/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // INPUTS: {BrainProtonDensitySliceBorder20.png} // INPUTS: {BrainProtonDensitySliceR10X13Y17.png} // OUTPUTS: {ImageRegistration9Output.png} // OUTPUTS: {ImageRegistration9DifferenceBefore.png} // OUTPUTS: {ImageRegistration9DifferenceAfter.png} // ARGUMENTS: 1.0 300 // // This example illustrates the use of the \doxygen{AffineTransform} // for performing registration in $2D$. The example code is, for the most part, // identical to that in \ref{sec:InitializingRegistrationWithMoments}. // The main difference is the use of the AffineTransform here instead of the // \doxygen{CenteredRigid2DTransform}. We will focus on the most // relevant changes in the current code and skip the basic elements already // explained in previous examples. // // \index{itk::AffineTransform} // #include "itkImageRegistrationMethod.h" #include "itkMeanSquaresImageToImageMetric.h" #include "itkRegularStepGradientDescentOptimizer.h" #include "itkCenteredTransformInitializer.h" // // Let's start by including the header file of the AffineTransform. // // \index{itk::AffineTransform!header} // #include "itkAffineTransform.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkSubtractImageFilter.h" #include "itkRescaleIntensityImageFilter.h" // // The following piece of code implements an observer // that will monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition(); // Print the angle for the trace plot vnl_matrix p(2, 2); p[0][0] = (double)optimizer->GetCurrentPosition()[0]; p[0][1] = (double)optimizer->GetCurrentPosition()[1]; p[1][0] = (double)optimizer->GetCurrentPosition()[2]; p[1][1] = (double)optimizer->GetCurrentPosition()[3]; vnl_svd svd(p); vnl_matrix r(2, 2); r = svd.U() * vnl_transpose(svd.V()); double angle = std::asin(r[1][0]); std::cout << " AffineAngle: " << angle * 180.0 / itk::Math::pi << std::endl; } }; #include "itkTestDriverIncludeRequiredIOFactories.h" int main(int argc, char * argv[]) { RegisterRequiredFactories(); if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile " << std::endl; std::cerr << " outputImagefile [differenceBeforeRegistration] " << std::endl; std::cerr << " [differenceAfterRegistration] " << std::endl; std::cerr << " [stepLength] [maxNumberOfIterations] " << std::endl; return EXIT_FAILURE; } // // We then define the types of the images to be registered. // constexpr unsigned int Dimension = 2; using PixelType = float; using FixedImageType = itk::Image; using MovingImageType = itk::Image; // // The transform type is instantiated using the code below. The template // parameters of this class are the representation type of the space // coordinates and the space dimension. // // \index{itk::AffineTransform!Instantiation} // using TransformType = itk::AffineTransform; using OptimizerType = itk::RegularStepGradientDescentOptimizer; using MetricType = itk::MeanSquaresImageToImageMetric; using InterpolatorType = itk::LinearInterpolateImageFunction; using RegistrationType = itk::ImageRegistrationMethod; MetricType::Pointer metric = MetricType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); InterpolatorType::Pointer interpolator = InterpolatorType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetMetric(metric); registration->SetOptimizer(optimizer); registration->SetInterpolator(interpolator); // // The transform object is constructed below and is initialized before the registration // process starts. // // \index{itk::AffineTransform!New()} // \index{itk::AffineTransform!Pointer} // \index{itk::RegistrationMethod!SetTransform()} // TransformType::Pointer transform = TransformType::New(); registration->SetTransform(transform); using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader->Update(); registration->SetFixedImageRegion(fixedImageReader->GetOutput()->GetBufferedRegion()); // // In this example, we again use the // \doxygen{CenteredTransformInitializer} helper class in order to compute // a reasonable value for the initial center of rotation and the // translation. The initializer is set to use the center of mass of each // image as the initial correspondence correction. // using TransformInitializerType = itk::CenteredTransformInitializer; TransformInitializerType::Pointer initializer = TransformInitializerType::New(); initializer->SetTransform(transform); initializer->SetFixedImage(fixedImageReader->GetOutput()); initializer->SetMovingImage(movingImageReader->GetOutput()); initializer->MomentsOn(); initializer->InitializeTransform(); // // Now we pass the parameters of the current transform as the initial // parameters to be used when the registration process