NETWORK,
HWLOC_OBJ_OSDEV_OPENFABRICS,
HWLOC_OBJ_OSDEV_DMA, HWLOC_OBJ_OSDEV_COPROC }

Functions

« int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2)

22.3.1 Detailed Description

22.3.2 Macro Definition Documentation

22.3.2.1 HWLOC_TYPE_UNORDERED

#define HWLOC_TYPE_UNORDERED
Value returned by hwloc_compare_types() when types can not be compared.

22.3.3 Typedef Documentation

22.3.3.1 hwloc_obj_bridge_type_t

typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t
Type of one side (upstream or downstream) of an 1/O bridge.

22.3.3.2 hwloc_obj_cache_type_t

typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t
Cache type.

Generated by Doxygen

82

Module Documentation

22.3.3.3 hwloc_obj_osdev_type_t

typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Type of a OS device.

22.3.4 Enumeration Type Documentation

22.3.4.1 hwloc_obj_bridge_type_e

enum hwloc_obj_bridge_type_e

Type of one side (upstream or downstream) of an 1/O bridge.

Enumerator

HWLOC_OBJ_BRIDGE_HOST

Host-side of a bridge, only possible upstream.

HWLOC_OBJ_BRIDGE_PCI

PCl-side of a bridge.

22.3.4.2 hwloc_obj_cache_type e

enum hwloc_obj_cache_type_e

Cache type.

Enumerator

HWLOC_OBJ_CACHE_UNIFIED

Unified cache.

HWLOC_OBJ_CACHE_DATA

Data cache.

HWLOC_OBJ_CACHE_INSTRUCTION

Instruction cache (filtered out by default).

22.3.4.3 hwloc_obj_osdev_type_e

enum hwloc_obj_osdev_type_e

Type of a OS device.

Enumerator

HWLOC_OBJ_OSDEV_BLOCK

Operating system block device, or non-volatile memory device. For
instance "sda" or "dax2.0" on Linux.

HWLOC_OBJ_OSDEV_GPU

Operating system GPU device. For instance ":0.0" for a GL display,
"card0" for a Linux DRM device.

HWLOC_OBJ_OSDEV_NETWORK

Operating system network device. For instance the "eth0" interface
on Linux.

HWLOC_OBJ_OSDEV_OPENFABRICS

Operating system openfabrics device. For instance the "mix4_0"
InfiniBand HCA, or "hfi1_0" Omni-Path interface on Linux.

HWLOC_OBJ_OSDEV_DMA

Operating system dma engine device. For instance the
"dmaOchan0" DMA channel on Linux.

HWLOC_OBJ_OSDEV_COPROC

Operating system co-processor device. For instance "opencl0d0"
for a OpenCL device, "cuda0" for a CUDA device.

Generated by Doxygen

22.3 Object Types 83

22.3.4.4 hwloc_obj_type_t

enum hwloc_obj_type_t
Type of topology object.

Note

Do not rely on the ordering or completeness of the values as new ones may be defined in the future! If you
need to compare types, use hwloc_compare_types() instead.

Enumerator

HWLOC_OBJ_MACHINE | Machine. A set of processors and memory with cache coherency. This type is
always used for the root object of a topology, and never used anywhere else.
Hence its parent is always NULL.

HWLOC_OBJ_PACKAGE | Physical package. The physical package that usually gets inserted into a
socket on the motherboard. A processor package usually contains multiple
cores, and possibly some dies.

HWLOC_OBJ_CORE | Core. A computation unit (may be shared by several PUs, aka logical
processors).

HWLOC_OBJ_PU | Processing Unit, or (Logical) Processor. An execution unit (may share a core
with some other logical processors, e.g. in the case of an SMT core). This is
the smallest object representing CPU resources, it cannot have any child
except Misc objects.

Objects of this kind are always reported and can thus be used as fallback
when others are not.

HWLOC_OBJ_L1CACHE | Level 1 Data (or Unified) Cache.
HWLOC_OBJ_L2CACHE | Level 2 Data (or Unified) Cache.
HWLOC_OBJ_L3CACHE | Level 3 Data (or Unified) Cache.
HWLOC_OBJ_L4CACHE | Level 4 Data (or Unified) Cache.

HWLOC_OBJ_L5CACHE | Level 5 Data (or Unified) Cache.

HWLOC_OBJ_L1ICACHE | Level 1 instruction Cache (filtered out by default).
HWLOC_OBJ_L2ICACHE | Level 2 instruction Cache (filtered out by default).
HWLOC_OBJ_L3ICACHE | Level 3 instruction Cache (filtered out by default).

HWLOC_OBJ_GROUP | Group objects. Objects which do not fit in the above but are detected by hwloc
and are useful to take into account for affinity. For instance, some operating
systems expose their arbitrary processors aggregation this way. And hwloc
may insert such objects to group NUMA nodes according to their distances.
See also What are these Group objects in my topology?. These objects are
removed when they do not bring any structure (see
HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

HWLOC_OBJ_NUMANODE | NUMA node. An object that contains memory that is directly and
byte-accessible to the host processors. It is usually close to some cores (the
corresponding objects are descendants of the NUMA node object in the hwloc
tree). This is the smallest object representing Memory resources, it cannot
have any child except Misc objects. However it may have Memory-side cache
parents.

There is always at least one such object in the topology even if the machine is
not NUMA.

Memory objects are not listed in the main children list, but rather in the
dedicated Memory children list.

NUMA nodes have a special depth HWLOC_TYPE_DEPTH_NUMANODE
instead of a normal depth just like other objects in the main tree.

Generated by Doxygen

84 Module Documentation

Enumerator

HWLOC_OBJ_BRIDGE | Bridge (filtered out by default). Any bridge (or PCI switch) that connects the
host or an 1/O bus, to another 1/O bus. Bridges are not added to the topology
unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0O objects have NULL CPU and node sets.

HWLOC_OBJ_PCI_DEVICE | PCI device (filtered out by default). PCI devices are not added to the topology
unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. I/O objects have NULL CPU and node sets.

HWLOC_OBJ_OS_DEVICE | Operating system device (filtered out by default). OS devices are not added to
the topology unless their filtering is changed (see
hwloc_topology_set_type_filter() and hwloc_topology_set_io_types_filter()).
I/O objects are not listed in the main children list, but rather in the dedicated io
children list. I/O objects have NULL CPU and node sets.

HWLOC_OBJ_MISC | Miscellaneous objects (filtered out by default). Objects without particular
meaning, that can e.g. be added by the application for its own use, or by hwloc
for miscellaneous objects such as MemoryModule (DIMMs). They are not
added to the topology unless their filtering is changed (see
hwloc_topology_set_type_filter()).

These objects are not listed in the main children list, but rather in the dedicated
misc children list. Misc objects may only have Misc objects as children, and
those are in the dedicated misc children list as well. Misc objects have NULL
CPU and node sets.

HWLOC_OBJ_MEMCACHE | Memory-side cache (filtered out by default). A cache in front of a specific
NUMA node. This object always has at least one NUMA node as a memory
child.

Memory objects are not listed in the main children list, but rather in the
dedicated Memory children list.

Memory-side cache have a special depth
HWLOC_TYPE_DEPTH_MEMCACHE instead of a normal depth just like
other objects in the main tree.

HWLOC_OBJ_DIE | Die within a physical package. A subpart of the physical package, that contains
multiple cores.

22.3.5 Function Documentation

22.3.5.1 hwloc_compare_types()

int hwloc_compare_types (

hwloc_obij_type_t typel,

hwloc_obij_type_t type2)
Compare the depth of two object types.
Types shouldn't be compared as they are, since newer ones may be added in the future. This function returns less
than, equal to, or greater than zero respectively if t ypel objects usually include t ype2 objects, are the same as
type?2 objects, or are included in type?2 objects. If the types can not be compared (because neither is usually
contained in the other), HWLOC_TYPE_UNORDERED is returned. Object types containing CPUs can always
be compared (usually, a system contains machines which contain nodes which contain packages which contain
caches, which contain cores, which contain processors).

Generated by Doxygen

22.3 Object Types 85

Note
HWLOC_OBJ_PU will always be the deepest, while HWLOC_OBJ_MACHINE is always the highest.

This does not mean that the actual topology will respect that order: e.g. as of today cores may also contain
caches, and packages may also contain nodes. This is thus just to be seen as a fallback comparison method.

Generated by Doxygen

86

Module Documentation

22.4 Object Structure and Attributes

Data Structures

« struct hwloc_obj
 union hwloc_obj_attr_u
« struct hwloc_info_s

Typedefs

« typedef struct hwloc_obj * hwloc_obj_t

22.4.1 Detailed Description
22.4.2 Typedef Documentation

22.4.2.1 hwloc_obj_t

typedef struct hwloc_obj* hwloc_obj_t
Convenience typedef; a pointer to a struct hwloc_obj.

Generated by Doxygen

22.5 Topology Creation and Destruction 87

22.5 Topology Creation and Destruction

Typedefs

« typedef struct hwloc_topology * hwloc_topology_t

Functions

+ int hwloc_topology_init (hwloc_topology_t xtopologyp)

« int hwloc_topology load (hwloc_topology_t topology)

« void hwloc_topology_destroy (hwloc_topology_t topology)

« int hwloc_topology_dup (hwloc_topology_t xnewtopology, hwloc_topology_t oldtopology)
+ int hwloc_topology_abi_check (hwloc_topology_t topology)

« void hwloc_topology_check (hwloc_topology_t topology)

22.5.1 Detailed Description
22.5.2 Typedef Documentation

22.5.2.1 hwloc_topology_t

typedef struct hwloc_topology* hwloc_topology_t
Topology context.
To be initialized with hwloc_topology_init() and built with hwloc_topology_load().

22.5.3 Function Documentation

22.5.3.1 hwloc_topology_abi_check()

int hwloc_topology_abi_check (

hwloc_topology_t topology)
Verify that the topology is compatible with the current hwloc library.
This is useful when using the same topology structure (in memory) in different libraries that may use different hwloc
installations (for instance if one library embeds a specific version of hwloc, while another library uses a default
system-wide hwloc installation).
If all libraries/programs use the same hwloc installation, this function always returns success.

Returns

0 on success.

-1 with errno set to EINVAL if incompatible.

Note

If sharing between processes with hwloc_shmem_topology_write(), the relevant check is already performed
inside hwloc_shmem_topology_adopt().

22.5.3.2 hwloc_topology_check()

void hwloc_topology_check (
hwloc_topology_t topology)
Run internal checks on a topology structure.
The program aborts if an inconsistency is detected in the given topology.

Generated by Doxygen

88 Module Documentation

Parameters

topology | is the topology to be checked

Note

This routine is only useful to developers.

The input topology should have been previously loaded with hwloc_topology_load().

22.5.3.3 hwloc_topology_destroy()

void hwloc_topology_destroy (
hwloc_topology_t topology)
Terminate and free a topology context.

Parameters

topology | is the topology to be freed

22.5.3.4 hwloc_topology_dup()

int hwloc_topology_dup (
hwloc_topology_t #* newtopology,
hwloc_topology_t oldtopology)
Duplicate a topology.
The entire topology structure as well as its objects are duplicated into a new one.
This is useful for keeping a backup while modifying a topology.

Note

Object userdata is not duplicated since hwloc does not know what it point to. The objects of both old and new
topologies will point to the same userdata.

22.5.3.5 hwloc_topology_init()

int hwloc_topology_init (
hwloc_topology_t * topologyp)
Allocate a topology context.

Parameters

‘ out ‘ topologyp | is assigned a pointer to the new allocated context.

Returns

0 on success, -1 on error.

22.5.3.6 hwloc_topology_load()

int hwloc_topology_load (
hwloc_topology_t topology)

Generated by Doxygen

22.5 Topology Creation and Destruction 89

Build the actual topology.

Build the actual topology once initialized with hwloc_topology_init() and tuned with Topology Detection Configuration and Query
and Changing the Source of Topology Discovery routines. No other routine may be called earlier using this topology

context.

Parameters

topology | is the topology to be loaded with objects.

Returns

0 on success, -1 on error.

Note
On failure, the topology is reinitialized. It should be either destroyed with hwloc_topology_destroy() or config-
ured and loaded again.
This function may be called only once per topology.
The binding of the current thread or process may temporarily change during this call but it will be restored
before it returns.

See also

Topology Detection Configuration and Query and Changing the Source of Topology Discovery

Generated by Doxygen

90 Module Documentation

22.6 Object levels, depths and types

Enumerations

« enum hwloc_get_type_depth_e {
HWLOC_TYPE_DEPTH_UNKNOWN, HWLOC_TYPE_DEPTH_MULTIPLE, HWLOC_TYPE_DEPTH_NUMANODE,
HWLOC_TYPE_DEPTH_BRIDGE,
HWLOC_TYPE_DEPTH_PCI_DEVICE, HWLOC_TYPE_DEPTH_OS_DEVICE, HWLOC _TYPE_DEPTH_MISC,
HWLOC_TYPE_DEPTH_MEMCACHE }

Functions

« int hwloc_topology_get_depth (hwloc_topology_t restrict topology)

« int hwloc_get_type_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_get_memory_parents_depth (hwloc_topology_t topology)

« static int hwloc_get_type_or_below_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

« static int hwloc_get_type_or_above_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

» hwloc_obj_type_t hwloc_get_depth_type (hwloc_topology_t topology, int depth)

« unsigned hwloc_get_nbobjs_by depth (hwloc_topology_t topology, int depth)

