/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginCommandLineArgs // INPUTS: {brainweb165a10f17.mha} // ARGUMENTS: {WhiteMatterSegmentation.mhd} // Software Guide : EndCommandLineArgs #include "itkConfidenceConnectedImageFilter.h" #include "itkCastImageFilter.h" #include "itkCurvatureFlowImageFilter.h" #include "itkImageFileReader.h" #include "itkImageFileWriter.h" // Software Guide : BeginLatex // // This example is a 3D version of the previous ConfidenceConnected example. // In this particular case, we are extracting the white matter from an input // Brain MRI dataset. // // Software Guide : EndLatex int main(int argc, char * argv[]) { if (argc < 3) { std::cerr << "Missing Parameters " << std::endl; std::cerr << "Usage: " << argv[0]; std::cerr << " inputImage outputImage " << std::endl; return EXIT_FAILURE; } using InternalPixelType = float; constexpr unsigned int Dimension = 3; using InternalImageType = itk::Image; using OutputPixelType = unsigned char; using OutputImageType = itk::Image; using CastingFilterType = itk::CastImageFilter; CastingFilterType::Pointer caster = CastingFilterType::New(); using ReaderType = itk::ImageFileReader; using WriterType = itk::ImageFileWriter; ReaderType::Pointer reader = ReaderType::New(); WriterType::Pointer writer = WriterType::New(); reader->SetFileName(argv[1]); writer->SetFileName(argv[2]); using CurvatureFlowImageFilterType = itk::CurvatureFlowImageFilter; CurvatureFlowImageFilterType::Pointer smoothing = CurvatureFlowImageFilterType::New(); using ConnectedFilterType = itk::ConfidenceConnectedImageFilter; ConnectedFilterType::Pointer confidenceConnected = ConnectedFilterType::New(); smoothing->SetInput(reader->GetOutput()); confidenceConnected->SetInput(smoothing->GetOutput()); caster->SetInput(confidenceConnected->GetOutput()); writer->SetInput(caster->GetOutput()); smoothing->SetNumberOfIterations(2); smoothing->SetTimeStep(0.05); confidenceConnected->SetMultiplier(2.5); confidenceConnected->SetNumberOfIterations(5); confidenceConnected->SetInitialNeighborhoodRadius(2); confidenceConnected->SetReplaceValue(255); InternalImageType::IndexType index1; index1[0] = 118; index1[1] = 133; index1[2] = 92; confidenceConnected->AddSeed(index1); InternalImageType::IndexType index2; index2[0] = 63; index2[1] = 135; index2[2] = 94; confidenceConnected->AddSeed(index2); InternalImageType::IndexType index3; index3[0] = 63; index3[1] = 157; index3[2] = 90; confidenceConnected->AddSeed(index3); InternalImageType::IndexType index4; index4[0] = 111; index4[1] = 150; index4[2] = 90; confidenceConnected->AddSeed(index4); InternalImageType::IndexType index5; index5[0] = 111; index5[1] = 50; index5[2] = 88; confidenceConnected->AddSeed(index5); try { writer->Update(); } catch (const itk::ExceptionObject & excep) { std::cerr << "Exception caught !" << std::endl; std::cerr << excep << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }