/*========================================================================= Module: V_TriMetric.cpp Copyright (c) 2007 Sandia Corporation. All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /* * * TriMetric.cpp contains quality calculations for Tris * * This file is part of VERDICT * */ #include "verdict.h" #include "verdict_defines.hpp" #include "V_GaussIntegration.hpp" #include "VerdictVector.hpp" #include #include // the average area of a tri static double verdict_tri_size = 0; static ComputeNormal compute_normal = NULL; /*! get weights based on the average area of a set of tris */ static int v_tri_get_weight ( double &m11, double &m21, double &m12, double &m22 ) { static const double rootOf3 = sqrt(3.0); m11=1; m21=0; m12=0.5; m22=0.5*rootOf3; double scale = sqrt(2.0*verdict_tri_size/(m11*m22-m21*m12)); m11 *= scale; m21 *= scale; m12 *= scale; m22 *= scale; return 1; } /*! sets the average area of a tri */ C_FUNC_DEF void v_set_tri_size( double size ) { verdict_tri_size = size; } C_FUNC_DEF void v_set_tri_normal_func( ComputeNormal func ) { compute_normal = func; } /*! the edge ratio of a triangle NB (P. Pebay 01/14/07): Hmax / Hmin where Hmax and Hmin are respectively the maximum and the minimum edge lengths */ C_FUNC_DEF double v_tri_edge_ratio( int /*num_nodes*/, double coordinates[][3] ) { // three vectors for each side VerdictVector a( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); VerdictVector b( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); VerdictVector c( coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2] ); double a2 = a.length_squared(); double b2 = b.length_squared(); double c2 = c.length_squared(); double m2, M2; if ( a2 < b2 ) { if ( b2 < c2 ) { m2 = a2; M2 = c2; } else // b2 <= a2 { if ( a2 < c2 ) { m2 = a2; M2 = b2; } else // c2 <= a2 { m2 = c2; M2 = b2; } } } else // b2 <= a2 { if ( a2 < c2 ) { m2 = b2; M2 = c2; } else // c2 <= a2 { if ( b2 < c2 ) { m2 = b2; M2 = a2; } else // c2 <= b2 { m2 = c2; M2 = a2; } } } if( m2 < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; else { double edge_ratio; edge_ratio = sqrt(M2 / m2); if( edge_ratio > 0 ) return (double) VERDICT_MIN( edge_ratio, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( edge_ratio, -VERDICT_DBL_MAX ); } } /*! the aspect ratio of a triangle NB (P. Pebay 01/14/07): Hmax / ( 2.0 * sqrt(3.0) * IR) where Hmax is the maximum edge length and IR is the inradius note that previous incarnations of verdict used "v_tri_aspect_ratio" to denote what is now called "v_tri_aspect_frobenius" */ C_FUNC_DEF double v_tri_aspect_ratio( int /*num_nodes*/, double coordinates[][3] ) { static const double normal_coeff = sqrt( 3. ) / 6.; // three vectors for each side VerdictVector a( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); VerdictVector b( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); VerdictVector c( coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2] ); double a1 = a.length(); double b1 = b.length(); double c1 = c.length(); double hm = a1 > b1 ? a1 : b1; hm = hm > c1 ? hm : c1; VerdictVector ab = a * b; double denominator = ab.length(); if( denominator < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; else { double aspect_ratio; aspect_ratio = normal_coeff * hm * (a1 + b1 + c1) / denominator; if( aspect_ratio > 0 ) return (double) VERDICT_MIN( aspect_ratio, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( aspect_ratio, -VERDICT_DBL_MAX ); } } /*! the radius ratio of a triangle NB (P. Pebay 01/13/07): CR / (2.0*IR) where CR is the circumradius and IR is the inradius The radius ratio is also known to VERDICT, for tetrahedral elements only, as the "aspect beta". */ C_FUNC_DEF double v_tri_radius_ratio( int /*num_nodes*/, double coordinates[][3] ) { // three vectors for each side VerdictVector a( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); VerdictVector b( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); VerdictVector c( coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2] ); double a1 = a.length(); double b1 = b.length(); double c1 = c.length(); VerdictVector ab = a * b; double denominator = ab.length_squared(); if( denominator < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; double radius_ratio; radius_ratio = .25 * a1 * b1 * c1 * ( a1 + b1 + c1 ) / denominator; if( radius_ratio > 0 ) return (double) VERDICT_MIN( radius_ratio, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( radius_ratio, -VERDICT_DBL_MAX ); } /*! the Frobenius aspect of a tri srms^2/(2 * sqrt(3.0) * area) where srms^2 is sum of the lengths squared NB (P. Pebay 01/14/07): this method was called "aspect ratio" in earlier incarnations of VERDICT */ C_FUNC_DEF double v_tri_aspect_frobenius( int /*num_nodes*/, double coordinates[][3] ) { static const double two_times_root_of_3 = 2*sqrt(3.0); // three vectors for each side VerdictVector side1( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); VerdictVector side2( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); VerdictVector side3( coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2] ); //sum the lengths squared of each side double srms = (side1.length_squared() + side2.length_squared() + side3.length_squared()); // find two times the area of the triangle by cross product double areaX2 = ((side1 * (-side3)).length()); if(areaX2 == 0.0) return (double)VERDICT_DBL_MAX; double aspect = (double)(srms / (two_times_root_of_3 * (areaX2))); if( aspect > 0 ) return (double) VERDICT_MIN( aspect, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( aspect, -VERDICT_DBL_MAX ); } /*! The area of a tri 0.5 * jacobian at a node */ C_FUNC_DEF double v_tri_area( int /*num_nodes*/, double coordinates[][3] ) { // two vectors for two sides VerdictVector side1( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); VerdictVector side3( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2] ); // the cross product of the two vectors representing two sides of the // triangle VerdictVector tmp = side1 * side3; // return the magnitude of the vector divided by two double area = 0.5 * tmp.length(); if( area > 0 ) return (double) VERDICT_MIN( area, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( area, -VERDICT_DBL_MAX ); } /*! The minimum angle of a tri The minimum angle of a tri is the minimum angle between two adjacents sides out of all three corners of the triangle. */ C_FUNC_DEF double v_tri_minimum_angle( int /*num_nodes*/, double coordinates[][3] ) { // vectors for all the sides VerdictVector sides[4]; sides[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); sides[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); sides[2].set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2] ); // in case we need to find the interior angle // between sides 0 and 1 sides[3] = -sides[1]; // calculate the lengths squared of the sides double sides_lengths[3]; sides_lengths[0] = sides[0].length_squared(); sides_lengths[1] = sides[1].length_squared(); sides_lengths[2] = sides[2].length_squared(); if(sides_lengths[0] == 0.0 || sides_lengths[1] == 0.0 || sides_lengths[2] == 0.0) return 0.0; // using the law of sines, we know that the minimum // angle is opposite of the shortest side // find the shortest side int short_side=0; if(sides_lengths[1] < sides_lengths[0]) short_side = 