« static int hwloc_get_nbobjs_by type (hwloc_topology_t topology, hwloc_obj_type_t type)

« static hwloc_obj_t hwloc_get_root_obj (hwloc_topology_t topology)

» hwloc_obj_t hwloc_get_obj_by depth (hwloc_topology_t topology, int depth, unsigned idx)

« static hwloc_obj_t hwloc_get_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned idx)

« static hwloc_obj_t hwloc_get_next_obj_by_depth (hwloc_topology_t topology, int depth, hwloc_obj_t prev)

« static hwloc_obj t hwloc_get_next obj_by type (hwloc_topology t topology, hwloc_obj_type t type,
hwloc_obj_t prev)

22.6.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

22.6.2 Enumeration Type Documentation

22.6.2.1 hwloc_get_type_depth_e

enum hwloc_get_type_depth_e

Enumerator

HWLOC_TYPE_DEPTH_UNKNOWN | No object of given type exists in the topology.
HWLOC_TYPE_DEPTH_MULTIPLE | Objects of given type exist at different depth in the topology (only for

Groups).

HWLOC_TYPE_DEPTH_NUMANODE | Virtual depth for NUMA nodes.

HWLOC_TYPE_DEPTH_BRIDGE | Virtual depth for bridge object level.
HWLOC_TYPE_DEPTH_PCI_DEVICE | Virtual depth for PCI device object level.
HWLOC_TYPE_DEPTH_OS_DEVICE | Virtual depth for software device object level.

HWLOC_TYPE_DEPTH_MISC | Virtual depth for Misc object.
HWLOC_TYPE_DEPTH_MEMCACHE | Virtual depth for MemCache object.

Generated by Doxygen

22.6 Object levels, depths and types 91

22.6.3 Function Documentation

22.6.3.1 hwloc_get_depth_type()

hwloc_obj_type_t hwloc_get_depth_type (
hwloc_topology_t topology,
int depth)
Returns the type of objects at depth depth.
depth should between 0 and hwloc_topology_get_depth()-1, or a virtual depth such as HWLOC_TYPE_DEPTH_NUMANODE.

Returns

(hwloc_obj_type_t)-1 if depth depth does not exist.

22.6.3.2 hwloc_get_memory_parents_depth()

int hwloc_get_memory_parents_depth (

hwloc_topology_t topology)
Return the depth of parents where memory objects are attached.
Memory objects have virtual negative depths because they are not part of the main CPU-side hierarchy of objects.
This depth should not be compared with other level depths.
If all Memory objects are attached to Normal parents at the same depth, this parent depth may be compared to
other as usual, for instance for knowing whether NUMA nodes is attached above or below Packages.

Returns

The depth of Normal parents of all memory children if all these parents have the same depth. For instance
the depth of the Package level if all NUMA nodes are attached to Package objects.

HWLOC_TYPE_DEPTH_MULTIPLE if Normal parents of all memory children do not have the same depth.
For instance if some NUMA nodes are attached to Packages while others are attached to Groups.

22.6.3.3 hwloc_get_nbobjs_by depth()

unsigned hwloc_get_nbobjs_by_depth (
hwloc_topology_t topology,
int depth)

Returns the width of level at depth depth.

22.6.3.4 hwloc_get_nbobjs_by_type()

static int hwloc_get_nbobjs_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline], [static]
Returns the width of level type type.
If no object for that type exists, 0 is returned. If there are several levels with objects of that type, -1 is returned.

22.6.3.5 hwloc_get_next_obj_by_depth()

static hwloc_obj_t hwloc_get_next_obj_by_depth (
hwloc_topology_t topology,
int depth,
hwloc_obj_t prev) [inline], [static]
Returns the next object at depth depth.
If prev is NULL, return the first object at depth depth.

Generated by Doxygen

92 Module Documentation

22.6.3.6 hwloc_get_next_obj_by_type()

static hwloc_obj_t hwloc_get_next_obj_by_type (
hwloc_topology_t topology,
hwloc_obij_type_t type,
hwloc_obj_t prev) [inline], [static]
Returns the next object of type type.
If prev is NULL, return the first object at type t ype. If there are multiple or no depth for given type, return NULL
and let the caller fallback to hwloc_get_next_obj_by_depth().

22.6.3.7 hwloc_get_obj_by_depth()

hwloc_obj_t hwloc_get_obj_by_depth (
hwloc_topology_t topology,
int depth,
unsigned idx)

Returns the topology object at logical index idx from depth depth.

22.6.3.8 hwloc_get_obj_by_type()

static hwloc_obj_t hwloc_get_obj_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
unsigned idx) [inline], [static]
Returns the topology object at logical index idx with type type.
If no object for that type exists, NULL is returned. If there are several levels with objects of that type
(HWLOC_OBJ_GROUP), NULL is returned and the caller may fallback to hwloc_get_obj_by_depth().

22.6.3.9 hwloc_get_root_obj()

static hwloc_obj_t hwloc_get_root_obj (

hwloc_topology_t topology) [inline], [static]
Returns the top-object of the topology-tree.
Its type is HWLOC_OBJ_MACHINE.

22.6.3.10 hwloc_get_type_depth()

int hwloc_get_type_depth (

hwloc_topology_t topology,

hwloc_obij_type_t type)
Returns the depth of objects of type type.
If no object of this type is present on the underlying architecture, or if the OS doesn't provide this kind of information,
the function returns HWLOC_TYPE_DEPTH_UNKNOWN.
If type is absent but a similar type is acceptable, see also hwloc_get_type_or_below_depth() and hwloc_get_type_or_above_depth().
If HWLOC_OBJ_GROUP is given, the function may return HWLOC_TYPE_DEPTH_MULTIPLE if multiple levels of
Groups exist.
If a NUMA node, I/0O or Misc object type is given, the function returns a virtual value because these objects are
stored in special levels that are not CPU-related. This virtual depth may be passed to other hwloc functions such
as hwloc_get_obj_by_depth() but it should not be considered as an actual depth by the application. In particular, it
should not be compared with any other object depth or with the entire topology depth.

See also
hwloc_get_memory_parents_depth().

hwloc_type_sscanf_as_depth() for returning the depth of objects whose type is given as a string.

Generated by Doxygen

22.6 Object levels, depths and types 93

22.6.3.11 hwloc_get_type_or_above_depth()

static int hwloc_get_type_or_above_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline], [static]
Returns the depth of objects of type t ype or above.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present”
object typically containing t ype.
This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given, the corre-
sponding virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

22.6.3.12 hwloc_get_type_or_below_depth()

static int hwloc_get_type_or_below_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline], [static]
Returns the depth of objects of type t ype or below.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present”
object typically found inside type.
This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given, the corre-
sponding virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

22.6.3.13 hwloc_topology_get_depth()

int hwloc_topology_get_depth (

hwloc_topology_t restrict topology)
Get the depth of the hierarchical tree of objects.
This is the depth of HWLOC_OBJ_PU objects plus one.

