/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginCommandLineArgs // INPUTS: {BrainT1SliceBorder20.png} // INPUTS: {BrainProtonDensitySliceShifted13x17y.png} // OUTPUTS: {MultiResImageRegistration2Output.png} // ARGUMENTS: 100 // OUTPUTS: {MultiResImageRegistration2CheckerboardBefore.png} // OUTPUTS: {MultiResImageRegistration2CheckerboardAfter.png} // Software Guide : EndCommandLineArgs // Software Guide : BeginLatex // // This example illustrates the use of more complex components of the // registration framework. In particular, it introduces the use of the // \doxygen{AffineTransform} and the importance of fine-tuning the scale // parameters of the optimizer. // // \index{itk::ImageRegistrationMethod!AffineTransform} // \index{itk::ImageRegistrationMethod!Scaling parameter space} // \index{itk::AffineTransform!Image Registration} // // The AffineTransform is a linear transformation that maps lines into // lines. It can be used to represent translations, rotations, anisotropic // scaling, shearing or any combination of them. Details about the affine // transform can be seen in Section~\ref{sec:AffineTransform}. // // In order to use the AffineTransform class, the following header // must be included. // // \index{itk::AffineTransform!Header} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkAffineTransform.h" // Software Guide : EndCodeSnippet #include "itkCenteredTransformInitializer.h" #include "itkMultiResolutionImageRegistrationMethod.h" #include "itkMattesMutualInformationImageToImageMetric.h" #include "itkRegularStepGradientDescentOptimizer.h" #include "itkRecursiveMultiResolutionPyramidImageFilter.h" #include "itkImage.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkCheckerBoardImageFilter.h" // The following section of code implements an observer // that will monitor the evolution of the registration process. // #include "itkCommand.h" class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!(itk::IterationEvent().CheckEvent(&event))) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition() << " " << m_CumulativeIterationIndex++ << std::endl; } private: unsigned int m_CumulativeIterationIndex{ 0 }; }; // The following section of code implements a Command observer // that will control the modification of optimizer parameters // at every change of resolution level. // template class RegistrationInterfaceCommand : public itk::Command { public: using Self = RegistrationInterfaceCommand; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: RegistrationInterfaceCommand() = default; public: using RegistrationType = TRegistration; using RegistrationPointer = RegistrationType *; using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = OptimizerType *; void Execute(itk::Object * object, const itk::EventObject & event) override { if (!(itk::IterationEvent().CheckEvent(&event))) { return; } auto registration = static_cast(object); auto optimizer = static_cast(registration->GetModifiableOptimizer()); std::cout << "-------------------------------------" << std::endl; std::cout << "MultiResolution Level : " << registration->GetCurrentLevel() << std::endl; std::cout << std::endl; if (registration->GetCurrentLevel() == 0) { optimizer->SetMaximumStepLength(16.00); optimizer->SetMinimumStepLength(0.01); } else { optimizer->SetMaximumStepLength(optimizer->GetMaximumStepLength() / 4.0); optimizer->SetMinimumStepLength(optimizer->GetMinimumStepLength() / 10.0); } } void Execute(const itk::Object *, const itk::EventObject &) override { return; } }; int main(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << " outputImagefile [backgroundGrayLevel]"; std::cerr << " [checkerboardbefore] [CheckerBoardAfter]"; std::cerr << " [useExplicitPDFderivatives ] " << std::endl; std::cerr << " [numberOfBins] [numberOfSamples ] " << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 2; using PixelType = unsigned short; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using InternalPixelType = float; using InternalImageType = itk::Image; // Software Guide : BeginLatex // // The configuration of the registration method in this example closely // follows the procedure in the previous section. The main changes involve // the construction and initialization of the transform. The instantiation // of the transform type requires only the dimension of the space and the // type used for representing