1; if(sides_lengths[2] < sides_lengths[short_side]) short_side = 2; // from the shortest side, calculate the angle of the // opposite angle double min_angle; if(short_side == 0) { min_angle = sides[2].interior_angle(sides[1]); } else if(short_side == 1) { min_angle = sides[0].interior_angle(sides[2]); } else { min_angle = sides[0].interior_angle(sides[3]); } if( min_angle > 0 ) return (double) VERDICT_MIN( min_angle, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( min_angle, -VERDICT_DBL_MAX ); } /*! The maximum angle of a tri The maximum angle of a tri is the maximum angle between two adjacents sides out of all three corners of the triangle. */ C_FUNC_DEF double v_tri_maximum_angle( int /*num_nodes*/, double coordinates[][3] ) { // vectors for all the sides VerdictVector sides[4]; sides[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); sides[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); sides[2].set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2] ); // in case we need to find the interior angle // between sides 0 and 1 sides[3] = -sides[1]; // calculate the lengths squared of the sides double sides_lengths[3]; sides_lengths[0] = sides[0].length_squared(); sides_lengths[1] = sides[1].length_squared(); sides_lengths[2] = sides[2].length_squared(); if(sides_lengths[0] == 0.0 || sides_lengths[1] == 0.0 || sides_lengths[2] == 0.0) { return 0.0; } // using the law of sines, we know that the maximum // angle is opposite of the longest side // find the longest side int short_side=0; if(sides_lengths[1] > sides_lengths[0]) short_side = 1; if(sides_lengths[2] > sides_lengths[short_side]) short_side = 2; // from the longest side, calculate the angle of the // opposite angle double max_angle; if(short_side == 0) { max_angle = sides[2].interior_angle(sides[1]); } else if(short_side == 1) { max_angle = sides[0].interior_angle(sides[2]); } else { max_angle = sides[0].interior_angle(sides[3]); } if( max_angle > 0 ) return (double) VERDICT_MIN( max_angle, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( max_angle, -VERDICT_DBL_MAX ); } /*! The condition of a tri Condition number of the jacobian matrix at any corner */ C_FUNC_DEF double v_tri_condition( int /*num_nodes*/, double coordinates[][3] ) { static const double rt3 = sqrt(3.0); VerdictVector v1(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); VerdictVector v2(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2] ); VerdictVector tri_normal = v1 * v2; double areax2= tri_normal.length(); if (areax2 == 0.0 ) return (double)VERDICT_DBL_MAX; double condition = (double)( ((v1%v1) + (v2%v2) - (v1%v2)) / (areax2*rt3) ); //check for inverted if we have access to the normal if( compute_normal ) { //center of tri double point[3], surf_normal[3]; point[0] = (coordinates[0][0] + coordinates[1][0] + coordinates[2][0]) / 3; point[1] = (coordinates[0][1] + coordinates[1][1] + coordinates[2][1]) / 3; point[2] = (coordinates[0][2] + coordinates[1][2] + coordinates[2][2]) / 3; //dot product compute_normal( point, surf_normal ); if( (tri_normal.x()*surf_normal[0] + tri_normal.y()*surf_normal[1] + tri_normal.z()*surf_normal[2] ) < 0 ) return (double)VERDICT_DBL_MAX; } return (double)VERDICT_MIN( condition, VERDICT_DBL_MAX ); } /*! The scaled jacobian of a tri minimum of the jacobian divided by the lengths of 2 edge vectors */ C_FUNC_DEF double v_tri_scaled_jacobian( int /*num_nodes*/, double coordinates[][3]) { static const double detw = 2./sqrt(3.0); VerdictVector first, second; double jacobian; VerdictVector edge[3]; edge[0].set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2]); edge[1].set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2]); edge[2].set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2]); first = edge[1]-edge[0]; second = edge[2]-edge[0]; VerdictVector cross = first * second; jacobian = cross.length(); double max_edge_length_product; max_edge_length_product = VERDICT_MAX( edge[0].length()*edge[1].length(), VERDICT_MAX( edge[1].length()*edge[2].length(), edge[0].length()*edge[2].length() ) ); if( max_edge_length_product < VERDICT_DBL_MIN ) return (double)0.0; jacobian *= detw; jacobian /= max_edge_length_product; if( compute_normal ) { //center of tri double point[3], surf_normal[3]; point[0] = (coordinates[0][0] + coordinates[1][0] + coordinates[2][0]) / 3; point[1] = (coordinates[0][1] + coordinates[1][1] + coordinates[2][1]) / 3; point[2] = (coordinates[0][2] + coordinates[1][2] + coordinates[2][2]) / 3; //dot product compute_normal( point, surf_normal ); if( (cross.x()*surf_normal[0] + cross.y()*surf_normal[1] + cross.z()*surf_normal[2] ) < 0 ) jacobian *= -1; } if( jacobian > 0 ) return (double) VERDICT_MIN( jacobian, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( jacobian, -VERDICT_DBL_MAX ); } /*! The shape of a tri 2 / condition number of weighted jacobian matrix */ C_FUNC_DEF double v_tri_shape( int num_nodes, double coordinates[][3] ) { double condition = v_tri_condition( num_nodes, coordinates ); double shape; if( condition <= VERDICT_DBL_MIN ) shape = VERDICT_DBL_MAX; else shape = (1 / condition); if( shape > 0 ) return (double) VERDICT_MIN( shape, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( shape, -VERDICT_DBL_MAX ); } /*! The relative size of a tri Min(J,1/J) where J is the determinant of the weighted jacobian matrix. */ C_FUNC_DEF double v_tri_relative_size_squared( int /*num_nodes*/, double coordinates[][3] ) { double w11, w21, w12, w22; VerdictVector xxi, xet, tri_normal; v_tri_get_weight(w11,w21,w12,w22); double detw = v_determinant(w11,w21,w12,w22); if(detw == 0.0) return 0.0; xxi.set(coordinates[0][0] - coordinates[1][0], coordinates[0][1] - coordinates[1][1], coordinates[0][2] - coordinates[1][2]); xet.set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2]); tri_normal = xxi * xet; double deta = tri_normal.length(); if( deta == 0.0 || detw == 0.0 ) return 0.0; double size = pow( deta/detw, 2 ); double rel_size = VERDICT_MIN(size, 1.0/size ); if( rel_size > 0 ) return (double) VERDICT_MIN( rel_size, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( rel_size, -VERDICT_DBL_MAX ); } /*! The shape and size of a tri Product of the Shape and Relative Size */ C_FUNC_DEF double v_tri_shape_and_size( int num_nodes, double coordinates[][3] ) { double size, shape; size = v_tri_relative_size_squared( num_nodes, coordinates ); shape = v_tri_shape( num_nodes, coordinates ); double shape_and_size = size * shape; if( shape_and_size > 0 ) return (double) VERDICT_MIN( shape_and_size, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( shape_and_size, -VERDICT_DBL_MAX ); } /*! The distortion of a tri TODO: make a short definition of the distortion and comment below */ C_FUNC_DEF double v_tri_distortion( int num_nodes, double coordinates[][3] ) { double distortion; int total_number_of_gauss_points=0; VerdictVector aa, bb, cc,normal_at_point, xin; double element_area = 0.; aa.