Note

NUMA nodes, I/0O and Misc objects are ignored when computing the depth of the tree (they are placed on
special levels).

Generated by Doxygen

94 Module Documentation

22.7 Converting between Object Types and Attributes, and Strings

Functions

» const char x hwloc_obj_type_string (hwloc_obj_type_t type)

+ int hwloc_obj_type_snprintf (char *restrict string, size_t size, hwloc_obj_t obj, int verbose)

« int hwloc_obj_attr_snprintf (char xrestrict string, size_t size, hwloc_obj_t obj, const char xrestrict separator,
int verbose)

« int hwloc_type_sscanf (const char xstring, hwloc_obj_type_t xtypep, union hwloc_obj_attr_u xattrp, size_t
attrsize)

« int hwloc_type_sscanf_as_depth (const char xstring, hwloc_obj_type_t xtypep, hwloc_topology_t topology,
int xdepthp)

22.7.1 Detailed Description

22.7.2 Function Documentation

22.7.2.1 hwloc_obj_attr_snprintf()

int hwloc_obj_attr_snprintf (
char *restrict string,
size_t size,
hwloc_obij_t obj,
const char *restrict separator,
int verbose)
Stringify the attributes of a given topology object into a human-readable form.
Attribute values are separated by separator.
Only the major attributes are printed in non-verbose mode.
If size is 0, string may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not
including the ending \0).

22.7.2.2 hwloc_obj_type_snprintf()

int hwloc_obj_type_snprintf (
char *restrict string,
size_t size,
hwloc_obj_t obj,
int verbose)
Stringify the type of a given topology object into a human-readable form.
Contrary to hwloc_obj_type_string(), this function includes object-specific attributes (such as the Group depth, the
Bridge type, or OS device type) in the output, and it requires the caller to provide the output buffer.
The output is guaranteed to be the same for all objects of a same topology level.
If verbose is 1, longer type names are used, e.g. L1Cache instead of L1.
The output string may be parsed back by hwloc_type_sscanf().
If size is 0, string may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not
including the ending \0).

Generated by Doxygen

22.7 Converting between Object Types and Attributes, and Strings 95

22.7.2.3 hwloc_obj_type_string()

const char*x hwloc_obj_type_string (

hwloc_obj_type_t type)
Return a constant stringified object type.
This function is the basic way to convert a generic type into a string. The output string may be parsed back by
hwloc_type_sscanf().
hwloc_obj_type_snprintf() may return a more precise output for a specific object, but it requires the caller to provide
the output buffer.

22.7.2.4 hwloc_type_sscanf()

int hwloc_type_sscanf (

const char * string,

hwloc_obj_type_t * typep,

union hwloc_obj_attr_u * attrp,

size_t attrsize)
Return an object type and attributes from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types. Matching is case-insensitive, and
only the first letters are actually required to match.
The matched object type is set in t ypep (which cannot be NULL).
Type-specific attributes, for instance Cache type, Cache depth, Group depth, Bridge type or OS Device type may be
returned in at t rp. Attributes that are not specified in the string (for instance "Group" without a depth, or "L2Cache"
without a cache type) are set to -1.
attrp is only filled if not NULL and if its size specified in attrsize is large enough. It should be at least as
large as union hwloc_obj_attr_u.

Returns

0 if a type was correctly identified, otherwise -1.

Note

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().

This is an extended version of the now deprecated hwloc_obj_type_sscanf().

22.7.2.5 hwloc_type_sscanf_as_depth()

int hwloc_type_sscanf_as_depth (

const char * string,

hwloc_obj_type_t * typep,

hwloc_topology_t topology,

int * depthp)
Return an object type and its level depth from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types and return in depthp the depth of
the corresponding level in the topology topology.
If no object of this type is present on the underlying architecture, HWLOC_TYPE_DEPTH_UNKNOWN is returned.
If multiple such levels exist (for instance if giving Group without any depth), the function may return
HWLOC_TYPE_DEPTH_MULTIPLE instead.
The matched object type is set in typep if typep is non NULL.

Note

This function is similar to hwloc_type_sscanf() followed by hwloc_get_type_depth() but it also automatically
disambiguates multiple group levels etc.

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().

Generated by Doxygen

96 Module Documentation

22.8 Consulting and Adding Key-Value Info Attributes

Functions

« static const char * hwloc_obj_get_info_by name (hwloc_obj_t obj, const char xname)
« int hwloc_obj_add_info (hwloc_obj_t obj, const char xname, const char xvalue)

22.8.1 Detailed Description

22.8.2 Function Documentation

22.8.2.1 hwloc_obj_add_info()

int hwloc_obj_add_info (
hwloc_obj_t obj,
const char * name,
const char * value)
Add the given info name and value pair to the given object.
The info is appended to the existing info array even if another key with the same name already exists.
The input strings are copied before being added in the object infos.

Returns

0 on success, —1 on error.

Note
This function may be used to enforce object colors in the Istopo graphical output by using "IstopoStyle" as a
name and "Background=#rrggbb" as a value. See CUSTOM COLORS in the Istopo(1) manpage for details.

If value contains some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

22.8.2.2 hwloc_obj_get_info_by_name()

static const charx hwloc_obj_get_info_by_name (

hwloc_obj_t obj,

const char *x name) [inline], [static]
Search the given key name in object infos and return the corresponding value.
If multiple keys match the given name, only the first one is returned.

Returns

NULL if no such key exists.

Generated by Doxygen

22.9 CPU binding 97

22.9 CPU binding

Enumerations

+ enum hwloc_cpubind_flags_t { HWLOC_CPUBIND_PROCESS, HWLOC_CPUBIND_THREAD, HWLOC_CPUBIND_STRICT,
HWLOC_CPUBIND_NOMEMBIND }

Functions

« int hwloc_set_cpubind (hwloc_topology_t topology, hwloc_const_cpuset_t set, int flags)

« int hwloc_get_cpubind (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_set_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t set, int
flags)

« int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

« int hwloc_set_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_const_cpuset_t
set, int flags)

« int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_cpuset_t set, int
flags)

« int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_get_proc_last_cpu_location (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int
flags)

22.9.1 Detailed Description

Some operating systems only support binding threads or processes to a single PU. Others allow binding to larger
sets such as entire Cores or Packages or even random sets of invididual PUs. In such operating system, the
scheduler is free to run the task on one of these PU, then migrate it to another PU, etc. It is often useful to call
hwloc_bitmap_singlify() on the target CPU set before passing it to the binding function to avoid these expensive
migrations. See the documentation of hwloc_bitmap_singlify() for details.

Some operating systems do not provide all hwloc-supported mechanisms to bind processes, threads, etc.
hwloc_topology_get_support() may be used to query about the actual CPU binding support in the currently used
operating system.

When the requested binding operation is not available and the HWLOC_CPUBIND_STRICT flag was passed, the
function returns -1. errno is set to ENOSYS when it is not possible to bind the requested kind of object pro-
cesses/threads. errno is set to EXDEV when the requested cpuset can not be enforced (e.g. some systems only
allow one CPU, and some other systems only allow one NUMA node).

If HWLOC_CPUBIND_STRICT was not passed, the function may fail as well, or the operating system may use a
slightly different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly
supported.

The most portable version that should be preferred over the others, whenever possible, is the following one which

just binds the current program, assuming it is single-threaded:
hwloc_set_cpubind (topology, set, 0),

If the program may be multithreaded, the following one should be preferred to only bind the current thread:
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD),

See also

Some example codes are available under doc/examples/ in the source tree.

Note

To unbind, just call the binding function with either a full cpuset or a cpuset equal to the system cpuset.
On some operating systems, CPU binding may have effects on memory binding, see HWLOC_CPUBIND_NOMEMBIND

Running Istopo --top or hwloc-ps can be a very convenient tool to check how binding actually happened.

22.9.2 Enumeration Type Documentation

Generated by Doxygen

98 Module Documentation

22.9.2.1 hwloc_cpubind_flags_t

enum hwloc_cpubind_flags_t

Process/Thread binding flags.

These bit flags can be used to refine the binding policy.

The default (0) is to bind the current process, assumed to be single-threaded, in a non-strict way. This is the most
portable way to bind as all operating systems usually provide it.

Note
Not all systems support all kinds of binding. See the "Detailed Description" section of CPU binding for a
description of errors that can occur.

Enumerator

HWLOC_CPUBIND_PROCESS | Bind all threads of the current (possibly) multithreaded process.
HWLOC_CPUBIND_THREAD | Bind current thread of current process.

HWLOC_CPUBIND_STRICT | Request for strict binding from the OS. By default, when the designated
CPUs are all busy while other CPUs are idle, operating systems may
execute the thread/process on those other CPUs instead of the
designated CPUs, to let them progress anyway. Strict binding means
that the thread/process will _never_ execute on other cpus than the
designated CPUs, even when those are busy with other tasks and other
CPUs are idle.

Note

Depending on the operating system, strict binding may not be
possible (e.g., the OS does not implement it) or not allowed (e.g.,
for an administrative reasons), and the function will fail in that case.

When retrieving the binding of a process, this flag checks whether all its
threads actually have the same binding. If the flag is not given, the
binding of each thread will be accumulated.

Note

This flag is meaningless when retrieving the binding of a thread.

HWLOC_CPUBIND_NOMEMBIND | Avoid any effect on memory binding. On some operating systems, some
CPU binding function would also bind the memory on the corresponding
NUMA node. It is often not a problem for the application, but if it is,
setting this flag will make hwloc avoid using OS functions that would also
bind memory. This will however reduce the support of CPU bindings, i.e.
potentially return -1 with errno set to ENOSYS in some cases.

This flag is only meaningful when used with functions that set the CPU
binding. It is ignored when used with functions that get CPU binding
information.

22.9.3 Function Documentation

22.9.3.1 hwloc_get_cpubind()

int hwloc_get_cpubind (
hwloc_topology_t topology,
hwloc_cpuset_t set,
int flags)

Get current process or thread binding.

Generated by Doxygen

22.9 CPU binding 99

Writes into set the physical cpuset which the process or thread (according to flags) was last bound to.

22.9.3.2 hwloc_get_last_cpu_location()

int hwloc_get_last_cpu_location (

hwloc_topology_t topology,

hwloc_cpuset_t set,

int flags)
Get the last physical CPU where the current process or thread ran.
The operating system may move some tasks from one processor to another at any time according to their binding,
so this function may return something that is already outdated.
flags caninclude either HWLOC_CPUBIND_PROCESS or HWLOC_CPUBIND_THREAD to specify whether the
query should be for the whole process (union of all CPUs on which all threads are running), or only the current
thread. If the process is single-threaded, flags can be set to zero to let hwloc use whichever method is available on
the underlying OS.

22.9.3.3 hwloc_get_proc_cpubind()

int hwloc_get_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_cpuset_t set,
int flags)

Get the current physical binding of process pid.

Note

hwloc_pid_tispid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_CPUB«
IND_THREAD is passed in flags, the binding for that specific thread is returned.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

22.9.3.4 hwloc_get_proc_last_cpu_location()

int hwloc_get_proc_last_cpu_location (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_cpuset_t set,
int flags)
Get the last physical CPU where a process ran.
The operating system may move some tasks from one processor to another at any time according to their binding,
so this function may return something that is already outdated.

Note

hwloc_pid_t ispid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and
HWLOC_CPUBIND_THREAD is passed in flags, the last CPU location of that specific thread is returned.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

22.9.3.5 hwloc_get_thread_cpubind()

int hwloc_get_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_cpuset_t set,
int flags)

Get the current physical binding of thread tid.

Generated by Doxygen

100 Module Documentation

Note
hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in f1ags.

22.9.3.6 hwloc_set_cpubind()

int hwloc_set_cpubind (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int flags)

Bind current process or thread on cpus given in physical bitmap set.

Returns

-1 with errno set to ENOSYS if the action is not supported
-1 with errno set to EXDEV if the binding cannot be enforced

22.9.3.7 hwloc_set_proc_cpubind()

int hwloc_set_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_const_cpuset_t set,
int flags)

Bind a process pid on cpus given in physical bitmap set.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and
HWLOC_CPUBIND_THREAD is passed in flags, the binding is applied to that specific thread.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

22.9.3.8 hwloc_set_thread_cpubind()

int hwloc_set_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_const_cpuset_t set,
int flags)

Bind a thread thread on cpus given in physical bitmap set.

Note

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in f1ags.

Generated by Doxygen

22.10 Memory binding 101

22.10 Memory binding

Enumerations

» enum hwloc_membind_policy_t {
HWLOC_MEMBIND_DEFAULT, HWLOC_MEMBIND_FIRSTTOUCH, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_INTEF
HWLOC_MEMBIND_NEXTTOUCH, HWLOC_MEMBIND_MIXED }

* enum hwloc_membind_flags_t {
HWLOC_MEMBIND_PROCESS, HWLOC_MEMBIND_THREAD, HWLOC_MEMBIND_STRICT, HWLOC_MEMBIND_MIGRA
HWLOC_MEMBIND_NOCPUBIND, HWLOC_MEMBIND_BYNODESET }

Functions

« int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_bitmap_t set, hwloc_membind_policy_t
policy, int flags)

« int hwloc_get_membind (hwloc_topology_t topology, hwloc_bitmap_t set, hwloc_membind_policy_t xpolicy,
int flags)

 int hwloc_set_proc_membind (hwloc_topology t topology, hwloc_pid_t pid, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)