space coordinates. // // \index{itk::AffineTransform!Instantiation} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformType = itk::AffineTransform; // Software Guide : EndCodeSnippet using OptimizerType = itk::RegularStepGradientDescentOptimizer; using InterpolatorType = itk::LinearInterpolateImageFunction; using MetricType = itk::MattesMutualInformationImageToImageMetric; using OptimizerScalesType = OptimizerType::ScalesType; using RegistrationType = itk::MultiResolutionImageRegistrationMethod; OptimizerType::Pointer optimizer = OptimizerType::New(); InterpolatorType::Pointer interpolator = InterpolatorType::New(); RegistrationType::Pointer registration = RegistrationType::New(); MetricType::Pointer metric = MetricType::New(); registration->SetOptimizer(optimizer); registration->SetInterpolator(interpolator); registration->SetMetric(metric); // Software Guide : BeginLatex // // The transform is constructed using the standard \code{New()} method and // assigning it to a SmartPointer. // // \index{itk::AffineTransform!New()} // \index{itk::AffineTransform!Pointer} // \index{itk::Multi\-Resolution\-Image\-Registration\-Method!SetTransform()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet TransformType::Pointer transform = TransformType::New(); registration->SetTransform(transform); // Software Guide : EndCodeSnippet using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); using FixedCastFilterType = itk::CastImageFilter; using MovingCastFilterType = itk::CastImageFilter; FixedCastFilterType::Pointer fixedCaster = FixedCastFilterType::New(); MovingCastFilterType::Pointer movingCaster = MovingCastFilterType::New(); fixedCaster->SetInput(fixedImageReader->GetOutput()); movingCaster->SetInput(movingImageReader->GetOutput()); registration->SetFixedImage(fixedCaster->GetOutput()); registration->SetMovingImage(movingCaster->GetOutput()); fixedCaster->Update(); registration->SetFixedImageRegion( fixedCaster->GetOutput()->GetBufferedRegion()); // Software Guide : BeginLatex // // One of the easiest ways of preparing a consistent set of parameters for // the transform is to use the \doxygen{CenteredTransformInitializer}. Once // the transform is initialized, we can invoke its \code{GetParameters()} // method to extract the array of parameters. Finally the array is passed // to the registration method using its // \code{SetInitialTransformParameters()} method. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using TransformInitializerType = itk::CenteredTransformInitializer; TransformInitializerType::Pointer initializer = TransformInitializerType::New(); initializer->SetTransform(transform); initializer->SetFixedImage(fixedImageReader->GetOutput()); initializer->SetMovingImage(movingImageReader->GetOutput()); initializer->MomentsOn(); initializer->InitializeTransform(); registration->SetInitialTransformParameters(transform->GetParameters()); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The set of parameters in the AffineTransform have different // dynamic ranges. Typically the parameters associated with the matrix // have values around $[-1:1]$, although they are not restricted to this // interval. Parameters associated with translations, on the other hand, // tend to have much higher values, typically in the order of $10.0$ to // $100.0$. This difference in dynamic range negatively affects the // performance of gradient descent optimizers. ITK provides a mechanism to // compensate for such differences in values among the parameters when // they are passed to the optimizer. The mechanism consists of providing an // array of scale factors to the optimizer. These factors re-normalize the // gradient components before they are used to compute the step of the // optimizer at the current iteration. In our particular case, a common // choice for the scale parameters is to set to $1.0$ all those associated // with the matrix coefficients, that is, the first $N \times N$ // factors. Then, we set the remaining scale factors to a small value. The // following code sets up the scale coefficients. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet OptimizerScalesType optimizerScales(transform->GetNumberOfParameters()); optimizerScales[0] = 1.0; // scale for M11 optimizerScales[1] = 1.0; // scale for M12 optimizerScales[2] = 1.0; // scale for M21 optimizerScales[3] = 1.0; // scale for M22 optimizerScales[4] = 1.0 / 1e7; // scale for translation on X optimizerScales[5] = 1.0 / 1e7; // scale for translation on Y // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Here the affine transform is represented by the matrix $\bf{M}$ and the // vector $\bf{T}$. The transformation of a point $\bf{P}$ into $\bf{P'}$ // is expressed as // // \begin{equation} // \left[ // \begin{array}{c} // {P'}_x \\ {P'}_y \\ \end{array} // \right] // = // \left[ // \begin{array}{cc} // M_{11} & M_{12} \\ M_{21} & M_{22} \\ \end{array} // \right] // \cdot // \left[ // \begin{array}{c} // P_x \\ P_y \\ \end{array} // \right] // + // \left[ // \begin{array}{c} // T_x \\ T_y \\ \end{array} // \right] // \end{equation} // // // Software Guide : EndLatex // Software Guide : BeginLatex // // The array of scales is then passed to the optimizer using the // \code{SetScales()} method. // // \index{itk::Optimizer!SetScales()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet optimizer->SetScales(optimizerScales); // Software Guide : EndCodeSnippet metric->SetNumberOfHistogramBins(128); metric->SetNumberOfSpatialSamples(50000); if (argc > 8) { // optionally, override the values with numbers taken from the command // line arguments. metric->SetNumberOfHistogramBins(std::stoi(argv[8])); } if (argc > 9) { // optionally, override the values with numbers taken from the command // line arguments. metric->SetNumberOfSpatialSamples(std::stoi(argv[9])); } // Software Guide : BeginLatex // // Given that the Mattes Mutual Information metric uses a random iterator // in order to collect the samples from the images, it is usually // convenient to initialize the seed of the random number generator. // // \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!ReinitializeSeed()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet metric->ReinitializeSeed(76926294); // Software Guide : EndCodeSnippet if (argc > 7) { // Define whether to calculate the metric derivative by explicitly // computing the derivatives of the joint PDF with respect to the // Transform parameters, or doing it by progressively accumulating // contributions from each bin in the joint PDF. metric->SetUseExplicitPDFDerivatives(std::stoi(argv[7])); } // Software Guide : BeginLatex // // The step length has to be proportional to the expected values of the // parameters in the search space. Since the expected values of the matrix // coefficients are around $1.0$, the initial step of the optimization // should be a small number compared to $1.0$. As a guideline, it is // useful to think of the matrix coefficients as combinations of // $cos(\theta)$ and $sin(\theta)$. This leads to use values close to the // expected rotation measured in radians. For example, a rotation of $1.0$ // degree is about $0.017$ radians. As in the previous example, the // maximum and minimum step length of the optimizer are set by the // \code{RegistrationInterfaceCommand} when it is called at the beginning // of registration at each multi-resolution level. // // Software Guide : EndLatex optimizer->SetNumberOfIterations(200); optimizer->SetRelaxationFactor(0.8); // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); // Create the Command interface observer and register it with the optimizer. // using CommandType = RegistrationInterfaceCommand; CommandType::Pointer command = CommandType::New(); registration->AddObserver(itk::IterationEvent(), command); registration->SetNumberOfLevels(3); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cout << "ExceptionObject caught !" << std::endl; std::cout << err << std::endl; return EXIT_FAILURE; } std::cout << "Optimizer Stopping Condition = " << optimizer->GetStopCondition() << std::endl; using ParametersType = RegistrationType::ParametersType; ParametersType finalParameters = registration->GetLastTransformParameters(); double TranslationAlongX = finalParameters[4]; double TranslationAlongY = finalParameters[5]; unsigned int numberOfIterations = optimizer->GetCurrentIteration(); double bestValue = optimizer->GetValue(); // Print out results // std::cout << "Result = " << std::endl; std::cout << " Translation X = " << TranslationAlongX << std::endl; std::cout << " Translation Y = " << TranslationAlongY << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; // Software Guide : BeginLatex // // Let's execute this example using the same