/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // INPUTS: {BrainProtonDensitySliceBorder20.png} // INPUTS: {BrainProtonDensitySliceRotated10.png} // OUTPUTS: {ImageRegistration5Output.png} // OUTPUTS: {ImageRegistration5DifferenceAfter.png} // OUTPUTS: {ImageRegistration5DifferenceBefore.png} // ARGUMENTS: 0.1 // INPUTS: {BrainProtonDensitySliceBorder20.png} // INPUTS: {BrainProtonDensitySliceR10X13Y17.png} // OUTPUTS: {ImageRegistration5Output2.png} // OUTPUTS: {ImageRegistration5DifferenceAfter2.png} // OUTPUTS: {ImageRegistration5DifferenceBefore2.png} // ARGUMENTS: 1.0 // // This example illustrates the use of the \doxygen{CenteredRigid2DTransform} // for performing rigid registration in $2D$. The example code is for the // most part identical to that presented in Section // \ref{sec:IntroductionImageRegistration}. The main difference is the use // of the CenteredRigid2DTransform here instead of the // \doxygen{TranslationTransform}. // // \index{itk::CenteredRigid2DTransform} // #include "itkImageRegistrationMethod.h" #include "itkMeanSquaresImageToImageMetric.h" #include "itkRegularStepGradientDescentOptimizer.h" // // In addition to the headers included in previous examples, the // following header must also be included. // // \index{itk::CenteredRigid2DTransform!header} // #include "itkCenteredRigid2DTransform.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkSubtractImageFilter.h" #include "itkRescaleIntensityImageFilter.h" // The following section of code implements a Command observer // that will monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition() << std::endl; } }; #include "itkTestDriverIncludeRequiredIOFactories.h" int main(int argc, char * argv[]) { RegisterRequiredFactories(); if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << " outputImagefile [differenceAfterRegistration] "; std::cerr << " [differenceBeforeRegistration] "; std::cerr << " [initialStepLength] " << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = unsigned char; using FixedImageType = itk::Image; using MovingImageType = itk::Image; // // The transform type is instantiated using the code below. The only // template parameter for this class is the representation type of the // space coordinates. // // \index{itk::CenteredRigid2DTransform!Instantiation} // using TransformType = itk::CenteredRigid2DTransform; using OptimizerType = itk::RegularStepGradientDescentOptimizer; using MetricType = itk::MeanSquaresImageToImageMetric; using InterpolatorType = itk::LinearInterpolateImageFunction; using RegistrationType = itk::ImageRegistrationMethod; MetricType::Pointer metric = MetricType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); InterpolatorType::Pointer interpolator = InterpolatorType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetMetric(metric); registration->SetOptimizer(optimizer); registration->SetInterpolator(interpolator); // // The transform object is constructed below and passed to the registration // method. // // \index{itk::CenteredRigid2DTransform!New()} // \index{itk::CenteredRigid2DTransform!Pointer} // \index{itk::RegistrationMethod!SetTransform()} // TransformType::Pointer transform = TransformType::New(); registration->SetTransform(transform); using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader->Update(); registration->SetFixedImageRegion(fixedImageReader->GetOutput()->GetBufferedRegion()); // // In this example, the input images are taken from readers. The code // below updates the readers in order to ensure that the image parameters // (size, origin and spacing) are valid when used to initialize the // transform. We intend to use the center of the fixed image as the // rotation center and then use the vector between the fixed image center // and the moving image center as the initial translation to be applied // after the rotation. // fixedImageReader->Update(); movingImageReader->Update(); using SpacingType = FixedImageType::SpacingType; using OriginType = FixedImageType::PointType; using RegionType = FixedImageType::RegionType; using SizeType = FixedImageType::SizeType; // // The center of rotation is computed using the origin, size and spacing of // the fixed image. // FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); const SpacingType fixedSpacing = fixedImage->GetSpacing(); const OriginType fixedOrigin = fixedImage->GetOrigin(); const RegionType fixedRegion = fixedImage->GetLargestPossibleRegion(); const SizeType fixedSize = fixedRegion.GetSize(); TransformType::InputPointType centerFixed; centerFixed[0] = fixedOrigin[0] + fixedSpacing[0] * fixedSize[0] / 2.0; centerFixed[1] = fixedOrigin[1] + fixedSpacing[1] * fixedSize[1] / 2.0; // // The center of the moving image is computed in a similar way. // MovingImageType::Pointer movingImage = movingImageReader->GetOutput(); const SpacingType movingSpacing = movingImage->GetSpacing(); const OriginType movingOrigin = movingImage->GetOrigin(); const RegionType movingRegion = movingImage->GetLargestPossibleRegion(); const SizeType movingSize = movingRegion.GetSize(); TransformType::InputPointType centerMoving; centerMoving[0] = movingOrigin[0] + movingSpacing[0] * movingSize[0] / 2.0; centerMoving[1] = movingOrigin[1] + movingSpacing[1] * movingSize[1] / 2.0; // // Then, we initialize the transform by // passing the center of the fixed image as the rotation center with the // \code{SetCenter()} method. Also, the translation is set as the vector // relating the center of the moving image to the center of the fixed // image. This last vector is passed with the method // \code{SetTranslation()}. // transform->SetCenter(centerFixed); transform->SetTranslation(centerMoving - centerFixed); // // Let's finally initialize the rotation with a zero angle. // transform->SetAngle(0.0); // // Now we pass the current transform's parameters as the initial // parameters to be used when the registration process starts. // registration->SetInitialTransformParameters(transform->GetParameters()); // // Keep in mind that the scale of units in rotation and translation is // quite different, we take advantage of the scaling functionality provided // by the optimizers. We know that the first element of the parameters array // corresponds to the angle that is measured in radians, while the other // parameters correspond to translations that are measured in millimeters. // For this reason we use small factors in the scales associated with // translations and the coordinates of the rotation center . // using OptimizerScalesType = OptimizerType::ScalesType; OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); const double translationScale = 1.0 / 1000.0; optimizerScales[0] = 1.0; optimizerScales[1] = translationScale; optimizerScales[2] = translationScale; optimizerScales[3] = translationScale; optimizerScales[4] = translationScale; optimizer->SetScales(optimizerScales); // // Next we set the normal parameters of the optimization method. In this // case we are using an \doxygen{RegularStepGradientDescentOptimizer}. // Below, we define the optimization parameters like the relaxation factor, // initial step length, minimal step length and number of iterations. These // last two act as stopping criteria for the optimization. // // \index{Regular\-Step\-Gradient\-Descent\-Optimizer!SetRelaxationFactor()} // \index{Regular\-Step\-Gradient\-Descent\-Optimizer!SetMaximumStepLength()} // \index{Regular\-Step\-Gradient\-Descent\-Optimizer!SetMinimumStepLength()} // \index{Regular\-Step\-Gradient\-Descent\-Optimizer!SetNumberOfIterations()} // double initialStepLength = 0.1; if (argc > 6) { initialStepLength = std::stod(argv[6]); } optimizer->SetRelaxationFactor(0.6); optimizer->SetMaximumStepLength(initialStepLength); optimizer->SetMinimumStepLength(0.001); optimizer->SetNumberOfIterations(200); // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } OptimizerType::ParametersType finalParameters = registration->GetLastTransformParameters(); const double finalAngle = finalParameters[0]; const double finalRotationCenterX = finalParameters[1]; const double finalRotationCenterY = finalParameters[2]; const double finalTranslationX = finalParameters[3]; const double finalTranslationY = finalParameters[4]; const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); // Print out results // const double finalAngleInDegrees = finalAngle * 180.0 / itk::Math::pi; std::cout << "Result = " << std::endl; std::cout << " Angle (radians) = " << finalAngle << std::endl; std::cout << " Angle (degrees) = " << finalAngleInDegrees << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Center X = " << finalRotationCenterX << std::endl; std::cout << " Center Y = " << finalRotationCenterY << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; // // Let's execute this example over