/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkRescaleIntensityImageFilter.h" #include "itkConstNeighborhoodIterator.h" #include "itkImageRegionIterator.h" // Software Guide : BeginLatex // // In this example, the Sobel edge-detection routine is rewritten using // convolution filtering. Convolution filtering is a standard image // processing technique that can be implemented numerically as the inner // product of all image neighborhoods with a convolution kernel // \cite{Gonzalez1993} \cite{Castleman1996}. In ITK, we use a class of // objects called \emph{neighborhood operators} as convolution kernels and a // special function object called \doxygen{NeighborhoodInnerProduct} to // calculate inner products. // // The basic ITK convolution filtering routine is to step through the image // with a neighborhood iterator and use NeighborhoodInnerProduct to // find the inner product of each neighborhood with the desired kernel. The // resulting values are written to an output image. This example uses a // neighborhood operator called the \doxygen{SobelOperator}, but all // neighborhood operators can be convolved with images using this basic // routine. Other examples of neighborhood operators include derivative // kernels, Gaussian kernels, and morphological // operators. \doxygen{NeighborhoodOperatorImageFilter} is a generalization of // the code in this section to ND images and arbitrary convolution kernels. // // We start writing this example by including the header files for the Sobel // kernel and the inner product function. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkSobelOperator.h" #include "itkNeighborhoodInnerProduct.h" // Software Guide : EndCodeSnippet int main(int argc, char ** argv) { if (argc < 4) { std::cerr << "Missing parameters. " << std::endl; std::cerr << "Usage: " << std::endl; std::cerr << argv[0] << " inputImageFile outputImageFile direction" << std::endl; return EXIT_FAILURE; } using PixelType = float; using ImageType = itk::Image; using ReaderType = itk::ImageFileReader; using NeighborhoodIteratorType = itk::ConstNeighborhoodIterator; using IteratorType = itk::ImageRegionIterator; ReaderType::Pointer reader = ReaderType::New(); reader->SetFileName(argv[1]); try { reader->Update(); } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } ImageType::Pointer output = ImageType::New(); output->SetRegions(reader->GetOutput()->GetRequestedRegion()); output->Allocate(); IteratorType out(output, reader->GetOutput()->GetRequestedRegion()); // Software Guide : BeginLatex // // \index{convolution!kernels} // \index{convolution!operators} // \index{iterators!neighborhood!and convolution} // // Refer to the previous example for a description of reading the input // image and setting up the output image and iterator. // // The following code creates a Sobel operator. The Sobel operator requires // a direction for its partial derivatives. This direction is read from the // command line. Changing the direction of the derivatives changes the bias // of the edge detection, i.e. maximally vertical or maximally horizontal. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet itk::SobelOperator sobelOperator; sobelOperator.SetDirection(::std::stoi(argv[3])); sobelOperator.CreateDirectional(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The neighborhood iterator is initialized as before, except that now it // takes its radius directly from the radius of the Sobel operator. The // inner product function object is templated over image type and requires // no initialization. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet NeighborhoodIteratorType::RadiusType radius = sobelOperator.GetRadius(); NeighborhoodIteratorType it( radius, reader->GetOutput(), reader->GetOutput()->GetRequestedRegion()); itk::NeighborhoodInnerProduct innerProduct; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Using the Sobel operator, inner product, and neighborhood iterator // objects, we can now write a very simple \code{for} loop for performing // convolution filtering. As before, out-of-bounds pixel values are // supplied automatically by the iterator. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out) { out.Set(innerProduct(it, sobelOperator)); } // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The output is rescaled and written as in the previous example. Applying // this example in the $x$ and $y$ directions produces the images at the // center and right of Figure~\ref{fig:NeighborhoodExamples1}. Note that // x-direction operator produces the same output image as in the previous // example. // // Software Guide : EndLatex using WritePixelType = unsigned char; using WriteImageType = itk::Image; using WriterType = itk::ImageFileWriter; using RescaleFilterType = itk::RescaleIntensityImageFilter; RescaleFilterType::Pointer rescaler = RescaleFilterType::New(); rescaler->SetOutputMinimum(0); rescaler->SetOutputMaximum(255); rescaler->SetInput(output); WriterType::Pointer writer = WriterType::New(); writer->SetFileName(argv[2]); writer->SetInput(rescaler->GetOutput()); try { writer->Update(); } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }