/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginLatex // // This example illustrates how to do registration with a 2D Rigid Transform // and with the Normalized Mutual Information metric. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkImageRegistrationMethod.h" #include "itkEuler2DTransform.h" #include "itkCenteredTransformInitializer.h" #include "itkNormalizedMutualInformationHistogramImageToImageMetric.h" #include "itkOnePlusOneEvolutionaryOptimizer.h" #include "itkNormalVariateGenerator.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" // The following section of code implements a Command observer // used to monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() { m_LastMetricValue = 0; } public: using OptimizerType = itk::OnePlusOneEvolutionaryOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } double currentValue = optimizer->GetValue(); // Only print out when the Metric value changes if (std::fabs(m_LastMetricValue - currentValue) > 1e-7) { std::cout << optimizer->GetCurrentIteration() << " "; std::cout << currentValue << " "; std::cout << optimizer->GetFrobeniusNorm() << " "; std::cout << optimizer->GetCurrentPosition() << std::endl; m_LastMetricValue = currentValue; } } private: double m_LastMetricValue; }; int main(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << "outputImagefile [numberOfHistogramBins] "; std::cerr << "[initialRadius] [epsilon]" << std::endl; std::cerr << "[initialAngle(radians)] [initialTx] [initialTy]" << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = unsigned char; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using TransformType = itk::Euler2DTransform; using OptimizerType = itk::OnePlusOneEvolutionaryOptimizer; using InterpolatorType = itk::LinearInterpolateImageFunction; using RegistrationType = itk::ImageRegistrationMethod; using MetricType = itk::NormalizedMutualInformationHistogramImageToImageMetric< FixedImageType, MovingImageType>; TransformType::Pointer transform = TransformType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); InterpolatorType::Pointer interpolator = InterpolatorType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetOptimizer(optimizer); registration->SetTransform(transform); registration->SetInterpolator(interpolator); MetricType::Pointer metric = MetricType::New(); registration->SetMetric(metric); unsigned int numberOfHistogramBins = 32; if (argc > 4) { numberOfHistogramBins = std::stoi(argv[4]); std::cout << "Using " << numberOfHistogramBins << " Histogram bins" << std::endl; } MetricType::HistogramType::SizeType histogramSize; histogramSize.SetSize(2); histogramSize[0] = numberOfHistogramBins; histogramSize[1] = numberOfHistogramBins; metric->SetHistogramSize(histogramSize); const unsigned int numberOfParameters = transform->GetNumberOfParameters(); using ScalesType = MetricType::ScalesType; ScalesType scales(numberOfParameters); scales.Fill(1.0); metric->SetDerivativeStepLengthScales(scales); using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader->Update(); movingImageReader->Update(); FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput(); registration->SetFixedImageRegion(fixedImage->GetBufferedRegion()); using TransformInitializerType = itk::CenteredTransformInitializer; TransformInitializerType::Pointer initializer = TransformInitializerType::New(); initializer->SetTransform(transform); initializer->SetFixedImage(fixedImageReader->GetOutput()); initializer->SetMovingImage(movingImageReader->GetOutput()); initializer->GeometryOn(); initializer->InitializeTransform(); double initialAngle = 0.0; if (argc > 7) { initialAngle = std::stod(argv[7]); } transform->SetAngle(initialAngle); TransformType::OutputVectorType initialTranslation = transform->GetTranslation(); if (argc > 9) { initialTranslation[0] += std::stod(argv[8]); initialTranslation[1] += std::stod(argv[9]); } transform->SetTranslation(initialTranslation); using ParametersType = RegistrationType::ParametersType; ParametersType initialParameters = transform->GetParameters(); registration->SetInitialTransformParameters(initialParameters); std::cout << "Initial transform parameters = "; std::cout << initialParameters << std::endl; using OptimizerScalesType = OptimizerType::ScalesType; OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); FixedImageType::RegionType region = fixedImage->GetLargestPossibleRegion(); FixedImageType::SizeType size = region.GetSize(); FixedImageType::SpacingType spacing = fixedImage->GetSpacing(); optimizerScales[0] = 1.0 / 0.1; // make angle move slowly optimizerScales[1] = 1.0 / (0.1 * size[0] * spacing[0]); optimizerScales[2] = 1.0 / (0.1 * size[1] * spacing[1]); std::cout << "optimizerScales = " << optimizerScales << std::endl; optimizer->SetScales(optimizerScales); using GeneratorType = itk::Statistics::NormalVariateGenerator; GeneratorType::Pointer generator = GeneratorType::New(); generator->Initialize(12345); optimizer->MaximizeOn(); optimizer->SetNormalVariateGenerator(generator); double initialRadius = 0.05; if (argc > 5) { initialRadius = std::stod(argv[5]); std::cout << "Using initial radius = " << initialRadius << std::endl; } optimizer->Initialize(initialRadius); double epsilon = 0.001; if (argc > 6) { epsilon = std::stod(argv[6]); std::cout << "Using epsilon = " << epsilon << std::endl; } optimizer->SetEpsilon(epsilon); optimizer->SetMaximumIteration(2000); // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cout << "ExceptionObject caught !" << std::endl; std::cout << err << std::endl; return EXIT_FAILURE; } using ParametersType = RegistrationType::ParametersType; ParametersType finalParameters = registration->GetLastTransformParameters(); const double finalAngle = finalParameters[0]; const double finalTranslationX = finalParameters[1]; const double finalTranslationY = finalParameters[2]; const double rotationCenterX = registration->GetOutput()->Get()->GetFixedParameters()[0]; const double rotationCenterY = registration->GetOutput()->Get()->GetFixedParameters()[1]; const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); // Print out results const double finalAngleInDegrees = finalAngle * 180.0 / itk::Math::pi; std::cout << " Result = " << std::endl; std::cout << " Angle (radians) " << finalAngle << std::endl; std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Fixed Center X = " << rotationCenterX << std::endl; std::cout << " Fixed Center Y = " << rotationCenterY << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(finalTransform); resample->SetInput(movingImageReader->GetOutput()); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(100); using OutputImageType = itk::Image; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); writer->SetFileName(argv[3]); writer->SetInput(resample->GetOutput()); writer->Update(); // Software Guide : EndCodeSnippet return EXIT_SUCCESS; }