/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginLatex // // This example illustrates how to use the // \doxygen{GradientDifferenceImageToImageMetric}. // // This metric is particularly useful for registration scenarios where fitting // the edges of both images is the most relevant criteria for registration // success. // // \index{itk::ImageRegistrationMethod!Monitoring} // // // Software Guide : EndLatex #include "itkImageRegistrationMethod.h" #include "itkTranslationTransform.h" #include "itkGradientDifferenceImageToImageMetric.h" #include "itkRegularStepGradientDescentOptimizer.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << optimizer->GetCurrentIteration() << " = "; std::cout << optimizer->GetValue() << " : "; std::cout << optimizer->GetCurrentPosition() << std::endl; } }; int main(int argc, char * argv[]) { if (argc < 3) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << "outputImagefile" << std::endl; std::cerr << "[initialTx] [initialTy]" << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = unsigned short; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using TransformType = itk::TranslationTransform; using OptimizerType = itk::RegularStepGradientDescentOptimizer; using InterpolatorType = itk::LinearInterpolateImageFunction; using RegistrationType = itk::ImageRegistrationMethod; using MetricType = itk::GradientDifferenceImageToImageMetric; TransformType::Pointer transform = TransformType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); InterpolatorType::Pointer interpolator = InterpolatorType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetOptimizer(optimizer); registration->SetTransform(transform); registration->SetInterpolator(interpolator); MetricType::Pointer metric = MetricType::New(); metric->SetDerivativeDelta(0.5); registration->SetMetric(metric); using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); fixedImageReader ->Update(); // This is needed to make the BufferedRegion below valid. registration->SetFixedImageRegion( fixedImageReader->GetOutput()->GetBufferedRegion()); using ParametersType = RegistrationType::ParametersType; ParametersType initialParameters(transform->GetNumberOfParameters()); initialParameters[0] = 0.0; // Initial offset in mm along X initialParameters[1] = 0.0; // Initial offset in mm along Y if (argc > 4) { initialParameters[0] = std::stod(argv[4]); } if (argc > 5) { initialParameters[1] = std::stod(argv[5]); } std::cout << "Initial parameters = " << initialParameters << std::endl; registration->SetInitialTransformParameters(initialParameters); optimizer->SetMaximumStepLength(4.00); optimizer->SetMinimumStepLength(0.01); optimizer->SetNumberOfIterations(200); optimizer->SetGradientMagnitudeTolerance(1e-40); optimizer->MaximizeOn(); CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cout << "ExceptionObject caught !" << std::endl; std::cout << err << std::endl; return EXIT_FAILURE; } ParametersType finalParameters = registration->GetLastTransformParameters(); const double TranslationAlongX = finalParameters[0]; const double TranslationAlongY = finalParameters[1]; const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); std::cout << "Registration done !" << std::endl; std::cout << "Optimizer stop condition = " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; std::cout << "Number of iterations = " << numberOfIterations << std::endl; std::cout << "Translation along X = " << TranslationAlongX << std::endl; std::cout << "Translation along Y = " << TranslationAlongY << std::endl; std::cout << "Optimal metric value = " << bestValue << std::endl; // Prepare the resampling filter in order to map the moving image. // using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(finalTransform); resample->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(100); // Prepare a writer and caster filters to send the resampled moving image to // a file // using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resample->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); return EXIT_SUCCESS; }