/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginLatex // // By now, you are probably thinking that the statistics framework in ITK is // too complex for simply computing histograms from images. Here we illustrate // that the benefit for this complexity is the power that these methods // provide for dealing with more complex and realistic uses of image // statistics than the trivial 256-bin histogram of 8-bit images that most // software packages provide. One of such cases is the computation of // histograms from multi-component images such as Vector images and color // images. // // This example shows how to compute the histogram of an RGB image by using // the helper class \code{ImageToHistogramFilter}. In this first example we // compute the histogram of each channel independently. // // We start by including the header of the // \subdoxygen{Statistics}{ImageToHistogramFilter}, as well as the headers // for the image class and the RGBPixel class. // // \index{itk::Statistics::ImageToHistogramFilter!header} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet #include "itkImageToHistogramFilter.h" #include "itkImage.h" #include "itkRGBPixel.h" // Software Guide : EndCodeSnippet #include "itkImageFileReader.h" int main(int argc, char * argv[]) { if (argc < 2) { std::cerr << "Missing command line arguments" << std::endl; std::cerr << "Usage : ImageHistogram3 inputRGBImageFileName " << std::endl; return EXIT_FAILURE; } // Software Guide : BeginLatex // // The type of the RGB image is defined by first instantiating a RGBPixel // and then using the image dimension specification. // // \index{itk::Statistics!Color Images} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using PixelComponentType = unsigned char; using RGBPixelType = itk::RGBPixel; constexpr unsigned int Dimension = 2; using RGBImageType = itk::Image; // Software Guide : EndCodeSnippet using ReaderType = itk::ImageFileReader; ReaderType::Pointer reader = ReaderType::New(); reader->SetFileName(argv[1]); try { reader->Update(); } catch (const itk::ExceptionObject & excp) { std::cerr << "Problem encoutered while reading image file : " << argv[1] << std::endl; std::cerr << excp << std::endl; return EXIT_FAILURE; } // Software Guide : BeginLatex // // Using the RGB image type we can instantiate the type of the corresponding // histogram filter and construct one filter by invoking its \code{New()} // method. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using HistogramFilterType = itk::Statistics::ImageToHistogramFilter; HistogramFilterType::Pointer histogramFilter = HistogramFilterType::New(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The parameters of the histogram must be defined now. Probably the most // important one is the arrangement of histogram bins. This is provided to // the histogram through a size array. The type of the array can be taken // from the traits of the \code{HistogramFilterType} type. We create one // instance of the size object and fill in its content. In this particular // case, the three components of the size array will correspond to the // number of bins used for each one of the RGB components in the color // image. The following lines show how to define a histogram on the red // component of the image while disregarding the green and blue components. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using SizeType = HistogramFilterType::HistogramSizeType; SizeType size(3); size[0] = 255; // number of bins for the Red channel size[1] = 1; // number of bins for the Green channel size[2] = 1; // number of bins for the Blue channel histogramFilter->SetHistogramSize(size); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The marginal scale must be defined in the filter. This will determine the // precision in the assignment of values to the histogram bins. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet histogramFilter->SetMarginalScale(10.0); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Finally, we must specify the upper and lower bounds for the histogram. // This can either be done manually using the // \code{SetHistogramBinMinimum()} and \code{SetHistogramBinMaximum()} // methods or it can be done automatically by calling // \code{SetHistogramAutoMinimumMaximum( true )}. Here we use the manual // method. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet HistogramFilterType::HistogramMeasurementVectorType lowerBound(3); HistogramFilterType::HistogramMeasurementVectorType upperBound(3); lowerBound[0] = 0; lowerBound[1] = 0; lowerBound[2] = 0; upperBound[0] = 256; upperBound[1] = 256; upperBound[2] = 256; histogramFilter->SetHistogramBinMinimum(lowerBound); histogramFilter->SetHistogramBinMaximum(upperBound); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The input of the filter is taken from an image reader, and the // computation of the histogram is triggered by invoking the \code{Update()} // method of the filter. // // \index{itk::Statistics::ImageToHistogramFilter!Update()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet histogramFilter->SetInput(reader->GetOutput()); histogramFilter->Update(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // We can now access the results of the histogram computation by declaring a // pointer to histogram and getting its value from the filter using the // \code{GetOutput()} method. Note that here we use a \code{const // HistogramType} pointer instead of a const smart pointer because we are // sure that the filter is not going to be destroyed while we access the // values of the histogram. Depending on what you are doing, it may be safer // to assign the histogram to a const smart pointer as shown in previous // examples. // // \index{itk::Statistics::ImageTohistogramFilter!GetOutput()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet using HistogramType = HistogramFilterType::HistogramType; const HistogramType * histogram = histogramFilter->GetOutput(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Just for the sake of exercising the experimental // method~\cite{Popper2002}, we verify that the resulting histogram actually // have the size that we requested when we configured the filter. This can // be done by invoking the \code{Size()} method of the histogram and // printing out the result. // // \index{itk::Statistics::Histogram!Size()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet const unsigned int histogramSize = histogram->Size(); std::cout << "Histogram size " << histogramSize << std::endl; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // Strictly speaking, the histogram computed here is the joint histogram of // the three RGB components. However, given that we set the resolution of // the green and blue channels to be just one bin, the histogram is in // practice representing just the red channel. In the general case, we can // alway access the frequency of a particular channel in a joint histogram, // thanks to the fact that the histogram class offers a // \code{GetFrequency()} method that accepts a channel as argument. This is // illustrated in the following lines of code. // // \index{itk::Statistics::Histogram!GetFrequency()} // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet unsigned int channel = 0; // red channel std::cout << "Histogram of the red component" << std::endl; for (unsigned int bin = 0; bin < histogramSize; ++bin) { std::cout << "bin = " << bin << " frequency = "; std::cout << histogram->GetFrequency(bin, channel) << std::endl; } // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // In order to reinforce the concepts presented above, we modify now the // setup of the histogram filter in order to compute the histogram of the // green channel instead of the red one. This is done by simply changing the // number of bins desired on each channel and invoking the computation of // the filter again by calling the \code{Update()} method. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet size[0] = 1; // number of bins for the Red channel size[1] = 255; // number of bins for the Green channel size[2] = 1; // number of bins for the Blue channel histogramFilter->SetHistogramSize(size); histogramFilter->Update(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The result can be verified now by setting the desired channel to green // and invoking the \code{GetFrequency()} method. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet channel = 1; // green channel std::cout << "Histogram of the green component" << std::endl; for (unsigned int bin = 0; bin < histogramSize; ++bin) { std::cout << "bin = " << bin << " frequency = "; std::cout << histogram->GetFrequency(bin, channel) << std::endl; } // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // To finalize the example, we do the same computation for the case of the // blue channel. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet size[0] = 1; // number of bins for the Red channel size[1] = 1; // number of bins for the Green channel size[2] = 255; // number of bins for the Blue channel histogramFilter->SetHistogramSize(size); histogramFilter->Update(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // and verify the output. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet channel = 2; // blue channel std::cout << "Histogram of the blue component" << std::endl; for (unsigned int bin = 0; bin < histogramSize; ++bin) { std::cout << "bin = " << bin << " frequency = "; std::cout << histogram->GetFrequency(bin, channel) << std::endl; } // Software Guide : EndCodeSnippet return EXIT_SUCCESS; }