multi-modality images as // before. The registration converges after $5$ iterations in the first // level, $7$ in the second level and $4$ in the third level. The final // results when printed as an array of parameters are // // \begin{verbatim} // [1.00164, 0.00147688, 0.00168372, 1.0027, 12.6296, 16.4768] // \end{verbatim} // // By reordering them as coefficient of matrix $\bf{M}$ and vector $\bf{T}$ // they can now be seen as // // \begin{equation} // M = // \left[ // \begin{array}{cc} // 1.00164 & 0.0014 \\ 0.00168 & 1.0027 \\ \end{array} // \right] // \mbox{ and } // T = // \left[ // \begin{array}{c} // 12.6296 \\ 16.4768 \\ \end{array} // \right] // \end{equation} // // In this form, it is easier to interpret the effect of the // transform. The matrix $\bf{M}$ is responsible for scaling, rotation and // shearing while $\bf{T}$ is responsible for translations. It can be seen // that the translation values in this case closely match the true // misalignment introduced in the moving image. // // It is important to note that once the images are registered at a // sub-pixel level, any further improvement of the registration relies // heavily on the quality of the interpolator. It may then be reasonable to // use a coarse and fast interpolator in the lower resolution levels and // switch to a high-quality but slow interpolator in the final resolution // level. // // Software Guide : EndLatex using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(finalTransform); resample->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); PixelType backgroundGrayLevel = 100; if (argc > 4) { backgroundGrayLevel = std::stoi(argv[4]); } resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(backgroundGrayLevel); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resample->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); // Software Guide : BeginLatex // // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{MultiResImageRegistration2Output} // \includegraphics[width=0.32\textwidth]{MultiResImageRegistration2CheckerboardBefore} // \includegraphics[width=0.32\textwidth]{MultiResImageRegistration2CheckerboardAfter} // \itkcaption[Multi-Resolution Registration Input Images]{Mapped moving // image (left) and composition of fixed and moving images before (center) // and after (right) multi-resolution registration with the AffineTransform // class.} \label{fig:MultiResImageRegistration2Output} \end{figure} // // The result of resampling the moving image is shown in the left image // of Figure \ref{fig:MultiResImageRegistration2Output}. The center and // right images of the figure present a checkerboard composite of the fixed // and moving images before and after registration. // // Software Guide : EndLatex // Software Guide : BeginLatex // // \begin{figure} // \center // \includegraphics[height=0.44\textwidth]{MultiResImageRegistration2TraceTranslations} // \includegraphics[height=0.44\textwidth]{MultiResImageRegistration2TraceMetric} // \itkcaption[Multi-Resolution Registration output plots]{Sequence of // translations and metric values at each iteration of the optimizer for // multi-resolution with the AffineTransform class.} // \label{fig:MultiResImageRegistration2Trace} // \end{figure} // // Figure \ref{fig:MultiResImageRegistration2Trace} (left) presents the // sequence of translations followed by the optimizer as it searched the // parameter space. The right side of the same figure shows the sequence of // metric values computed as the optimizer explored the parameter space. // // Software Guide : EndLatex // // Generate checkerboards before and after registration // using CheckerBoardFilterType = itk::CheckerBoardImageFilter; CheckerBoardFilterType::Pointer checker = CheckerBoardFilterType::New(); checker->SetInput1(fixedImage); checker->SetInput2(resample->GetOutput()); caster->SetInput(checker->GetOutput()); writer->SetInput(caster->GetOutput()); resample->SetDefaultPixelValue(0); // Write out checkerboard outputs // Before registration TransformType::Pointer identityTransform = TransformType::New(); identityTransform->SetIdentity(); resample->SetTransform(identityTransform); if (argc > 5) { writer->SetFileName(argv[5]); writer->Update(); } // After registration resample->SetTransform(finalTransform); if (argc > 6) { writer->SetFileName(argv[6]); writer->Update(); } return EXIT_SUCCESS; }