/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginLatex // // This example illustrates how to do registration with a 2D Translation // Transform, the Normalized Mutual Information metric and the Amoeba // optimizer. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkImageRegistrationMethod.h" #include "itkTranslationTransform.h" #include "itkMattesMutualInformationImageToImageMetric.h" #include "itkAmoebaOptimizer.h" #include "itkMersenneTwisterRandomVariateGenerator.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" // The following section of code implements a Command observer // used to monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() { m_IterationNumber = 0; } public: using OptimizerType = itk::AmoebaOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << m_IterationNumber++ << " "; std::cout << optimizer->GetCachedValue() << " "; std::cout << optimizer->GetCachedCurrentPosition() << std::endl; } private: unsigned long m_IterationNumber; }; int main(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << " outputImagefile "; std::cerr << " [initialTx] [initialTy]"; std::cerr << "[useExplicitPDFderivatives ] " << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = unsigned char; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using TransformType = itk::TranslationTransform; using OptimizerType = itk::AmoebaOptimizer; using InterpolatorType = itk::LinearInterpolateImageFunction; using RegistrationType = itk::ImageRegistrationMethod; using MetricType = itk::MattesMutualInformationImageToImageMetric; TransformType::Pointer transform = TransformType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); InterpolatorType::Pointer interpolator = InterpolatorType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetOptimizer(optimizer); registration->SetTransform(transform); registration->SetInterpolator(interpolator); MetricType::Pointer metric = MetricType::New(); registration->SetMetric(metric); // Software Guide : BeginLatex // // The metric requires two parameters to be selected: the number // of bins used to compute the entropy and the number of spatial samples // used to compute the density estimates. In typical application, 50 // histogram bins are sufficient and the metric is relatively insensitive // to changes in the number of bins. The number of spatial samples // to be used depends on the content of the image. If the images are // smooth and do not contain much detail, then using approximately // $1$ percent of the pixels will do. On the other hand, if the images // are detailed, it may be necessary to use a much higher proportion, // such as $20$ percent. // // \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfHistogramBins()} // \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfSpatialSamples()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet metric->SetNumberOfHistogramBins(20); metric->SetNumberOfSpatialSamples(10000); // Software Guide : EndCodeSnippet // For consistent results when regression testing. metric->ReinitializeSeed(121212); if (argc > 6) { // Define whether to calculate the metric derivative by explicitly // computing the derivatives of the joint PDF with respect to the // Transform parameters, or doing it by progressively accumulating // contributions from each bin in the joint PDF. metric->SetUseExplicitPDFDerivatives(std::stoi(argv[6])); } const unsigned int numberOfParameters = transform->GetNumberOfParameters(); using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader->Update(); movingImageReader->Update(); FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput(); registration->SetFixedImageRegion(fixedImage->GetBufferedRegion()); transform->SetIdentity(); using ParametersType = RegistrationType::ParametersType; ParametersType initialParameters = transform->GetParameters(); initialParameters[0] = 0.0; initialParameters[1] = 0.0; if (argc > 5) { initialParameters[0] = std::stod(argv[4]); initialParameters[1] = std::stod(argv[5]); } registration->SetInitialTransformParameters(initialParameters); std::cout << "Initial transform parameters = "; std::cout << initialParameters << std::endl; // Software Guide : BeginLatex // // The AmoebaOptimizer moves a simplex around the cost surface. Here we // set the initial size of the simplex (5 units in each of the parameters) // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet OptimizerType::ParametersType simplexDelta(numberOfParameters); simplexDelta.Fill(5.0); optimizer->AutomaticInitialSimplexOff(); optimizer->SetInitialSimplexDelta(simplexDelta); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // We also adjust the tolerances on the optimizer to define convergence. // Here, we used a tolerance on the parameters of 0.1 (which will be one // tenth of image unit, in this case pixels). We also set the tolerance on // the cost function value to define convergence. The metric we are using // returns the value of Mutual Information. So we set the function // convergence to be 0.001 bits (bits are the appropriate units for // measuring Information). // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet optimizer->SetParametersConvergenceTolerance(0.1); // 1/10th pixel optimizer->SetFunctionConvergenceTolerance(0.001); // 0.001 bits // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // In the case where the optimizer never succeeds in reaching the desired // precision tolerance, it is prudent to establish a limit on the number of // iterations to be performed. This maximum number is defined with the // method \code{SetMaximumNumberOfIterations()}. // // \index{itk::Amoeba\-Optimizer!SetMaximumNumberOfIterations()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet optimizer->SetMaximumNumberOfIterations(200); // Software Guide : EndCodeSnippet // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cout << "ExceptionObject caught !" << std::endl; std::cout << err << std::endl; return EXIT_FAILURE; } ParametersType finalParameters = registration->GetLastTransformParameters(); const double finalTranslationX = finalParameters[0]; const double finalTranslationY = finalParameters[1]; double bestValue = optimizer->GetValue(); // Print out results // std::cout << "Result = " << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Metric value = " << bestValue << std::endl; using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(finalTransform); resample->SetInput(movingImageReader->GetOutput()); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(100); using OutputImageType = itk::Image; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); writer->SetFileName(argv[3]); writer->SetInput(resample->GetOutput()); writer->Update(); // Software Guide : EndCodeSnippet return EXIT_SUCCESS; }