/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginLatex // // This example illustrates the use of the // \doxygen{BSplineTransform} class for performing // registration of two $2D$ images. The example code is for the most // part identical to the code presented in // Section~\ref{sec:DeformableRegistration8}. The major difference is // that this example we set the image dimension to 2. // // \index{itk::BSplineTransform} // \index{itk::BSplineTransform!DeformableRegistration} // \index{itk::LBFGSBOptimizerv4} // // // Software Guide : EndLatex #include "itkImageRegistrationMethodv4.h" #include "itkMattesMutualInformationImageToImageMetricv4.h" #include "itkTimeProbesCollectorBase.h" #include "itkMemoryProbesCollectorBase.h" // Software Guide : BeginLatex // // The following are the most relevant headers to this example. // // \index{itk::BSplineTransform!header} // \index{itk::LBFGSBOptimizerv4!header} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkBSplineTransform.h" #include "itkLBFGSBOptimizerv4.h" // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The parameter space of the \code{BSplineTransform} is composed by // the set of all the deformations associated with the nodes of the BSpline // grid. This large number of parameters makes possible to represent a wide // variety of deformations, but it also has the price of requiring a // significant amount of computation time. // // \index{itk::BSplineTransform!header} // // Software Guide : EndLatex #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkSquaredDifferenceImageFilter.h" // The following section of code implements a Command observer // used to monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::LBFGSBOptimizerv4; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!(itk::IterationEvent().CheckEvent(&event))) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetCurrentMetricValue() << " "; std::cout << optimizer->GetInfinityNormOfProjectedGradient() << std::endl; } }; int main(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile outputImagefile "; std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] "; std::cerr << " [deformationField] "; std::cerr << " [filenameForFinalTransformParameters] "; std::cerr << " [numberOfGridNodesInOneDimension] "; std::cerr << std::endl; return EXIT_FAILURE; } constexpr unsigned int ImageDimension = 2; using PixelType = float; using FixedImageType = itk::Image; using MovingImageType = itk::Image; // Software Guide : BeginLatex // // We instantiate now the type of the \code{BSplineTransform} using // as template parameters the type for coordinates representation, the // dimension of the space, and the order of the BSpline. // // \index{BSplineTransform!New} // \index{BSplineTransform!Instantiation} // // Software Guide : EndLatex using FixedImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); fixedImageReader->Update(); FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput(); FixedImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion(); using MovingImageReaderType = itk::ImageFileReader; MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); movingImageReader->SetFileName(argv[2]); movingImageReader->Update(); MovingImageType::ConstPointer movingImage = movingImageReader->GetOutput(); // Software Guide : BeginCodeSnippet const unsigned int SpaceDimension = ImageDimension; constexpr unsigned int SplineOrder = 3; using CoordinateRepType = double; using TransformType = itk::BSplineTransform; // Software Guide : EndCodeSnippet using RegistrationType = itk::ImageRegistrationMethodv4; RegistrationType::Pointer registration = RegistrationType::New(); // Software Guide : BeginLatex // // Final BSpline transform will be the output of the registration method. // // Software Guide : EndLatex // // Software Guide : BeginCodeSnippet TransformType::Pointer transform = TransformType::New(); // Software Guide : EndCodeSnippet unsigned int numberOfGridNodesInOneDimension = 7; if (argc > 8) { numberOfGridNodesInOneDimension = std::stoi(argv[8]); } // Software Guide : BeginCodeSnippet TransformType::PhysicalDimensionsType fixedPhysicalDimensions; TransformType::MeshSizeType meshSize; TransformType::OriginType fixedOrigin; for (unsigned int i = 0; i < SpaceDimension; i++) { fixedOrigin[i] = fixedImage->GetOrigin()[i]; fixedPhysicalDimensions[i] = fixedImage->GetSpacing()[i] * static_cast( fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1); } meshSize.Fill(numberOfGridNodesInOneDimension - SplineOrder); transform->SetTransformDomainOrigin(fixedOrigin); transform->SetTransformDomainPhysicalDimensions(fixedPhysicalDimensions); transform->SetTransformDomainMeshSize(meshSize); transform->SetTransformDomainDirection(fixedImage->GetDirection()); registration->SetInitialTransform(transform); registration->InPlaceOn(); using ParametersType = TransformType::ParametersType; const unsigned int numberOfParameters = transform->GetNumberOfParameters(); ParametersType parameters(numberOfParameters); parameters.Fill(0.0); transform->SetParameters(parameters); // Software Guide : EndCodeSnippet using MetricType = itk::MattesMutualInformationImageToImageMetricv4; MetricType::Pointer metric = MetricType::New(); metric->SetNumberOfHistogramBins(32); metric->SetUseMovingImageGradientFilter(false); metric->SetUseFixedImageGradientFilter(false); metric->SetUseSampledPointSet(false); using OptimizerType = itk::LBFGSBOptimizerv4; OptimizerType::Pointer optimizer = OptimizerType::New(); // Software Guide : BeginCodeSnippet const unsigned int numParameters = transform->GetNumberOfParameters(); OptimizerType::BoundSelectionType boundSelect(numParameters); OptimizerType::BoundValueType upperBound(numParameters); OptimizerType::BoundValueType lowerBound(numParameters); boundSelect.Fill(0); upperBound.Fill(0.0); lowerBound.Fill(0.0); optimizer->SetBoundSelection(boundSelect); optimizer->SetUpperBound(upperBound); optimizer->SetLowerBound(lowerBound); optimizer->SetCostFunctionConvergenceFactor(1.e7); optimizer->SetGradientConvergenceTolerance(1e-35); optimizer->SetNumberOfIterations(200); optimizer->SetMaximumNumberOfFunctionEvaluations(200); optimizer->SetMaximumNumberOfCorrections(7); // Software Guide : EndCodeSnippet // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); // One level registration is performed using the shrink factor 1 and // smoothing sigma 1 // constexpr unsigned int numberOfLevels = 1; RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel; shrinkFactorsPerLevel.SetSize(1); shrinkFactorsPerLevel[0] = 1; RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(1); smoothingSigmasPerLevel[0] = 0; registration->SetFixedImage(fixedImage); registration->SetMovingImage(movingImage); registration->SetMetric(metric); registration->SetOptimizer(optimizer); registration->SetNumberOfLevels(numberOfLevels); registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel); // Add time and memory probes itk::TimeProbesCollectorBase chronometer; itk::MemoryProbesCollectorBase memorymeter; std::cout << std::endl << "Starting Registration" << std::endl; try { memorymeter.Start("Registration"); chronometer.Start("Registration"); registration->Update(); chronometer.Stop("Registration"); memorymeter.Stop("Registration"); const OptimizerType::ConstPointer outputOptimizer = dynamic_cast(registration->GetOptimizer()); if (outputOptimizer.IsNotNull()) { std::cout << "Optimizer stop condition = " << outputOptimizer->GetStopConditionDescription() << std::endl; } else { std::cerr << "Output optimizer is null." << std::endl; return EXIT_FAILURE; } } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } // While the registration filter is run, it updates the output transform // parameters with the final registration parameters OptimizerType::ParametersType finalParameters = transform->GetParameters(); // Report the time and memory taken by the registration chronometer.Report(std::cout); memorymeter.Report(std::cout); using ResampleFilterType = itk::ResampleImageFilter; ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(transform); resample->SetInput(movingImageReader->GetOutput()); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); // This value is set to zero in order to make easier to perform // regression testing in this example. However, for didactic // exercise it will be better to set it to a medium gray value // such as 100 or 128. resample->SetDefaultPixelValue(0); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resample->GetOutput()); writer->SetInput(caster->GetOutput()); try { writer->Update(); } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } using DifferenceFilterType = itk::SquaredDifferenceImageFilter; DifferenceFilterType::Pointer difference = DifferenceFilterType::New(); WriterType::Pointer writer2 = WriterType::New(); writer2->SetInput(difference->GetOutput()); // Compute the difference image between the // fixed and resampled moving image. if (argc > 4) { difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(resample->GetOutput()); writer2->SetFileName(argv[4]); try { writer2->Update(); } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } } // Compute the difference image between the // fixed and moving image before registration. if (argc > 5) { writer2->SetFileName(argv[5]); difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(movingImageReader->GetOutput()); try { writer2->Update(); } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } } // Generate the explicit deformation field resulting from // the registration. if (argc > 6) { using VectorType = itk::Vector; using DisplacementFieldType = itk::Image; DisplacementFieldType::Pointer field = DisplacementFieldType::New(); field->SetRegions(fixedRegion); field->SetOrigin(fixedImage->GetOrigin()); field->SetSpacing(fixedImage->GetSpacing()); field->SetDirection(fixedImage->GetDirection()); field->Allocate(); using FieldIterator = itk::ImageRegionIterator; FieldIterator fi(field, fixedRegion); fi.GoToBegin(); TransformType::InputPointType fixedPoint; TransformType::OutputPointType movingPoint; DisplacementFieldType::IndexType index; VectorType displacement; while (!fi.IsAtEnd()) { index = fi.GetIndex(); field->TransformIndexToPhysicalPoint(index, fixedPoint); movingPoint = transform->TransformPoint(fixedPoint); displacement = movingPoint - fixedPoint; fi.Set(displacement); ++fi; } using FieldWriterType = itk::ImageFileWriter; FieldWriterType::Pointer fieldWriter = FieldWriterType::New(); fieldWriter->SetInput(field); fieldWriter->SetFileName(argv[6]); try { fieldWriter->Update(); } catch (const itk::ExceptionObject & excp) { std::cerr << "Exception thrown " << std::endl; std::cerr << excp << std::endl; return EXIT_FAILURE; } } // Optionally, save the transform parameters in a file if (argc > 7) { std::ofstream parametersFile; parametersFile.open(argv[7]); parametersFile << finalParameters << std::endl; parametersFile.close(); } return EXIT_SUCCESS; }