/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // // This example is the 3D version of the 2D example in // MultiResImageRegistration1.cxx // #include "itkMultiResolutionImageRegistrationMethod.h" #include "itkTranslationTransform.h" #include "itkMattesMutualInformationImageToImageMetric.h" #include "itkRegularStepGradientDescentOptimizer.h" #include "itkImage.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkCheckerBoardImageFilter.h" #include "itkCommand.h" template class RegistrationInterfaceCommand : public itk::Command { public: using Self = RegistrationInterfaceCommand; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: RegistrationInterfaceCommand() = default; public: using RegistrationType = TRegistration; using RegistrationPointer = RegistrationType *; using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = OptimizerType *; void Execute(itk::Object * object, const itk::EventObject & event) override { if (!(itk::IterationEvent().CheckEvent(&event))) { return; } auto registration = static_cast(object); if (registration == nullptr) { return; } auto optimizer = static_cast(registration->GetModifiableOptimizer()); std::cout << "-------------------------------------" << std::endl; std::cout << "MultiResolution Level : " << registration->GetCurrentLevel() << std::endl; std::cout << std::endl; if (registration->GetCurrentLevel() == 0) { optimizer->SetMaximumStepLength(16.00); optimizer->SetMinimumStepLength(0.01); } else { optimizer->SetMaximumStepLength(optimizer->GetMaximumStepLength() / 4.0); optimizer->SetMinimumStepLength(optimizer->GetMinimumStepLength() / 10.0); } } void Execute(const itk::Object *, const itk::EventObject &) override { return; } }; // The following section of code implements an observer // that will monitor the evolution of the registration process. // class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: using OptimizerType = itk::RegularStepGradientDescentOptimizer; using OptimizerPointer = const OptimizerType *; void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { auto optimizer = static_cast(object); if (!(itk::IterationEvent().CheckEvent(&event))) { return; } std::cout << optimizer->GetCurrentIteration() << " "; std::cout << optimizer->GetValue() << " "; std::cout << optimizer->GetCurrentPosition() << std::endl; } }; int main(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " fixedImageFile movingImageFile "; std::cerr << " outputImagefile [backgroundGrayLevel]"; std::cerr << " [checkerBoardBefore] [checkerBoardAfter]"; std::cerr << " [useExplicitPDFderivatives ] " << std::endl; std::cerr << " [numberOfBins] [numberOfSamples ] " << std::endl; return EXIT_FAILURE; } constexpr unsigned int Dimension = 3; using PixelType = unsigned short; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using InternalPixelType = float; using InternalImageType = itk::Image; using TransformType = itk::TranslationTransform; using OptimizerType = itk::RegularStepGradientDescentOptimizer; using InterpolatorType = itk::LinearInterpolateImageFunction; using MetricType = itk::MattesMutualInformationImageToImageMetric; using RegistrationType = itk::MultiResolutionImageRegistrationMethod; using FixedImagePyramidType = itk::MultiResolutionPyramidImageFilter; using MovingImagePyramidType = itk::MultiResolutionPyramidImageFilter; // All the components are instantiated using their \code{New()} method // and connected to the registration object as in previous example. // TransformType::Pointer transform = TransformType::New(); OptimizerType::Pointer optimizer = OptimizerType::New(); InterpolatorType::Pointer interpolator = InterpolatorType::New(); RegistrationType::Pointer registration = RegistrationType::New(); MetricType::Pointer metric = MetricType::New(); FixedImagePyramidType::Pointer fixedImagePyramid = FixedImagePyramidType::New(); MovingImagePyramidType::Pointer movingImagePyramid = MovingImagePyramidType::New(); registration->SetOptimizer(optimizer); registration->SetTransform(transform); registration->SetInterpolator(interpolator); registration->SetMetric(metric); registration->SetFixedImagePyramid(fixedImagePyramid); registration->SetMovingImagePyramid(movingImagePyramid); using FixedImageReaderType = itk::ImageFileReader; using MovingImageReaderType = itk::ImageFileReader; FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New(); MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New(); fixedImageReader->SetFileName(argv[1]); movingImageReader->SetFileName(argv[2]); using FixedCastFilterType = itk::CastImageFilter; using MovingCastFilterType = itk::CastImageFilter; FixedCastFilterType::Pointer fixedCaster = FixedCastFilterType::New(); MovingCastFilterType::Pointer movingCaster = MovingCastFilterType::New(); fixedCaster->SetInput(fixedImageReader->GetOutput()); movingCaster->SetInput(movingImageReader->GetOutput()); registration->SetFixedImage(fixedCaster->GetOutput()); registration->SetMovingImage(movingCaster->GetOutput()); fixedCaster->Update(); registration->SetFixedImageRegion( fixedCaster->GetOutput()->GetBufferedRegion()); using ParametersType = RegistrationType::ParametersType; ParametersType initialParameters(transform->GetNumberOfParameters()); initialParameters[0] = 0.0; // Initial offset in mm along X initialParameters[1] = 0.0; // Initial offset in mm along Y initialParameters[2] = 0.0; // Initial offset in mm along Z registration->SetInitialTransformParameters(initialParameters); metric->SetNumberOfHistogramBins(128); metric->SetNumberOfSpatialSamples(50000); if (argc > 8) { // optionally, override the values with numbers taken from the command // line arguments. metric->SetNumberOfHistogramBins(std::stoi(argv[8])); } if (argc > 9) { // optionally, override the values with numbers taken from the command // line arguments. metric->SetNumberOfSpatialSamples(std::stoi(argv[9])); } metric->ReinitializeSeed(76926294); if (argc > 7) { // Define whether to calculate the metric derivative by explicitly // computing the derivatives of the joint PDF with respect to the // Transform parameters, or doing it by progressively accumulating // contributions from each bin in the joint PDF. metric->SetUseExplicitPDFDerivatives(std::stoi(argv[7])); } optimizer->SetNumberOfIterations(200); optimizer->SetRelaxationFactor(0.9); // Create the Command observer and register it with the optimizer. // CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New(); optimizer->AddObserver(itk::IterationEvent(), observer); using CommandType = RegistrationInterfaceCommand; CommandType::Pointer command = CommandType::New(); registration->AddObserver(itk::IterationEvent(), command); registration->SetNumberOfLevels(3); try { registration->Update(); std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription() << std::endl; } catch (const itk::ExceptionObject & err) { std::cout << "ExceptionObject caught !" << std::endl; std::cout << err << std::endl; return EXIT_FAILURE; } ParametersType finalParameters = registration->GetLastTransformParameters(); double TranslationAlongX = finalParameters[0]; double TranslationAlongY = finalParameters[1]; double TranslationAlongZ = finalParameters[2]; unsigned int numberOfIterations = optimizer->GetCurrentIteration(); double bestValue = optimizer->GetValue(); // Print out results // std::cout << "Result = " << std::endl; std::cout << " Translation X = " << TranslationAlongX << std::endl; std::cout << " Translation Y = " << TranslationAlongY << std::endl; std::cout << " Translation Z = " << TranslationAlongZ << std::endl; std::cout << " Iterations = " << numberOfIterations << std::endl; std::cout << " Metric value = " << bestValue << std::endl; using ResampleFilterType = itk::ResampleImageFilter; TransformType::Pointer finalTransform = TransformType::New(); finalTransform->SetParameters(finalParameters); finalTransform->SetFixedParameters(transform->GetFixedParameters()); ResampleFilterType::Pointer resample = ResampleFilterType::New(); resample->SetTransform(finalTransform); resample->SetInput(movingImageReader->GetOutput()); FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); PixelType backgroundGrayLevel = 100; if (argc > 4) { backgroundGrayLevel = std::stoi(argv[4]); } resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize()); resample->SetOutputOrigin(fixedImage->GetOrigin()); resample->SetOutputSpacing(fixedImage->GetSpacing()); resample->SetOutputDirection(fixedImage->GetDirection()); resample->SetDefaultPixelValue(backgroundGrayLevel); using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastFilterType = itk::CastImageFilter; using WriterType = itk::ImageFileWriter; WriterType::Pointer writer = WriterType::New(); CastFilterType::Pointer caster = CastFilterType::New(); writer->SetFileName(argv[3]); caster->SetInput(resample->GetOutput()); writer->SetInput(caster->GetOutput()); writer->Update(); // // Generate checkerboards before and after registration // using CheckerBoardFilterType = itk::CheckerBoardImageFilter; CheckerBoardFilterType::Pointer checker = CheckerBoardFilterType::New(); checker->SetInput1(fixedImage); checker->SetInput2(resample->GetOutput()); caster->SetInput(checker->GetOutput()); writer->SetInput(caster->GetOutput()); resample->SetDefaultPixelValue(0); // Before registration TransformType::Pointer identityTransform = TransformType::New(); identityTransform->SetIdentity(); resample->SetTransform(identityTransform); if (argc > 5) { writer->SetFileName(argv[5]); writer->Update(); } // After registration resample->SetTransform(finalTransform); if (argc > 6) { writer->SetFileName(argv[6]); writer->Update(); } return EXIT_SUCCESS; }