« int hwloc_get_proc_membind (hwloc_topology t topology, hwloc_pid_t pid, hwloc_bitmap_t set,
hwloc_membind_policy_t xpolicy, int flags)

« inthwloc_set_area_membind (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_const_bitmap_t
set, hwloc_membind_policy_t policy, int flags)

« int hwloc_get_area_membind (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_bitmap_t set,
hwloc_membind_policy_t xpolicy, int flags)

« int hwloc_get_area_memlocation (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_bitmap_t
set, int flags)

« void * hwloc_alloc (hwloc_topology_t topology, size_t len)

« void *x hwloc_alloc_membind (hwloc_topology_t topology, size t len, hwloc_const bitmap_t set,
hwloc_membind_policy_t policy, int flags)

« static void * hwloc_alloc_membind_policy (hwloc_topology_t topology, size_t len, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)

« int hwloc_free (hwloc_topology_t topology, void xaddr, size_t len)

22.10.1 Detailed Description

Memory binding can be done three ways:

« explicit memory allocation thanks to hwloc_alloc_membind() and friends: the binding will have effect on the
memory allocated by these functions.

« implicit memory binding through binding policy: hwloc_set_membind() and friends only define the current
policy of the process, which will be applied to the subsequent calls to malloc() and friends.

» migration of existing memory ranges, thanks to hwloc_set_area_membind() and friends, which move already-
allocated data.

Not all operating systems support all three ways. hwloc_topology get_support() may be used to query about the
actual memory binding support in the currently used operating system.

When the requested binding operation is not available and the HWLOC_MEMBIND_STRICT flag was passed, the
function returns -1. errno will be set to ENOSYS when the system does support the specified action or policy
(e.g., some systems only allow binding memory on a per-thread basis, whereas other systems only allow binding
memory for all threads in a process). errno will be set to EXDEV when the requested set can not be enforced
(e.g., some systems only allow binding memory to a single NUMA node).

If HWLOC_MEMBIND_STRICT was not passed, the function may fail as well, or the operating system may use a
slightly different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly
supported.

The most portable form that should be preferred over the others whenever possible is as follows. It allocates some
memory hopefully bound to the specified set. To do so, hwloc will possibly have to change the current memory

Generated by Doxygen

102 Module Documentation

binding policy in order to actually get the memory bound, if the OS does not provide any other way to simply allocate
bound memory without changing the policy for all allocations. That is the difference with hwloc_alloc_membind(),
which will never change the current memory binding policy.

hwloc_alloc_membind_policy (topology, size, set,
HWLOC_MEMBIND_BIND, O0);

Each hwloc memory binding function takes a bitmap argument that is a CPU set by default, or a NUMA memory node
set if the flag HWLOC_MEMBIND_BYNODESET is specified. See Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
and The bitmap API for a discussion of CPU sets and NUMA memory node sets. It is also possible to convert
between CPU set and node set using hwloc_cpuset_to_nodeset() or hwloc_cpuset_from_nodeset().

Memory binding by CPU set cannot work for CPU-less NUMA memory nodes. Binding by nodeset should therefore
be preferred whenever possible.

See also

Some example codes are available under doc/examples/ in the source tree.

Note
On some operating systems, memory binding affects the CPU binding; see HWLOC_MEMBIND_NOCPUBIND

22.10.2 Enumeration Type Documentation

22.10.2.1 hwloc_membind_flags_t

enum hwloc_membind_flags_t

Memory binding flags.

These flags can be used to refine the binding policy. All flags can be logically OR'ed together with the exception of
HWLOC_MEMBIND_PROCESS and HWLOC_MEMBIND_THREAD; these two flags are mutually exclusive.

Not all systems support all kinds of binding. hwloc_topology get_support() may be used to query about the ac-
tual memory binding support in the currently used operating system. See the "Detailed Description" section of
Memory binding for a description of errors that can occur.

Enumerator

HWLOC_MEMBIND_PROCESS | Set policy for all threads of the specified (possibly multithreaded)
process. This flag is mutually exclusive with
HWLOC_MEMBIND_THREAD.

HWLOC_MEMBIND_THREAD | Set policy for a specific thread of the current process. This flag is
mutually exclusive with HWLOC_MEMBIND_PROCESS.

HWLOC_MEMBIND_STRICT | Request strict binding from the OS. The function will fail if the binding
can not be guaranteed / completely enforced.

This flag has slightly different meanings depending on which function it
is used with.

HWLOC_MEMBIND_MIGRATE | Migrate existing allocated memory. If the memory cannot be migrated
and the HWLOC_MEMBIND_STRICT flag is passed, an error will be
returned.

HWLOC_MEMBIND_NOCPUBIND | Avoid any effect on CPU binding. On some operating systems, some
underlying memory binding functions also bind the application to the
corresponding CPU(s). Using this flag will cause hwloc to avoid using
OS functions that could potentially affect CPU bindings. Note, however,
that using NOCPUBIND may reduce hwloc's overall memory binding
support. Specifically: some of hwloc's memory binding functions may
fail with errno set to ENOSYS when used with NOCPUBIND.
HWLOC_MEMBIND_BYNODESET | Consider the bitmap argument as a nodeset. The bitmap argument is
considered a nodeset if this flag is given, or a cpuset otherwise by
default.

Memory binding by CPU set cannot work for CPU-less NUMA memory
nodes. Binding by nodeset should therefore be preferred whenever
possible.

Generated by Doxygen

22.10 Memory binding 103

22.10.2.2 hwloc_membind_policy_t

enum hwloc_membind_policy_t

Memory binding policy.

These constants can be used to choose the binding policy. Only one policy can be used at a time (i.e., the values
cannot be OR'ed together).

Not all systems support all kinds of binding. hwloc_topology_get_support() may be used to query about the actual
memory binding policy support in the currently used operating system. See the "Detailed Description" section of
Memory binding for a description of errors that can occur.

Enumerator

HWLOC_MEMBIND_DEFAULT | Reset the memory allocation policy to the system default. Depending
on the operating system, this may correspond to
HWLOC_MEMBIND_FIRSTTOUCH (Linux, FreeBSD), or
HWLOC_MEMBIND_BIND (AIX, HP-UX, Solaris, Windows). This
policy is never returned by get membind functions. The nodeset
argument is ignored.

HWLOC_MEMBIND_FIRSTTOUCH | Allocate each memory page individually on the local NUMA node of the
thread that touches it. The given nodeset should usually be
hwloc_topology_get_topology_nodeset() so that the touching thread
may run and allocate on any node in the system.

On AlX, if the nodeset is smaller, pages are allocated locally (if the local
node is in the nodeset) or from a random non-local node (otherwise).

HWLOC_MEMBIND_BIND | Allocate memory on the specified nodes.