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); bb.set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2] ); VerdictVector tri_normal = aa * bb; int number_of_gauss_points=0; if (num_nodes ==3) { distortion = 1.0; return (double)distortion; } else if (num_nodes ==6) { total_number_of_gauss_points = 6; number_of_gauss_points = 6; } distortion = VERDICT_DBL_MAX; double shape_function[maxTotalNumberGaussPoints][maxNumberNodes]; double dndy1[maxTotalNumberGaussPoints][maxNumberNodes]; double dndy2[maxTotalNumberGaussPoints][maxNumberNodes]; double weight[maxTotalNumberGaussPoints]; //create an object of GaussIntegration int number_dims = 2; int is_tri = 1; GaussIntegration::initialize(number_of_gauss_points,num_nodes, number_dims, is_tri); GaussIntegration::calculate_shape_function_2d_tri(); GaussIntegration::get_shape_func(shape_function[0], dndy1[0], dndy2[0], weight); // calculate element area int ife, ja; for (ife=0;ife 0? 1.:-1.; distrt = sign_jacobian * (cc%normal_at_point); if (distrt < distortion) distortion = distrt; } if (element_area*thickness !=0) distortion *=1./( element_area*thickness); else distortion *=1.; if( distortion > 0 ) return (double) VERDICT_MIN( distortion, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( distortion, -VERDICT_DBL_MAX ); } /*! tri_quality for calculating multiple tri functions at once using this method is generally faster than using the individual method multiple times. */ C_FUNC_DEF void v_tri_quality( int num_nodes, double coordinates[][3], unsigned int metrics_request_flag, TriMetricVals *metric_vals ) { memset( metric_vals, 0, sizeof(TriMetricVals) ); // for starts, lets set up some basic and common information /* node numbers and side numbers used below 2 ++ / \ 2 / \ 1 / \ / \ 0 ---------+ 1 0 */ // vectors for each side VerdictVector sides[3]; sides[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); sides[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); sides[2].set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2] ); VerdictVector tri_normal = sides[0] * sides[2]; //if we have access to normal information, check to see if the //element is inverted. If we don't have the normal information //that we need for this, assume the element is not inverted. //This flag will be used for condition number, jacobian, shape, //and size and shape. bool is_inverted = false; if( compute_normal ) { //center of tri double point[3], surf_normal[3]; point[0] = (coordinates[0][0] + coordinates[1][0] + coordinates[2][0]) / 3; point[1] = (coordinates[0][1] + coordinates[1][1] + coordinates[2][1]) / 3; point[2] = (coordinates[0][2] + coordinates[1][2] + coordinates[2][2]) / 3; //dot product compute_normal( point, surf_normal ); if( (tri_normal.x()*surf_normal[0] + tri_normal.y()*surf_normal[1] + tri_normal.z()*surf_normal[2] ) < 0 ) is_inverted=true; } // lengths squared of each side double sides_lengths_squared[3]; sides_lengths_squared[0] = sides[0].length_squared(); sides_lengths_squared[1] = sides[1].length_squared(); sides_lengths_squared[2] = sides[2].length_squared(); // if we are doing angle calcuations if( metrics_request_flag & (V_TRI_MINIMUM_ANGLE | V_TRI_MAXIMUM_ANGLE) ) { // which is short and long side int short_side=0, long_side=0; if(sides_lengths_squared[1] < sides_lengths_squared[0]) short_side = 1; if(sides_lengths_squared[2] < sides_lengths_squared[short_side]) short_side = 2; if(sides_lengths_squared[1] > sides_lengths_squared[0]) long_side = 1; if(sides_lengths_squared[2] > sides_lengths_squared[long_side]) long_side = 2; // calculate the minimum angle of the tri if( metrics_request_flag & V_TRI_MINIMUM_ANGLE ) { if(sides_lengths_squared[0] == 0.0 || sides_lengths_squared[1] == 0.0 || sides_lengths_squared[2] == 0.0) { metric_vals->minimum_angle = 0.0; } else if(short_side == 0) metric_vals->minimum_angle = (double)sides[2].interior_angle(sides[1]); else if(short_side == 1) metric_vals->minimum_angle = (double)sides[0].interior_angle(sides[2]); else metric_vals->minimum_angle = (double)sides[0].interior_angle(-sides[1]); } // calculate the maximum angle of the tri if( metrics_request_flag & V_TRI_MAXIMUM_ANGLE ) { if(sides_lengths_squared[0] == 0.0 || sides_lengths_squared[1] == 0.0 || sides_lengths_squared[2] == 0.0) { metric_vals->maximum_angle = 0.0; } else if(long_side == 0) metric_vals->maximum_angle = (double)sides[2].interior_angle(sides[1]); else if(long_side == 1) metric_vals->maximum_angle = (double)sides[0].interior_angle(sides[2]); else metric_vals->maximum_angle = (double)sides[0].interior_angle(-sides[1]); } } // calculate the area of the tri // the following functions depend on area if( metrics_request_flag & (V_TRI_AREA | V_TRI_SCALED_JACOBIAN | V_TRI_SHAPE | V_TRI_RELATIVE_SIZE_SQUARED | V_TRI_SHAPE_AND_SIZE ) ) { metric_vals->area = (double)((sides[0] * sides[2]).length() * 0.5); } // calculate the aspect ratio if(metrics_request_flag & V_TRI_ASPECT_FROBENIUS) { // sum the lengths squared double srms = sides_lengths_squared[0] + sides_lengths_squared[1] + sides_lengths_squared[2] ; // calculate once and reuse static const double twoTimesRootOf3 = 2*sqrt(3.0); double div = (twoTimesRootOf3 * ( (sides[0] * sides[2]).length() )); if(div == 0.0) metric_vals->aspect_frobenius = (double)VERDICT_DBL_MAX; else metric_vals->aspect_frobenius = (double)(srms / div); } // calculate the radius ratio of the triangle if( metrics_request_flag & V_TRI_RADIUS_RATIO ) { double a1 = sqrt( sides_lengths_squared[0] ); double b1 = sqrt( sides_lengths_squared[1] ); double c1 = sqrt( sides_lengths_squared[2] ); VerdictVector ab = sides[0] * sides[1]; metric_vals->radius_ratio = (double) .25 * a1 * b1 * c1 * ( a1 + b1 + c1 ) / ab.length_squared(); } // calculate the scaled jacobian if(metrics_request_flag & V_TRI_SCALED_JACOBIAN) { // calculate once and reuse static const double twoOverRootOf3 = 2/sqrt(3.0); // use the area from above double tmp = tri_normal.length() * twoOverRootOf3; // now scale it by the lengths of the sides double min_scaled_jac = VERDICT_DBL_MAX; double temp_scaled_jac; for(int i=0; i<3; i++) { if(sides_lengths_squared[i%3] == 0.0 || sides_lengths_squared[(i+2)%3] == 0.0) temp_scaled_jac = 0.0; else temp_scaled_jac = tmp / sqrt(sides_lengths_squared[i%3]) / sqrt(sides_lengths_squared[(i+2)%3]); if( temp_scaled_jac < min_scaled_jac ) min_scaled_jac = temp_scaled_jac; } //multiply by -1 if the normals are in opposite directions if( is_inverted ) { min_scaled_jac *= -1; } metric_vals->scaled_jacobian = (double)min_scaled_jac; } // calculate the condition number if(metrics_request_flag & V_TRI_CONDITION) { // calculate once and reuse static const double rootOf3 = sqrt(3.0); //if it is inverted, the condition number is considered to be infinity. if(is_inverted){ metric_vals->condition = VERDICT_DBL_MAX; } else{ double area2x = (sides[0] * sides[2]).length(); if(area2x == 0.0 ) metric_vals->condition = (double)(VERDICT_DBL_MAX); else metric_vals->condition = (double) ( (sides[0]%sides[0] + sides[2]%sides[2] - sides[0]%sides[2]) / (area2x*rootOf3) ); } } // calculate the shape if(metrics_request_flag & V_TRI_SHAPE || metrics_request_flag & V_TRI_SHAPE_AND_SIZE) { //if element is inverted, shape is zero. We don't need to //calculate anything. if(is_inverted ){ metric_vals->shape = 0.0; } else{//otherwise, we calculate the shape // calculate once and reuse static const double rootOf3 = sqrt(3.0); // reuse area from before double area2x = metric_vals->area * 2; // dot products double dots[3] = { sides[0] % sides[0], sides[2] % sides[2], sides[0] % sides[2] }; // add the dots double sum_dots = dots[0] + dots[1] - dots[2]; // then the finale if( sum_dots == 