starts. // registration->SetInitialTransformParameters(transform->GetParameters()); // // Keeping in mind that the scale of units in scaling, rotation and // translation are quite different, we take advantage of the scaling // functionality provided by the optimizers. We know that the first $N // \times N$ elements of the parameters array correspond to the rotation // matrix factor, and the last $N$ are the components of the translation to // be applied after multiplication with the matrix is performed. // double translationScale = 1.0 / 1000.0; if (argc > 8) { translationScale = std::stod(argv[8]); } using OptimizerScalesType = OptimizerType::ScalesType; OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); optimizerScales[0] = 1.0; optimizerScales[1] = 1.0; optimizerScales[2] = 1.0; optimizerScales[3] = 1.0; optimizerScales[4] = translationScale; optimizerScales[5] = translationScale; optimizer->SetScales(optimizerScales); // // We also set the usual parameters of the optimization method. In this // case we are using an // \doxygen{RegularStepGradientDescentOptimizer}. Below, we define the // optimization parameters like initial step length, minimal step length // and number of iterations. These last two act as stopping criteria for // the optimization. // double steplength = 0.1; if (argc > 6) { steplength = std::stod(argv[6]); } unsigned int maxNumberOfIterations = 300; if (argc > 7) { maxNumberOfIterations = std::stoi(argv[7]); } optimizer->SetMaximumStepLength(steplength); optimizer->SetMinimumStepLength(0.0001); optimizer->SetNumberOfIterations(maxNumberOfIterations); // // We also set the optimizer to do minimization by calling the // \code{MinimizeOn()} method. // // \index{itk::Regular\-Step\-Gradient\-Descent\-Optimizer!MinimizeOn()} // optimizer->MinimizeOn(); // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); // // Finally we trigger the execution of the registration method by calling // the \code{Update()} method. The call is placed in a \code{try/catch} // block in case any exceptions are thrown. // try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } // // Once the optimization converges, we recover the parameters from the // registration method. This is done with the // \code{GetLastTransformParameters()} method. We can also recover the // final value of the metric with the \code{GetValue()} method and the // final number of iterations with the \code{GetCurrentIteration()} // method. // // \index{itk::RegistrationMethod!GetValue()} // \index{itk::RegistrationMethod!GetCurrentIteration()} // \index{itk::RegistrationMethod!GetLastTransformParameters()} // OptimizerType::ParametersType finalParameters = registration->GetLastTransformParameters(); const double finalRotationCenterX = transform->GetCenter()[0]; const double finalRotationCenterY = transform->GetCenter()[1]; const double finalTranslationX = finalParameters[4]; const double finalTranslationY = finalParameters[5]; const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); // Print out results // std::cout << "Result = " << std::endl; std::cout << " Center X = " << finalRotationCenterX << std::endl; std::cout << " Center Y = " << finalRotationCenterY << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; // Compute the rotation angle and scaling from SVD of the matrix // \todo Find a way to figure out if the scales are along X or along Y. // VNL returns the eigenvalues ordered from largest to smallest. vnl_matrix p(2, 2); p[0][0] = (double)finalParameters[0]; p[0][1] = (double)finalParameters[1]; p[1][0] = (double)finalParameters[2]; p[1][1] = (double)finalParameters[3]; vnl_svd svd(p); vnl_matrix r(2, 2); r = svd.U() * vnl_transpose(svd.V()); double angle = std::asin(r[1][0]); const double angleInDegrees = angle * 180.0 / itk::Math::pi; std::cout << " Scale 1 = " << svd.W(0) << std::endl; std::cout << " Scale 2 = " << svd.W(1) << std::endl; std::cout << " Angle (degrees) = " << angleInDegrees << std::endl; // // Let's execute this example over two of the images provided in // \code{Examples/Data}: // // \begin{itemize} // \item \code{BrainProtonDensitySliceBorder20.png} // \item \code{BrainProtonDensitySliceR10X13Y17.png} // \end{itemize} // // The second image is the result of intentionally rotating the first // image by $10$ degrees and then translating by $(-13,-17)$. Both images // have unit-spacing and are shown in Figure // \ref{fig:FixedMovingImageRegistration9}. We execute the code using the // following parameters: step length=1.0, translation scale= 0.0001 and // maximum number of iterations = 300. With these images and parameters // the registration takes $98$ iterations and produces // // \begin{center} // \begin{verbatim} // 96 58.09 [0.986481, -0.169104, 0.166411, 0.986174, 12.461, 16.0754] // \end{verbatim} // \end{center} // // These results are interpreted as // // \begin{itemize} // \item Iterations = 98 // \item Final Metric = 58.09 // \item Center = $( 111.204, 131.6 )$ millimeters // \item Translation = $( 12.461, 16.0754 )$ millimeters // \item Affine scales = $(1.00185, .999137)$ // \end{itemize} // // The second component of the matrix values is usually associated with // $\sin{\theta}$. We obtain the rotation through SVD of the affine // matrix. The value is $9.6526$ degrees, which is approximately the // intentional misalignment of $10.0$ degrees. // // \begin{figure} // \center // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20} // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17} // \itkcaption[AffineTransform registration]{Fixed and moving images // provided as input to the registration method using the AffineTransform.} // \label{fig:FixedMovingImageRegistration9} // \end{figure} // // // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{ImageRegistration9Output} // \includegraphics[width=0.32\textwidth]{ImageRegistration9DifferenceBefore} // \includegraphics[width=0.32\textwidth]{ImageRegistration9DifferenceAfter} // \itkcaption[AffineTransform output images]{The resampled moving image // (left), and the difference between the fixed and moving images before (center) // and after (right) registration with the // AffineTransform transform.} // \label{fig:ImageRegistration9Outputs} // \end{figure} // // Figure \ref{fig:ImageRegistration9Outputs} shows the output of the // registration. The right most image of this figure shows the squared // magnitude difference between the fixed image and the resampled // moving image. // // \begin{figure} // \center // \includegraphics[height=0.32\textwidth]{ImageRegistration9TraceMetric} // \includegraphics[height=0.32\textwidth]{ImageRegistration9TraceAngle} // \includegraphics[height=0.32\textwidth]{ImageRegistration9TraceTranslations} // \itkcaption[AffineTransform output plots]{Metric values, // rotation angle and translations during the registration using the // AffineTransform transform.} // \label{fig:ImageRegistration9Plots} // \end{figure} // // Figure \ref{fig:ImageRegistration9Plots} shows the plots of the main // output parameters of the registration process. The metric values at every // iteration are shown on the top plot. The angle values are shown on the bottom left plot, // while the translation components of the registration are presented // on the bottom right plot. Note that the final total offset of the transform // is to be computed as a combination of the shift due rotation plus the // explicit translation set on the transform. // // The following code is used to dump output images to files. // They illustrate the final results of the registration. // We will resample the moving image and write out the difference image // before and after registration. We will also rescale the intensities of the // difference images, so that they look better! using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetTransform(finalTransform); resampler->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resampler->SetOutputOrigin(fixedImage->GetOrigin()); resampler->SetOutputSpacing(fixedImage->GetSpacing()); resampler->SetOutputDirection(fixedImage->GetDirection()); resampler->SetDefaultPixelValue(100); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resampler->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); using DifferenceFilterType = itk::SubtractImageFilter; DifferenceFilterType::Pointer difference = DifferenceFilterType::New(); difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(resampler->GetOutput()); WriterType::Pointer writer2 = WriterType::New(); using RescalerType = itk::RescaleIntensityImageFilter; RescalerType::Pointer intensityRescaler = RescalerType::New(); intensityRescaler->SetInput(difference->GetOutput()); intensityRescaler->SetOutputMinimum(0); intensityRescaler->SetOutputMaximum(255); writer2->SetInput(intensityRescaler->GetOutput()); resampler->SetDefaultPixelValue(1); // Compute the difference image between the // fixed and resampled moving image. if (argc > 5) { writer2->SetFileName(argv[5]); writer2->Update(); } using IdentityTransformType = itk::IdentityTransform; IdentityTransformType::Pointer identity = IdentityTransformType::New(); // Compute the difference image between the // fixed and moving image before registration. if (argc > 4) { resampler->SetTransform(identity); writer2->SetFileName(argv[4]); writer2->Update(); } return EXIT_SUCCESS; }