two of the images provided in // \code{Examples/Data}: // // \begin{itemize} // \item \code{BrainProtonDensitySliceBorder20.png} // \item \code{BrainProtonDensitySliceRotated10.png} // \end{itemize} // // The second image is the result of intentionally rotating the first image // by $10$ degrees around the geometrical center of the image. Both images // have unit-spacing and are shown in Figure // \ref{fig:FixedMovingImageRegistration5}. The registration takes $20$ // iterations and produces the results: // // \begin{center} // \begin{verbatim} // [0.177458, 110.489, 128.488, 0.0106296, 0.00194103] // \end{verbatim} // \end{center} // // These results are interpreted as // // \begin{itemize} // \item Angle = $0.177458$ radians // \item Center = $( 110.489 , 128.488 )$ millimeters // \item Translation = $( 0.0106296, 0.00194103 )$ millimeters // \end{itemize} // // As expected, these values match the misalignment intentionally introduced // into the moving image quite well, since $10$ degrees is about $0.174532$ // radians. // // \begin{figure} // \center // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20} // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceRotated10} // \itkcaption[Rigid2D Registration input images]{Fixed and moving images // are provided as input to the registration method using the CenteredRigid2D // transform.} // \label{fig:FixedMovingImageRegistration5} // \end{figure} // // // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{ImageRegistration5Output} // \includegraphics[width=0.32\textwidth]{ImageRegistration5DifferenceBefore} // \includegraphics[width=0.32\textwidth]{ImageRegistration5DifferenceAfter} // \itkcaption[Rigid2D Registration output images]{Resampled moving image // (left). Differences between the fixed and moving images, before (center) // and after (right) registration using the CenteredRigid2D transform.} // \label{fig:ImageRegistration5Outputs} // \end{figure} // // Figure \ref{fig:ImageRegistration5Outputs} shows from left to right the // resampled moving image after registration, the difference between fixed // and moving images before registration, and the difference between fixed // and resampled moving image after registration. It can be seen from the // last difference image that the rotational component has been solved but // that a small centering misalignment persists. // // \begin{figure} // \center // \includegraphics[height=0.32\textwidth]{ImageRegistration5TraceMetric1} // \includegraphics[height=0.32\textwidth]{ImageRegistration5TraceAngle1} // \includegraphics[height=0.32\textwidth]{ImageRegistration5TraceTranslations1} // \itkcaption[Rigid2D Registration output plots]{Metric values, rotation // angle and translations during registration with the CenteredRigid2D // transform.} // \label{fig:ImageRegistration5Plots} // \end{figure} // // Figure \ref{fig:ImageRegistration5Plots} shows plots of the main output // parameters produced from the registration process. This includes the // metric values at every iteration, the angle values at every iteration, // and the translation components of the transform as the registration // progress. // using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(finalTransform); resample->SetInput(movingImageReader->GetOutput()); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(100); using WriterFixedType = itk::ImageFileWriter; WriterFixedType::Pointer writer = WriterFixedType::New(); writer->SetFileName(argv[3]); writer->SetInput(resample->GetOutput()); try { writer->Update(); } catch (const itk::ExceptionObject & excp) { std::cerr << "ExceptionObject while writing the resampled image !" << std::endl; std::cerr << excp << std::endl; return EXIT_FAILURE; } using DifferenceImageType = itk::Image; using DifferenceFilterType = itk::SubtractImageFilter; DifferenceFilterType::Pointer difference = DifferenceFilterType::New(); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using RescalerType = itk::RescaleIntensityImageFilter; RescalerType::Pointer intensityRescaler = RescalerType::New(); intensityRescaler->SetOutputMinimum(0); intensityRescaler->SetOutputMaximum(255); difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(resample->GetOutput()); resample->SetDefaultPixelValue(1); intensityRescaler->SetInput(difference->GetOutput()); using WriterType = itk::ImageFileWriter; WriterType::Pointer writer2 = WriterType::New(); writer2->SetInput(intensityRescaler->GetOutput()); try { // Compute the difference image between the // fixed and moving image after registration. if (argc > 4) { writer2->SetFileName(argv[4]); writer2->Update(); } // Compute the difference image between the // fixed and resampled moving image after registration. TransformType::Pointer identityTransform = TransformType::New(); identityTransform->SetIdentity(); resample->SetTransform(identityTransform); if (argc > 5) { writer2->SetFileName(argv[5]); writer2->Update(); } } catch (const itk::ExceptionObject & excp) { std::cerr << "Error while writing difference images" << std::endl; std::cerr << excp << std::endl; return EXIT_FAILURE; } // // Let's now consider the case in which rotations and translations are // present in the initial registration, as in the following pair // of images: // // \begin{itemize} // \item \code{BrainProtonDensitySliceBorder20.png} // \item \code{BrainProtonDensitySliceR10X13Y17.png} // \end{itemize} // // The second image is the result of intentionally rotating the first image // by $10$ degrees and then translating it $13mm$ in $X$ and $17mm$ in $Y$. // Both images have unit-spacing and are shown in Figure // \ref{fig:FixedMovingImageRegistration5b}. In order to accelerate // convergence it is convenient to use a larger step length as shown here. // // \code{optimizer->SetMaximumStepLength( 1.0 );} // // The registration now takes $46$ iterations and produces the following // results: // // \begin{center} // \begin{verbatim} // [0.174454, 110.361, 128.647, 12.977, 15.9761] // \end{verbatim} // \end{center} // // These parameters are interpreted as // // \begin{itemize} // \item Angle = $0.174454$ radians // \item Center = $( 110.361 , 128.647 )$ millimeters // \item Translation = $( 12.977 , 15.9761 )$ millimeters // \end{itemize} // // These values approximately match the initial misalignment intentionally // introduced into the moving image, since $10$ degrees is about $0.174532$ // radians. The horizontal translation is well resolved while the vertical // translation ends up being off by about one millimeter. // // \begin{figure} // \center // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20} // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17} // \itkcaption[Rigid2D Registration input images]{Fixed and moving images // provided as input to the registration method using the CenteredRigid2D // transform.} // \label{fig:FixedMovingImageRegistration5b} // \end{figure} // // // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{ImageRegistration5Output2} // \includegraphics[width=0.32\textwidth]{ImageRegistration5DifferenceBefore2} // \includegraphics[width=0.32\textwidth]{ImageRegistration5DifferenceAfter2} // \itkcaption[Rigid2D Registration output images]{Resampled moving image // (left). Differences between the fixed and moving images, before (center) // and after (right) registration with the CenteredRigid2D transform.} // \label{fig:ImageRegistration5Outputs2} // \end{figure} // // Figure \ref{fig:ImageRegistration5Outputs2} shows the output of the // registration. The rightmost image of this figure shows the difference // between the fixed image and the resampled moving image after registration. // // \begin{figure} // \center // \includegraphics[height=0.32\textwidth]{ImageRegistration5TraceMetric2} // \includegraphics[height=0.32\textwidth]{ImageRegistration5TraceAngle2} // \includegraphics[height=0.32\textwidth]{ImageRegistration5TraceTranslations2} // \itkcaption[Rigid2D Registration output plots]{Metric values, rotation // angle and translations during the registration using the CenteredRigid2D // transform on an image with rotation and translation mis-registration.} // \label{fig:ImageRegistration5Plots2} // \end{figure} // // Figure \ref{fig:ImageRegistration5Plots2} shows plots of the main output // registration parameters when the rotation and translations are combined. // These results include the metric values at every iteration, the angle // values at every iteration, and the translation components of the // registration as the registration converges. It can be seen from the // smoothness of these plots that a larger step length could have been // supported easily by the optimizer. You may want to modify this value in // order to get a better idea of how to tune the parameters. // return EXIT_SUCCESS; }