HWLOC_MEMBIND_INTERLEAVE | Allocate memory on the given nodes in an interleaved / round-robin
manner. The precise layout of the memory across multiple NUMA
nodes is OS/system specific. Interleaving can be useful when threads
distributed across the specified NUMA nodes will all be accessing the
whole memory range concurrently, since the interleave will then
balance the memory references.

HWLOC_MEMBIND_NEXTTOUCH | For each page bound with this policy, by next time it is touched (and
next time only), it is moved from its current location to the local NUMA
node of the thread where the memory reference occurred (if it needs to
be moved at all).

HWLOC_MEMBIND_MIXED | Returned by get_membind() functions when multiple threads or parts of
a memory area have differing memory binding policies. Also returned
when binding is unknown because binding hooks are empty when the
topology is loaded from XML without HWLOC_THISSYSTEM=1, etc.

22.10.3 Function Documentation

22.10.3.1 hwloc_alloc()

void* hwloc_alloc (
hwloc_topology_t topology,
size_t len)
Allocate some memory.
This is equivalent to malloc(), except that it tries to allocate page-aligned memory from the OS.

Generated by Doxygen

104 Module Documentation

Note

The allocated memory should be freed with hwloc_free().

22.10.3.2 hwloc_alloc_membind()

void* hwloc_alloc_membind (
hwloc_topology_t topology,
size_t len,
hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)
Allocate some memory on NUMA memory nodes specified by set.

Returns

NULL with errno set to ENOSYS if the action is not supported and HWLOC_MEMBIND_STRICT is given
NULL with errno set to EXDEYV if the binding cannot be enforced and HWLOC_MEMBIND_STRICT is given
NULL with errno set to ENOMEM if the memory allocation failed even before trying to bind.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
Note

The allocated memory should be freed with hwloc_free().

22.10.3.3 hwloc_alloc_membind_policy()

static void* hwloc_alloc_membind_policy (
hwloc_topology_t topology,
size_t len,
hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags) [inline], [static]
Allocate some memory on NUMA memory nodes specified by set.
This is similar to hwloc_alloc_membind_nodeset() except that it is allowed to change the current memory binding
policy, thus providing more binding support, at the expense of changing the current state.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

22.10.3.4 hwloc_free()

int hwloc_free (
hwloc_topology_t topology,
void *x addr,
size_t len)
Free memory that was previously allocated by hwloc_alloc() or hwloc_alloc_membind().

22.10.3.5 hwloc_get_area_membind()

int hwloc_get_area_membind (
hwloc_topology_t topology,
const void * addr,
size_t len,
hwloc_bitmap_t set,
hwloc_membind_policy_ t * policy,
int flags)
Query the CPUs near the physical NUMA node(s) and binding policy of the memory identified by (addr, 1len).

Generated by Doxygen

22.10 Memory binding 105

This function has two output parameters: set and policy. The values returned in these parameters depend on
both the £1ags passed in and the memory binding policies and nodesets of the pages in the address range.

If HWLOC_MEMBIND_STRICT is specified, the target pages are first checked to see if they all have the same
memory binding policy and nodeset. If they do not, -1 is returned and errno is set to EXDEV. If they are identical
across all pages, the set and policy are returned in set and policy, respectively.

If HWLOC_MEMBIND_STRICT is not specified, the union of all NUMA node(s) containing pages in the address
range is calculated. If all pages in the target have the same policy, it is returned in policy. Otherwise, policy
is set to HWLOC_MEMBIND_MIXED.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

If lenis 0, -1 is returned and errno is set to EINVAL.

22.10.3.6 hwloc_get_area_memlocation()

int hwloc_get_area_memlocation (

hwloc_topology_t topology,

const void x addr,

size_t len,

hwloc_bitmap_t set,

int flags)
Get the NUMA nodes where memory identified by (addr, 1en) is physically allocated.
Fills set according to the NUMA nodes where the memory area pages are physically allocated. If no page is
actually allocated yet, set may be empty.
If pages spread to multiple nodes, it is not specified whether they spread equitably, or whether most of them are on
a single node, etc.
The operating system may move memory pages from one processor to another at any time according to their
binding, so this function may return something that is already outdated.
If HWLOC_MEMBIND_BYNODESET is specified in £1ags, set is considered a nodeset. Otherwise it's a cpuset.
If lenis 0, set is emptied.

22.10.3.7 hwloc_get_membind()

int hwloc_get_membind (

hwloc_topology_t topology,

hwloc_bitmap_t set,

hwloc_membind policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the current process or thread.
This function has two output parameters: set and policy. The values returned in these parameters depend on
both the £1ags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets
for all the threads in the current process. Passing HWLOC_MEMBIND_THREAD specifies that the query target is
the current policy and nodeset for only the thread invoking this function.
If neither of these flags are passed (which is the most portable method), the process is assumed to be single
threaded. This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on
which are available.
HWLOC_MEMBIND_STRICT is only meaningful when HWLOC_MEMBIND_PROCESS is also specified. In this
case, hwloc will check the default memory policies and nodesets for all threads in the process. If they are not
identical, -1 is returned and errno is set to EXDEV. If they are identical, the values are returned in set and policy.
Otherwise, if HWLOC_MEMBIND_PROCESS is specified (and HWLOC_MEMBIND_STRICT is not specified), the
default set from each thread is logically OR'ed together. If all threads' default policies are the same, policy is set
to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.
In the HWLOC_MEMBIND_THREAD case (or when neither HWLOC_MEMBIND_PROCESS or HWLOC_MEMBIND_THREAD
is specified), there is only one set and policy; they are returned in set and policy, respectively.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
If any other flags are specified, -1 is returned and errno is set to EINVAL.

Generated by Doxygen

106 Module Documentation

22.10.3.8 hwloc_get_proc_membind()

int hwloc_get_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the specified process.
This function has two output parameters: set and policy. The values returned in these parameters depend on
both the £1ags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets
for all the threads in the specified process. If HWLOC_MEMBIND_PROCESS is not specified (which is the most
portable method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS
functions or thread-based OS functions, depending on which are available.
Note that it does not make sense to pass HWLOC_MEMBIND_THREAD to this function.
If HWLOC_MEMBIND_STRICT is specified, hwloc will check the default memory policies and nodesets for all
threads in the specified process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are
identical, the values are returned in set and policy.
Otherwise, set is set to the logical OR of all threads' default set. If all threads' default policies are the same,
policy is setto that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
If any other flags are specified, -1 is returned and errno is set to EINVAL.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

22.10.3.9 hwloc_set_area_membind()

int hwloc_set_area_membind (
hwloc_topology_t topology,
const void x addr,
size_t len,
hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)
Bind the already-allocated memory identified by (addr, len) to the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

Oif lenis 0.
-1 with errno set to ENOSYS if the action is not supported
-1 with errno set to EXDEV if the binding cannot be enforced

22.10.3.10 hwloc_set_membind()

int hwloc_set_membind (

hwloc_topology_t topology,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the current process or thread to prefer the NUMA node(s) specified by
set.
If neither HWLOC_MEMBIND_PROCESS nor HWLOC_MEMBIND_THREAD is specified, the current process is
assumed to be single-threaded. This is the most portable form as it permits hwloc to use either process-based OS
functions or thread-based OS functions, depending on which are available.

