/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginLatex // // This example illustrates how to do registration with a 2D Rigid Transform // and with MutualInformation metric. // // Software Guide : EndLatex #include "itkImageRegistrationMethodv4.h" #include "itkEuler2DTransform.h" #include "itkCenteredTransformInitializer.h" // Software Guide : BeginCodeSnippet #include "itkMattesMutualInformationImageToImageMetricv4.h" // Software Guide : EndCodeSnippet #include "itkRegularStepGradientDescentOptimizerv4.h" #include "itkMersenneTwisterRandomVariateGenerator.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" // The following section of code implements a Command observer // used to monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizerv4; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition() << std::endl; } }; int main(int argc, char * argv[]) { if (argc < 3) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << "outputImagefile " << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = float; using FixedImageType = itk::Image; using MovingImageType = itk::Image; // Software Guide : BeginLatex // // The Euler2DTransform applies a rigid transform in 2D space. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformType = itk::Euler2DTransform; // Software Guide : EndCodeSnippet using OptimizerType = itk::RegularStepGradientDescentOptimizerv4; using RegistrationType = itk:: ImageRegistrationMethodv4; // Software Guide : BeginCodeSnippet using MetricType = itk::MattesMutualInformationImageToImageMetricv4; // Software Guide : EndCodeSnippet TransformType::Pointer transform = TransformType::New(); MetricType::Pointer metric = MetricType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetOptimizer(optimizer); registration->SetMetric(metric); // For consistent results when regression testing. registration->MetricSamplingReinitializeSeed(121212); // Software Guide : BeginCodeSnippet metric->SetNumberOfHistogramBins(20); double samplingPercentage = 0.20; registration->SetMetricSamplingPercentage(samplingPercentage); RegistrationType::MetricSamplingStrategyEnum samplingStrategy = RegistrationType::MetricSamplingStrategyEnum::RANDOM; registration->SetMetricSamplingStrategy(samplingStrategy); // Software Guide : EndCodeSnippet using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader->Update(); // Software Guide : BeginLatex // // The \doxygen{Euler2DTransform} is initialized with 3 parameters, // indicating the angle of rotation and the // translation to be applied after rotation. The initialization is done // by the \doxygen{CenteredTransformInitializer}. // The transform initializer can operate in two modes, the first of // which assumes that the // anatomical objects to be registered are centered in their respective // images. Hence the best initial guess for the registration is the one // that superimposes those two centers. // This second approach assumes that the moments of the anatomical // objects are similar for both images and hence the best initial guess // for registration is to superimpose both mass centers. The center of // mass is computed from the moments obtained from the gray level values. // Here we adopt the first approach. The \code{GeometryOn()} method // toggles between the approaches. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformInitializerType = itk::CenteredTransformInitializer; TransformInitializerType::Pointer initializer = TransformInitializerType::New(); initializer->SetTransform(transform); initializer->SetFixedImage(fixedImageReader->GetOutput()); initializer->SetMovingImage(movingImageReader->GetOutput()); initializer->GeometryOn(); initializer->InitializeTransform(); // Software Guide : EndCodeSnippet transform->SetAngle(0.0); registration->SetInitialTransform(transform); registration->InPlaceOn(); // Software Guide : BeginLatex // // The optimizer scales the metrics (the gradient in this case) by the // scales during each iteration. Here we // assume that the fixed and moving images are likely to be related by // a translation. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using OptimizerScalesType = OptimizerType::ScalesType; OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); const double translationScale = 1.0 / 128.0; optimizerScales[0] = 1.0; optimizerScales[1] = translationScale; optimizerScales[2] = translationScale; optimizer->SetScales(optimizerScales); optimizer->SetLearningRate(0.5); optimizer->SetMinimumStepLength(0.0001); optimizer->SetNumberOfIterations(400); // Software Guide : EndCodeSnippet // One level registration process without shrinking and smoothing. // constexpr unsigned int numberOfLevels = 1; RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel; shrinkFactorsPerLevel.SetSize(1); shrinkFactorsPerLevel[0] = 1; RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(1); smoothingSigmasPerLevel[0] = 0; registration->SetNumberOfLevels(numberOfLevels); registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel); // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); try { registration->Update(); std::cout << "Optimizer stop condition = " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cout << "ExceptionObject caught !" << std::endl; std::cout << err << std::endl; return EXIT_FAILURE; } using ParametersType = TransformType::ParametersType; ParametersType finalParameters = transform->GetParameters(); const double finalAngle = finalParameters[0]; const double finalTranslationX = finalParameters[1]; const double finalTranslationY = finalParameters[2]; const double rotationCenterX = registration->GetOutput()->Get()->GetFixedParameters()[0]; const double rotationCenterY = registration->GetOutput()->Get()->GetFixedParameters()[1]; unsigned int numberOfIterations = optimizer->GetCurrentIteration(); double bestValue = optimizer->GetValue(); // Print out results // const double finalAngleInDegrees = finalAngle * 180 / itk::Math::pi; std::cout << "Result = " << std::endl; std::cout << " Angle (radians) " << finalAngle << std::endl; std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Fixed Center X = " << rotationCenterX << std::endl; std::cout << " Fixed Center Y = " << rotationCenterY << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; using ResampleFilterType = itk::ResampleImageFilter; ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(transform); resample->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(100); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resample->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); return EXIT_SUCCESS; } // Software Guide : BeginLatex // // Let's execute this example over some of the images provided in // \code{Examples/Data}, for example: // // \begin{itemize} // \item \code{BrainProtonDensitySlice.png} // \item \code{BrainProtonDensitySliceR10X13Y17.png} // \end{itemize} // // The second image is the result of intentionally rotating the first // image by $10$ degrees and shifting it $13mm$ in $X$ and $17mm$ in // $Y$. Both images have unit-spacing and are shown in Figure // \ref{fig:FixedMovingImageRegistration5}. The example // yielded the following results. // // \begin{verbatim} // // Angle (radians) 0.174569 // Angle (degrees) 10.0021 // Translation X = 13.0958 // Translation Y = 15.9156 // // \end{verbatim} // // These values match the true misalignment introduced in the moving image. // // Software Guide : EndLatex