0.0 ) metric_vals->shape = 0.0; else metric_vals->shape = (double)(rootOf3 * area2x / sum_dots); } } // calculate relative size squared if(metrics_request_flag & V_TRI_RELATIVE_SIZE_SQUARED || metrics_request_flag & V_TRI_SHAPE_AND_SIZE) { // get weights double w11, w21, w12, w22; v_tri_get_weight(w11,w21,w12,w22); // get the determinant double detw = v_determinant(w11,w21,w12,w22); // use the area from above and divide with the determinant if( metric_vals->area == 0.0 || detw == 0.0 ) metric_vals->relative_size_squared = 0.0; else { double size = metric_vals->area * 2.0 / detw; // square the size size *= size; // value ranges between 0 to 1 metric_vals->relative_size_squared = (double)VERDICT_MIN(size, 1.0/size ); } } // calculate shape and size if(metrics_request_flag & V_TRI_SHAPE_AND_SIZE) { metric_vals->shape_and_size = metric_vals->relative_size_squared * metric_vals->shape; } // calculate distortion if(metrics_request_flag & V_TRI_DISTORTION) metric_vals->distortion = v_tri_distortion(num_nodes, coordinates); //take care of any over-flow problems if( metric_vals->aspect_frobenius > 0 ) metric_vals->aspect_frobenius = (double) VERDICT_MIN( metric_vals->aspect_frobenius, VERDICT_DBL_MAX );\ else metric_vals->aspect_frobenius = (double) VERDICT_MAX( metric_vals->aspect_frobenius, -VERDICT_DBL_MAX ); if( metric_vals->area > 0 ) metric_vals->area = (double) VERDICT_MIN( metric_vals->area, VERDICT_DBL_MAX ); else metric_vals->area = (double) VERDICT_MAX( metric_vals->area, -VERDICT_DBL_MAX ); if( metric_vals->minimum_angle > 0 ) metric_vals->minimum_angle = (double) VERDICT_MIN( metric_vals->minimum_angle, VERDICT_DBL_MAX ); else metric_vals->minimum_angle = (double) VERDICT_MAX( metric_vals->minimum_angle, -VERDICT_DBL_MAX ); if( metric_vals->maximum_angle > 0 ) metric_vals->maximum_angle = (double) VERDICT_MIN( metric_vals->maximum_angle, VERDICT_DBL_MAX ); else metric_vals->maximum_angle = (double) VERDICT_MAX( metric_vals->maximum_angle , -VERDICT_DBL_MAX ); if( metric_vals->condition > 0 ) metric_vals->condition = (double) VERDICT_MIN( metric_vals->condition, VERDICT_DBL_MAX ); else metric_vals->condition = (double) VERDICT_MAX( metric_vals->condition, -VERDICT_DBL_MAX ); if( metric_vals->shape > 0 ) metric_vals->shape = (double) VERDICT_MIN( metric_vals->shape, VERDICT_DBL_MAX ); else metric_vals->shape = (double) VERDICT_MAX( metric_vals->shape, -VERDICT_DBL_MAX ); if( metric_vals->radius_ratio > 0 ) metric_vals->radius_ratio = (double) VERDICT_MIN( metric_vals->radius_ratio, VERDICT_DBL_MAX );\ else metric_vals->radius_ratio = (double) VERDICT_MAX( metric_vals->radius_ratio, -VERDICT_DBL_MAX ); if( metric_vals->scaled_jacobian > 0 ) metric_vals->scaled_jacobian = (double) VERDICT_MIN( metric_vals->scaled_jacobian, VERDICT_DBL_MAX ); else metric_vals->scaled_jacobian = (double) VERDICT_MAX( metric_vals->scaled_jacobian, -VERDICT_DBL_MAX ); if( metric_vals->relative_size_squared > 0 ) metric_vals->relative_size_squared = (double) VERDICT_MIN( metric_vals->relative_size_squared, VERDICT_DBL_MAX ); else metric_vals->relative_size_squared = (double) VERDICT_MAX( metric_vals->relative_size_squared, -VERDICT_DBL_MAX ); if( metric_vals->shape_and_size > 0 ) metric_vals->shape_and_size = (double) VERDICT_MIN( metric_vals->shape_and_size, VERDICT_DBL_MAX ); else metric_vals->shape_and_size = (double) VERDICT_MAX( metric_vals->shape_and_size, -VERDICT_DBL_MAX ); if( metric_vals->distortion > 0 ) metric_vals->distortion = (double) VERDICT_MIN( metric_vals->distortion, VERDICT_DBL_MAX ); else metric_vals->distortion = (double) VERDICT_MAX( metric_vals->distortion, -VERDICT_DBL_MAX ); }