Generated by Doxygen

22.10 Memory binding 107

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
Returns

-1 with errno set to ENOSYS if the action is not supported

-1 with errno set to EXDEV if the binding cannot be enforced

22.10.3.11 hwloc_set_proc_membind()

int hwloc_set_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the specified process to prefer the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

-1 with errno set to ENOSYS if the action is not supported

-1 with errno set to EXDEV if the binding cannot be enforced

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

Generated by Doxygen

108 Module Documentation

22.11 Changing the Source of Topology Discovery

Enumerations

» enum hwloc_topology_components_flag_e { HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST }

Functions

« int hwloc_topology_set_pid (hwloc_topology_t restrict topology, hwloc_pid_t pid)

« int hwloc_topology_set_synthetic (hwloc_topology_t restrict topology, const char xrestrict description)

« int hwloc_topology_set_xml (hwloc_topology_t restrict topology, const char xrestrict xmlpath)

« int hwloc_topology_set_xmlbuffer (hwloc_topology_t restrict topology, const char xrestrict buffer, int size)

« int hwloc_topology_set_components (hwloc_topology_t restrict topology, unsigned long flags, const char
xrestrict name)

22.11.1 Detailed Description

If none of the functions below is called, the default is to detect all the objects of the machine that the caller is allowed
to access.

This default behavior may also be modified through environment variables if the application did not mod-
ify it already. Setting HWLOC_XMLFILE in the environment enforces the discovery from a XML file as if
hwloc_topology_set xml() had been called. Setting HWLOC_SYNTHETIC enforces a synthetic topology as if
hwloc_topology_set_synthetic() had been called.

Finally, HWLOC_THISSYSTEM enforces the return value of hwloc_topology _is_thissystem().

22.11.2 Enumeration Type Documentation

22.11.2.1 hwloc_topology_components_flag_e

enum hwloc_topology_components_flag_e
Flags to be passed to hwloc_topology_set_components()

Enumerator

HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST ‘ Blacklist the target component from being used.

22.11.3 Function Documentation

22.11.3.1 hwloc_topology_set_components()

int hwloc_topology_set_components (

hwloc_topology_t restrict topology,

unsigned long flags,

const char *restrict name)
Prevent a discovery component from being used for a topology.
name is the name of the discovery component that should not be used when loading topology t opology. The
name is a string such as "cuda".
For components with multiple phases, it may also be suffixed with the name of a phase, for instance "linux:io".
flags should be HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST.
This may be used to avoid expensive parts of the discovery process. For instance, CUDA-specific discovery may
be expensive and unneeded while generic I/O discovery could still be useful.

Generated by Doxygen

22.11 Changing the Source of Topology Discovery 109

22.11.3.2 hwloc_topology_set_pid()

int hwloc_topology_set_pid (

hwloc_topology_t restrict topology,

hwloc_pid_t pid)
Change which process the topology is viewed from.
On some systems, processes may have different views of the machine, for instance the set of allowed CPUs. By
default, hwloc exposes the view from the current process. Calling hwloc_topology_set pid() permits to make it
expose the topology of the machine from the point of view of another process.

Note
hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

-1 is returned and errno is set to ENOSYS on platforms that do not support this feature.

22.11.3.3 hwloc_topology_set_synthetic()

int hwloc_topology_set_synthetic (

hwloc_topology_t restrict topology,

const char *restrict description)
Enable synthetic topology.
Gather topology information from the given description, a space-separated string of <type:number> describ-
ing the object type and arity at each level. All types may be omitted (space-separated string of numbers) so that
hwloc chooses all types according to usual topologies. See also the Synthetic topologies.
Setting the environment variable HWLOC_SYNTHETIC may also result in this behavior.
If description was properly parsed and describes a valid topology configuration, this function returns 0. Other-
wise -1 is returned and errno is set to EINVAL.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Note
For convenience, this backend provides empty binding hooks which just return success.

On success, the synthetic component replaces the previously enabled component (if any), but the topology is
not actually modified until hwloc_topology_load().

22.11.3.4 hwloc_topology_set xml()

int hwloc_topology_set_xml (

hwloc_topology_t restrict topology,

const char xrestrict xmlpath)
Enable XML-file based topology.
Gather topology information from the XML file given at xm1path. Setting the environment variable HWLOC_XM«
LFILE may also result in this behavior. This file may have been generated earlier with hwloc_topology_export_xml()
in hwloc/export.h, or Istopo file.xml.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

-1 with errno set to EINVAL on failure to read the XML file.

Generated by Doxygen

110 Module Documentation

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still
actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert
that the loaded file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

22.11.3.5 hwloc_topology_set_xmlbuffer()

int hwloc_topology_set_xmlbuffer (

hwloc_topology_t restrict topology,

const char xrestrict buffer,

int size)
Enable XML based topology using a memory buffer (instead of a file, as with hwloc_topology_set_xmi()).
Gather topology information from the XML memory buffer given at buf fer and of length size. This buffer may
have been filled earlier with hwloc_topology_export_xmlbuffer() in hwloc/export.h.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

-1 with errno set to EINVAL on failure to read the XML buffer.

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still
actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert
that the loaded file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

Generated by Doxygen

22.12 Topology Detection Configuration and Query 111

22.12 Topology Detection Configuration and Query

Data Structures

« struct hwloc_topology_discovery_support
« struct hwloc_topology_cpubind_support
« struct hwloc_topology_membind_support
« struct hwloc_topology_support

Enumerations

+ enum hwloc_topology_flags_e { HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED, HWLOC_TOPOLOGY_FLAG_IS_TI
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES }

« enum hwloc_type_filter_e { HWLOC_TYPE_FILTER_KEEP_ALL, HWLOC_TYPE_FILTER_KEEP_NONE,
HWLOC_TYPE_FILTER_KEEP_STRUCTURE, HWLOC_TYPE_FILTER_KEEP_IMPORTANT }

Functions

« int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)

 unsigned long hwloc_topology_get_flags (hwloc_topology_t topology)

« int hwloc_topology_is_thissystem (hwloc_topology_t restrict topology)

« const struct hwloc_topology_support * hwloc_topology_get_support (hwloc_topology_t restrict topology)

« inthwloc_topology_set_type_filter (hwloc_topology_t topology, hwloc_obj_type_ttype, enum hwloc_type_filter_e
filter)

« inthwloc_topology_get_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum hwloc_type_filter_e
«filter)

+ int hwloc_topology_set_all_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

+ int hwloc_topology_set _cache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_icache_types_filte