/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // Software Guide : BeginCommandLineArgs // INPUTS: {BrainT1Slice.png} // Software Guide : EndCommandLineArgs // Software Guide : BeginLatex // // This example shows how to compute the KMeans model of a Scalar Image. // // The \subdoxygen{Statistics}{KdTreeBasedKmeansEstimator} is used for taking // a scalar image and applying the K-Means algorithm in order to define // classes that represents statistical distributions of intensity values in // the pixels. In the context of Medical Imaging, each class is typically // associated to a particular type of tissue and can therefore be used as a // form of image segmentation. One of the drawbacks of this technique is that // the spatial distribution of the pixels is not considered at all. It is // common therefore to combine the classification resulting from K-Means with // other segmentation techniques that will use the classification as a prior // and add spatial information to it in order to produce a better // segmentation. // // Software Guide : EndLatex #include "itkKdTree.h" #include "itkKdTreeBasedKmeansEstimator.h" #include "itkWeightedCentroidKdTreeGenerator.h" #include "itkImageToListSampleAdaptor.h" #include "itkImage.h" #include "itkImageFileReader.h" int main(int argc, char * argv[]) { if (argc < 2) { std::cerr << "Missing command line arguments" << std::endl; std::cerr << "Usage : " << argv[0] << " inputImageFileName " << std::endl; return -1; } using PixelType = unsigned char; constexpr unsigned int Dimension = 2; using ImageType = itk::Image; using ReaderType = itk::ImageFileReader; ReaderType::Pointer reader = ReaderType::New(); reader->SetFileName(argv[1]); try { reader->Update(); } catch (const itk::ExceptionObject & excp) { std::cerr << "Problem encoutered while reading image file : " << argv[1] << std::endl; std::cerr << excp << std::endl; return -1; } // Software Guide : BeginCodeSnippet // Create a List from the scalar image using AdaptorType = itk::Statistics::ImageToListSampleAdaptor; AdaptorType::Pointer adaptor = AdaptorType::New(); adaptor->SetImage(reader->GetOutput()); // Create the K-d tree structure using TreeGeneratorType = itk::Statistics::WeightedCentroidKdTreeGenerator; TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New(); treeGenerator->SetSample(adaptor); treeGenerator->SetBucketSize(16); treeGenerator->Update(); using TreeType = TreeGeneratorType::KdTreeType; using EstimatorType = itk::Statistics::KdTreeBasedKmeansEstimator; EstimatorType::Pointer estimator = EstimatorType::New(); constexpr unsigned int numberOfClasses = 3; EstimatorType::ParametersType initialMeans(numberOfClasses); initialMeans[0] = 25.0; initialMeans[1] = 125.0; initialMeans[2] = 250.0; estimator->SetParameters(initialMeans); estimator->SetKdTree(treeGenerator->GetOutput()); estimator->SetMaximumIteration(200); estimator->SetCentroidPositionChangesThreshold(0.0); estimator->StartOptimization(); EstimatorType::ParametersType estimatedMeans = estimator->GetParameters(); for (unsigned int i = 0; i < numberOfClasses; ++i) { std::cout << "cluster[" << i << "] " << std::endl; std::cout << " estimated mean : " << estimatedMeans[i] << std::endl; } // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // \begin{figure} \center // \includegraphics[width=0.44\textwidth]{BrainT1Slice} // \itkcaption[Output of the ScalarImageKmeansModelEstimator]{Test image for // the KMeans model estimator.} // \label{fig:ScalarImageKmeansModelEstimatorTestImage} // \end{figure} // // The example produces means of 14.8, 91.6, 134.9 on // Figure \ref{fig:ScalarImageKmeansModelEstimatorTestImage} // // Software Guide : EndLatex return EXIT_SUCCESS; }