/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginCommandLineArgs // INPUTS: {BrainProtonDensitySliceBorder20.png} // INPUTS: {BrainProtonDensitySliceR10X13Y17S12.png} // OUTPUTS: {ImageRegistration7Output.png} // OUTPUTS: {ImageRegistration7DifferenceBefore.png} // OUTPUTS: {ImageRegistration7DifferenceAfter.png} // ARGUMENTS: 1.0 1.0 0.0 // Software Guide : EndCommandLineArgs // Software Guide : BeginLatex // // This example illustrates the use of the \doxygen{Simularity2DTransform} // class for performing registration in $2D$. The example code is for // the most part identical to the code presented in Section // \ref{sec:InitializingRegistrationWithMoments}. The main difference is the // use of \doxygen{Simularity2DTransform} here rather than the // \doxygen{Euler2DTransform} class. // // A similarity transform can be seen as a composition of rotations, // translations and uniform $\left(\text{isotropic}\right)$ scaling. It // preserves angles and maps lines into // lines. This transform is implemented in the toolkit as deriving from a // rigid $2D$ transform and with a scale parameter added. // // When using this transform, attention should be paid to the fact that // scaling and translations are not independent. In the same way that // rotations can locally be seen as translations, scaling also results in // local displacements. Scaling is performed in general with respect to the // origin of coordinates. However, we already saw how ambiguous that could be // in the case of rotations. For this reason, this transform also allows users // to setup a specific center. This center is used both for rotation and // scaling. // // // \index{itk::Simularity2DTransform} // // Software Guide : EndLatex #include "itkImageRegistrationMethodv4.h" #include "itkMeanSquaresImageToImageMetricv4.h" #include "itkRegularStepGradientDescentOptimizerv4.h" #include "itkCenteredTransformInitializer.h" // Software Guide : BeginLatex // // In addition to the headers included in previous examples, here the // following header must be included. // // \index{itk::Simularity2DTransform!header} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkSimilarity2DTransform.h" // Software Guide : EndCodeSnippet #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkSubtractImageFilter.h" #include "itkRescaleIntensityImageFilter.h" #include "itkIdentityTransform.h" // The following section of code implements a Command observer // that will monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizerv4; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!itk::IterationEvent().CheckEvent(&event)) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition() << std::endl; } }; int main(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << " outputImagefile [differenceBeforeRegistration] "; std::cerr << " [differenceAfterRegistration] "; std::cerr << " [steplength] "; std::cerr << " [initialScaling] [initialAngle] "; std::cerr << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = float; using FixedImageType = itk::Image; using MovingImageType = itk::Image; // Software Guide : BeginLatex // // The Transform class is instantiated using the code below. The only // template parameter of this class is the representation type of the // space coordinates. // // \index{itk::Simularity2DTransform!Instantiation} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformType = itk::Similarity2DTransform; // Software Guide : EndCodeSnippet using OptimizerType = itk::RegularStepGradientDescentOptimizerv4; using MetricType = itk::MeanSquaresImageToImageMetricv4; using RegistrationType = itk:: ImageRegistrationMethodv4; MetricType::Pointer metric = MetricType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); RegistrationType::Pointer registration = RegistrationType::New(); registration->SetMetric(metric); registration->SetOptimizer(optimizer); // Software Guide : BeginLatex // // As before, the transform object is constructed and initialized before it // is passed to the registration filter. // // \index{itk::Simularity2DTransform!Pointer} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet TransformType::Pointer transform = TransformType::New(); // Software Guide : EndCodeSnippet using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); registration->SetFixedImage(fixedImageReader->GetOutput()); registration->SetMovingImage(movingImageReader->GetOutput()); // Software Guide : BeginLatex // // In this example, we again use the helper class // \doxygen{CenteredTransformInitializer} to compute a reasonable // value for the initial center of rotation and scaling along with // an initial translation. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformInitializerType = itk::CenteredTransformInitializer; TransformInitializerType::Pointer initializer = TransformInitializerType::New(); initializer->SetTransform(transform); initializer->SetFixedImage(fixedImageReader->GetOutput()); initializer->SetMovingImage(movingImageReader->GetOutput()); initializer->MomentsOn(); initializer->InitializeTransform(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The remaining parameters of the transform are initialized below. // // \index{itk::Simularity2DTransform!SetScale()} // \index{itk::Simularity2DTransform!SetAngle()} // // Software Guide : EndLatex double initialScale = 1.0; if (argc > 7) { initialScale = std::stod(argv[7]); } double initialAngle = 0.0; if (argc > 8) { initialAngle = std::stod(argv[8]); } // Software Guide : BeginCodeSnippet transform->SetScale(initialScale); transform->SetAngle(initialAngle); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Now the initialized transform object will be set to the registration // method, and its initial parameters are used to initialize the // registration process. // // Also, by calling the \code{InPlaceOn()} method, this initialized // transform will be the output transform // object or ``grafted'' to the output of the registration process. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet registration->SetInitialTransform(transform); registration->InPlaceOn(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Keeping in mind that the scale of units in scaling, rotation and // translation are quite different, we take advantage of the scaling // functionality provided by the optimizers. We know that the first element // of the parameters array corresponds to the scale factor, the second // corresponds to the angle, third and fourth are the remaining // translation. We use henceforth small factors in the scales // associated with translations. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using OptimizerScalesType = OptimizerType::ScalesType; OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); const double translationScale = 1.0 / 100.0; optimizerScales[0] = 10.0; optimizerScales[1] = 1.0; optimizerScales[2] = translationScale; optimizerScales[3] = translationScale; optimizer->SetScales(optimizerScales); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // We also set the ordinary parameters of the optimization method. In this // case we are using a // \doxygen{RegularStepGradientDescentOptimizerv4}. Below we define the // optimization parameters, i.e. initial learning rate (step length), // minimal step length and number of iterations. The last two act as // stopping criteria for the optimization. // // Software Guide : EndLatex double steplength = 1.0; if (argc > 6) { steplength = std::stod(argv[6]); } // Software Guide : BeginCodeSnippet optimizer->SetLearningRate(steplength); optimizer->SetMinimumStepLength(0.0001); optimizer->SetNumberOfIterations(500); // Software Guide : EndCodeSnippet // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); // One level registration process without shrinking and smoothing. // constexpr unsigned int numberOfLevels = 1; RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel; shrinkFactorsPerLevel.SetSize(1); shrinkFactorsPerLevel[0] = 1; RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(1); smoothingSigmasPerLevel[0] = 0; registration->SetNumberOfLevels(numberOfLevels); registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return EXIT_FAILURE; } TransformType::ParametersType finalParameters = transform->GetParameters(); const double finalScale = finalParameters[0]; const double finalAngle = finalParameters[1]; const double finalTranslationX = finalParameters[2]; const double finalTranslationY = finalParameters[3]; const double rotationCenterX = registration->GetOutput()->Get()->GetFixedParameters()[0]; const double rotationCenterY = registration->GetOutput()->Get()->GetFixedParameters()[1]; const unsigned int numberOfIterations = optimizer->GetCurrentIteration(); const double bestValue = optimizer->GetValue(); // Print out results // const double finalAngleInDegrees = finalAngle * 180.0 / itk::Math::pi; std::cout << std::endl; std::cout << "Result = " << std::endl; std::cout << " Scale = " << finalScale << std::endl; std::cout << " Angle (radians) = " << finalAngle << std::endl; std::cout << " Angle (degrees) = " << finalAngleInDegrees << std::endl; std::cout << " Translation X = " << finalTranslationX << std::endl; std::cout << " Translation Y = " << finalTranslationY << std::endl; std::cout << " Fixed Center X = " << rotationCenterX << std::endl; std::cout << " Fixed Center Y = " << rotationCenterY << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; // Software Guide : BeginLatex // // Let's execute this example over some of the images provided in // \code{Examples/Data}, for example: // // \begin{itemize} // \item \code{BrainProtonDensitySliceBorder20.png} // \item \code{BrainProtonDensitySliceR10X13Y17S12.png} // \end{itemize} // // The second image is the result of intentionally rotating the first image // by $10$ degrees, scaling by $1/1.2$ and then translating by $(-13,-17)$. // Both images have unit-spacing and are shown in Figure // \ref{fig:FixedMovingImageRegistration7}. The registration takes $53$ // iterations and produces: // // \begin{center} // \begin{verbatim} // [0.833237, -0.174511, -12.8065, -12.7244 ] // \end{verbatim} // \end{center} // // That are interpreted as // // \begin{itemize} // \item Scale factor = $0.833237$ // \item Angle = $-0.174511$ radians // \item Translation = $( -12.8065, -12.7244 )$ millimeters // \end{itemize} // // // These values approximate the misalignment intentionally introduced into // the moving image. Since $10$ degrees is about $0.174532$ radians. // // \begin{figure} // \center // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20} // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17S12} // \itkcaption[Fixed and Moving image registered with // Simularity2DTransform]{Fixed and Moving image provided as input to the // registration method using the Similarity2D transform.} // \label{fig:FixedMovingImageRegistration7} // \end{figure} // // // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{ImageRegistration7Output} // \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceBefore} // \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceAfter} // \itkcaption[Output of the Simularity2DTransform registration]{Resampled // moving image (left). Differences between fixed and // moving images, before (center) and after (right) registration with the // Similarity2D transform.} // \label{fig:ImageRegistration7Outputs} // \end{figure} // // Figure \ref{fig:ImageRegistration7Outputs} shows the output of the // registration. The right image shows the squared magnitude of pixel // differences between the fixed image and the resampled moving image. // // \begin{figure} // \center // \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceMetric} // \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceAngle} // \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceScale} // \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceTranslations} // \itkcaption[Simularity2DTransform registration plots]{Plots of the // Metric, rotation angle, scale factor, and translations during the // registration using Similarity2D transform.} // \label{fig:ImageRegistration7Plots} // \end{figure} // // Figure \ref{fig:ImageRegistration7Plots} shows the plots of the main // output parameters of the registration process. The metric values at // every iteration are shown on the left. The rotation angle and scale // factor values are shown in the two center plots while the translation // components of the registration are presented in the plot on the right. // // Software Guide : EndLatex using ResampleFilterType = itk::ResampleImageFilter; ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetTransform(transform); resampler->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resampler->SetOutputOrigin(fixedImage->GetOrigin()); resampler->SetOutputSpacing(fixedImage->GetSpacing()); resampler->SetOutputDirection(fixedImage->GetDirection()); resampler->SetDefaultPixelValue(100); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resampler->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); using DifferenceFilterType = itk::SubtractImageFilter; DifferenceFilterType::Pointer difference = DifferenceFilterType::New(); using RescalerType = itk::RescaleIntensityImageFilter; RescalerType::Pointer intensityRescaler = RescalerType::New(); intensityRescaler->SetInput(difference->GetOutput()); intensityRescaler->SetOutputMinimum(0); intensityRescaler->SetOutputMaximum(255); difference->SetInput1(fixedImageReader->GetOutput()); difference->SetInput2(resampler->GetOutput()); resampler->SetDefaultPixelValue(1); WriterType::Pointer writer2 = WriterType::New(); writer2->SetInput(intensityRescaler->GetOutput()); // Compute the difference image between the // fixed and resampled moving image. if (argc > 5) { writer2->SetFileName(argv[5]); writer2->Update(); } using IdentityTransformType = itk::IdentityTransform; IdentityTransformType::Pointer identity = IdentityTransformType::New(); // Compute the difference image between the // fixed and moving image before registration. if (argc > 4) { resampler->SetTransform(identity); writer2->SetFileName(argv[4]); writer2->Update(); } return EXIT_SUCCESS; }