Ïúíþ¸ 8Ø__text__TEXTØ€__cstring__TEXTØ__data__DATAàè2  ð P//VTK::System::Dec /*========================================================================= Program: VTK Module: vtkEDLShadeFS.glsl Copyright (c) 2005-2008 Sandia Corporation, Kitware Inc. All rights reserved. ParaView is a free software; you can redistribute it and/or modify it under the terms of the ParaView license version 1.2. See License_v1.2.txt for the full ParaView license. A copy of this license can be obtained by contacting Kitware Inc. 28 Corporate Drive Clifton Park, NY 12065 USA THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =========================================================================*/ /*---------------------------------------------------------------------- Acknowledgement: This algorithm is the result of joint work by Electricité de France, CNRS, Collège de France and Université J. Fourier as part of the Ph.D. thesis of Christian BOUCHENY. ------------------------------------------------------------------------*/ ////////////////////////////////////////////////////////////////////////// // // // EyeDome Lighting - Simplified version for use in VTK // - oriented light // - no focus // - some uniforms transformed to local variables // // C.B. - 3 feb. 2009 // // IN: Depth buffer of the scene // r = recorded z, in [0:1] // OUT: EDL shaded image // ////////////////////////////////////////////////////////////////////////// // the output of this shader //VTK::Output::Dec varying vec2 tcoordVC; /**************************************************/ uniform sampler2D s2_depth; // - Z Map uniform float d; // [1.0 in full res - 2.0 at lower res] //- Extension in image space, in pixels uniform vec4 N[8]; //- Array of neighbours // [No support for TabUniform in VTK // --> constant array, hereafter] uniform float F_scale; // [5.] - Shading amplification factor uniform float SX; // - pixel horizontal step (image distance: 1/w) uniform float SY; //- pixel vertical step (image distance: 1/h) uniform float Znear; // near clipping plane uniform float Zfar; // far clipping plane uniform float SceneSize; // typical scene size, to scale the depth by. uniform vec3 L; // [0.,0.,-1.] - Light direction [frontal] /**************************************************/ /**************************************************/ int Nnb = 1; // nombre de voisins par rayon float Zm = 0.; // minimal z in image float ZM = 1.; // maximal z in image float Z; // initial Z vec3 WHITE3 = vec3(1.,1.,1.); float t; vec4 Zn[8]; // profondeurs des voisins float D[8]; // ombrage genere par les voisins vec4 tn, tnw, tw, tsw, ts, tse, te, tne; float dn, dnw, dw, dsw, ds, dse, de, dne; float S; // image step, corresponds to one pixel size /**************************************************/ ////////////////////////////////////////////////////////////////////////// // // Local shading functions // // Pseudo angle, avec S (distance pixel) valant l'unite // zi elevation of current pixel // zj elevation of its neighbour // delta distance between the two float angleP(float zi, float zj, float delta) { return max(0.,zj-zi) / (delta/S); } // zi elevation of current pixel // zj elevation of its neighbour // delta distance between the two float obscurance(float zi, float zj, float delta) { return angleP(zi,zj,delta); } // // Local shading functions // ////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////// // // Z transformation // float zflip(float z) { return 1. - z; } float zscale(float z) { return clamp((z-Zm)/(ZM-Zm),0.,1.); } // Inversion of OpenGL perspective projection // (should be adapted for orthographic projection) // float ztransform(float z) { float Z; Z = (z-0.5)*2.; Z = -2.*Zfar*Znear/( (Zfar-Znear) * (Z-(Zfar+Znear)/(Zfar-Znear)) ); Z = (Z-Znear)/SceneSize; return 1.-Z; } // // Z transformation // ////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////// // // NEIGHBORHOOD SHADING // void computeNeighbours8(float dist) { // Plan Lumiere-point vec4 P = vec4( L.xyz , -dot(L.xyz,vec3(0.,0.,t)) ); // 0 at the back of the scene int c; vec2 V; // pixel voisin float di = dist; float Znp[8]; // profondeur des 8 voisins sur le plan for(c=0; c<8;c++) { V = tcoordVC.st + di*vec2(SX,SY)*N[c].xy; Zn[c].x = ztransform(texture2D(s2_depth,V).r); // profondeur du voisin reel dans l'image // VERSION qui ombre le fond Znp[c] = dot( vec4(di*vec2(SX,SY)*N[c].xy, Zn[c].x, 1.0) , P ); } dn = obscurance( 0., Znp[0] ,di*SX); dnw = obscurance( 0., Znp[1],di*SX); dw = obscurance( 0., Znp[2] ,di*SX); dsw = obscurance( 0., Znp[3],di*SX); ds = obscurance( 0., Znp[4] ,di*SX); dse = obscurance( 0., Znp[5],di*SX); de = obscurance( 0., Znp[6] ,di*SX); dne = obscurance( 0., Znp[7],di*SX); } float computeObscurance(float F,float scale,float weight) { computeNeighbours8( scale ); float S = F; float WE = weight; S += dn * WE; S += dnw * WE; S += dw * WE; S += dsw * WE; S += ds * WE; S += dse * WE; S += de * WE; S += dne * WE; return S; } void ambientOcclusion() { float F = 0.; float weight = 20.; // 2. * 3.14159; F = computeObscurance(F,d,weight); F = exp(-F_scale*F); gl_FragData[0] = vec4(F,F,F,Z); } void main (void) { S = SX; Z = texture2D(s2_depth, tcoordVC.st).r; t = ztransform(Z); ambientOcclusion(); } _vtkEDLShadeFS