/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginLatex // // This example illustrates the use of \code{SpatialObject}s as masks for // selecting the pixels that should contribute to the computation of Image // Metrics. This example is almost identical to ImageRegistration6 with the // exception that the \code{SpatialObject} masks are created and passed to the // image metric. // // // Software Guide : EndLatex #include "itkImageRegistrationMethodv4.h" #include "itkMeanSquaresImageToImageMetricv4.h" #include "itkRegularStepGradientDescentOptimizerv4.h" #include "itkEuler2DTransform.h" #include "itkCenteredTransformInitializer.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkSquaredDifferenceImageFilter.h" // Software Guide : BeginLatex // // The most important header in this example is the one corresponding to the // \doxygen{ImageMaskSpatialObject} class. // // \index{itk::ImageMaskSpatialObject!header} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkImageMaskSpatialObject.h" // Software Guide : EndCodeSnippet // // The following section of code implements a command observer // that will monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizerv4; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition() << std::endl; } }; int main(int argc, char * argv[]) { if (argc < 5) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile fixedImageMaskFile"; std::cerr << " outputImagefile [differenceOutputfile] "; std::cerr << " [differenceBeforeRegistration] " << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = float; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using TransformType = itk::Euler2DTransform; using OptimizerType = itk::RegularStepGradientDescentOptimizerv4; using MetricType = itk::MeanSquaresImageToImageMetricv4; using RegistrationType = itk:: ImageRegistrationMethodv4; MetricType::Pointer metric = MetricType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetMetric(metric); registration->SetOptimizer(optimizer); TransformType::Pointer transform = TransformType::New(); registration->SetInitialTransform(transform); registration->InPlaceOn(); using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader->Update(); using TransformInitializerType = itk::CenteredTransformInitializer; TransformInitializerType::Pointer initializer = TransformInitializerType::New(); initializer->SetTransform(transform); initializer->SetFixedImage(fixedImageReader->GetOutput()); initializer->SetMovingImage(movingImageReader->GetOutput()); initializer->MomentsOn(); initializer->InitializeTransform(); transform->SetAngle(0.0); using OptimizerScalesType = OptimizerType::ScalesType; OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); const double translationScale = 1.0 / 1000.0; optimizerScales[0] = 1.0; optimizerScales[1] = translationScale; optimizerScales[2] = translationScale; optimizer->SetScales(optimizerScales); optimizer->SetLearningRate(0.1); optimizer->SetMinimumStepLength(0.001); optimizer->SetNumberOfIterations(200); // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); // Software Guide : BeginLatex // // Here we instantiate the type of the \doxygen{ImageMaskSpatialObject} // using the same dimension of the images to be registered. // // \index{itk::ImageMaskSpatialObject!Instantiation} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using MaskType = itk::ImageMaskSpatialObject; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Then we use the type for creating the spatial object mask that will // restrict the registration to a reduced region of the image. // // \index{itk::ImageMaskSpatialObject!New} // \index{itk::ImageMaskSpatialObject!Pointer} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet MaskType::Pointer spatialObjectMask = MaskType::New(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The mask in this case is read from a binary file using the // \code{ImageFileReader} instantiated for an \code{unsigned char} pixel // type. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using ImageMaskType = itk::Image; using MaskReaderType = itk::ImageFileReader; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The reader is constructed and a filename is passed to it. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet MaskReaderType::Pointer maskReader = MaskReaderType::New(); maskReader->SetFileName(argv[3]); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // As usual, the reader is triggered by invoking its \code{Update()} // method. Since this may eventually throw an exception, the call must be // placed in a \code{try/catch} block. Note that a full fledged application // will place this \code{try/catch} block at a much higher level, probably // under the control of the GUI. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet try { maskReader->Update(); } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The output of the mask reader is connected as input to the // \code{ImageMaskSpatialObject}. // // \index{itk::ImageMaskSpatialObject!SetImage()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet spatialObjectMask->SetImage(maskReader->GetOutput()); spatialObjectMask->Update(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Finally, the spatial object mask is passed to the image metric. // // \index{itk::ImageToImageMetricv4!SetFixedImageMask()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet metric->SetFixedImageMask(spatialObjectMask); // Software Guide : EndCodeSnippet // One level registration process without shrinking and smoothing. // constexpr unsigned int numberOfLevels = 1; RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel; shrinkFactorsPerLevel.SetSize(1); shrinkFactorsPerLevel[0] = 1; RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(1); smoothingSigmasPerLevel[0] = 0; registration->SetNumberOfLevels(numberOfLevels); registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel); try { registration->Update(); std::cout << "Optimizer stop condition = " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } OptimizerType::ParametersType finalParameters = transform->GetParameters(); const double finalAngle = finalParameters[0]; const double finalTranslationX = finalParameters[1]; const double finalTranslationY = finalParameters[2]; const double rotationCenterX = registration->GetOutput()->Get()->GetFixedParameters()[0]; const double rotationCenterY = registration->GetOutput()->Get()->GetFixedParameters()[1]; const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); // Print out results // const double finalAngleInDegrees = finalAngle * 45.0 / std::atan(1.0); std::cout << "Result = " << std::endl; std::cout << " Angle (radians) " << finalAngle << std::endl; std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Fixed Center X = " << rotationCenterX << std::endl; std::cout << " Fixed Center Y = " << rotationCenterY << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; // Software Guide : BeginLatex // // Let's execute this example over some of the images provided in // \code{Examples/Data}, for example: // // \begin{itemize} // \item \code{BrainProtonDensitySliceBorder20.png} // \item \code{BrainProtonDensitySliceR10X13Y17.png} // \end{itemize} // // The second image is the result of intentionally rotating the first // image by $10$ degrees and shifting it $13mm$ in $X$ and $17mm$ in // $Y$. Both images have unit-spacing and are shown in Figure // \ref{fig:FixedMovingImageRegistration5}. // // The registration converges after $20$ iterations and produces the // following results: // // \begin{verbatim} // // Angle (radians) 0.174712 // Angle (degrees) 10.0103 // Translation X = 12.4521 // Translation Y = 16.0765 // // \end{verbatim} // // These values are a very close match to the true misalignments // introduced in the moving image. // // Now we resample the moving image using the transform resulting from the // registration process. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet TransformType::MatrixType matrix = transform->GetMatrix(); TransformType::OffsetType offset = transform->GetOffset(); std::cout << "Matrix = " << std::endl << matrix << std::endl; std::cout << "Offset = " << std::endl << offset << std::endl; // Software Guide : EndCodeSnippet using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(finalTransform); resample->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(100); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[4]); caster->SetInput(resample->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); using DifferenceFilterType = itk::SquaredDifferenceImageFilter; DifferenceFilterType::Pointer difference = DifferenceFilterType::New(); WriterType::Pointer writer2 = WriterType::New(); writer2->SetInput(difference->GetOutput()); // Compute the difference image between the // fixed and resampled moving image. if (argc >= 6) { difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(resample->GetOutput()); writer2->SetFileName(argv[5]); writer2->Update(); } // Compute the difference image between the // fixed and moving image before registration. if (argc >= 7) { writer2->SetFileName(argv[6]); difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(movingImageReader->GetOutput()); writer2->Update(); } return EXIT_SUCCESS; }