x__text__TEXTG__literal8__TEXTGJ__gcc_except_tab__TEXTGJ__data__DATAHK0__cstring__TEXT O88R__compact_unwind__LD@ X@7__eh_frame__TEXT` x h2  r  P002@UHH=H5HO1uHH=H]fDUHAVSIH=H5HN1uHH=H5NHLt H t3Ht?HH5UNLHH u%HH=HuFHtHH5NLHH t[A^]H[A^]f.UHAVSH0HuH[QHEЋFEHEHEH}ȃu\Hut^H]H=MHAtH=̈́Ht HLcHuL1H0[A^]ÐUHAWAVSH(HuHQHED~D}HG]ԉ]؅yHHLw(HEMA)AuQHuH}t|}L}tYH=LLAtOH=LtHuH}tNEx;IO8H9A0~1HI@HHu+H#H} H=o1H([A^A_]UHAWAVSH(HuHQIHED~D}HGEԉE؅y HHthLw(Mt_x=AuBHuH}tDuILHHu(H H}H}1H([A^A_]ÐUHAWAVSH(HuHIHED~D}HGEԉE؅y HHthLw(Mt_x=AuBHuH}tDuILHHu(H H}H}1H([A^A_]ÐUHAWAVSHxHHHEHxHHHED~D}HGEEyHHLw(MHxAHuHxHuH5mHxHU}HMHM(E)EuIHULHEf.EuzEf.EuzEf.Eu{$HuHxHUHu.Hc& E1M1H H H;Mu Hx[A^A_]f.fUHAWAVAUATSHXHHHEHHHHFHG yHHHG(H0LLACD-HcHHE1EIcHLELAHHC?HcHHE1EIcH@HIDH0,tHHHuL@HHHDHH,HHpHHtnHLDtXHEHE(E)EDH8E.A1H81LHE1HHH9t HtHHH9t HtHHH;EhLHX[A\A]A^A_]HHH8HI9sIH9s1HpHHH‰уH s 1HHoHH)1HHLAALD L0AD AL0D@LPAD@ALPD`LpAD`ALpHHuHt(HHD ADA H HuH8H9)HHHHtHHH4I4HHuHHHH8rWH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HH9uHEH`f(pf)PMEEAr!H@JH9JH91D)HHLHtL@I4H4HHuL@H/I H ILHLILHLILHLIL HL IL(HL(IL0HL0IL8HL8HI9uDHpHHH‰уH s 1L@qHH)1L@AALLAD AL0D L0AD@ALPD@LPfAD`ALpfD`LpHHuHt*HHfADA fD H HuL9H0HH L$HuH,LpLHHЉ0Ef.EuzEf.EuzEf.Eu{!HuHHU1E~K1HHfA.uzHH98u%HuHHHDHu,Hpf.Pu'z%xf.XuzEf.`u{'HuHHpHuHE~F1H@f.u z HI9u%HuHH@DHrHc0IHHH9bgHHHH9tHt HHHH9t HtH @UHAWAVAUATSHHHHEH(HEH0F8HG<@yHHL(H(AC$HcHL1EIcM,LDM<tH(8_H(HLZH(Hu=H(HpH(LDHEHE(E)Ef(pf)PHEH`DEArII9IDI91)HHHHtI4ItHHuHI ILILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9u6E13H(1HHH9t HtHHH;EIHH[A\A]A^A_]É؃HpHHH‰уH s1sHH)1AALADALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt-HHfADA fADALH HuH9?IHLHUHpLM(HuLH(1Ef.EuzEf.EuzEf.Eu{$HuH(HUpf.Pu'z%xf.XuzEf.`u{'HuH(HpE~>1AfA.Du z HH9u!HuH(LDHHHHHH9HHHH9t HtH f.@UHAWAVAUATSHXHuHBHEDvDuHGEĉEȅyHHLo(MA HuH}H5^H}HU}IH5^H}HU}hIH5^H}HU}GIH5v^H}HU}&HH5U^H}HU}HEH5@^H}HU}HEH5^H}HU}HEH5 ^H}HU}HEHuH}H5]H}HU}tlEMUHLLLLILMPuuuuA0H0Hu*HH H}H} 1HX[A\A]A^A_]fUHAWAVAUATSHXHuHvDHEDvDuHGEEyHHLo(MH}uA rHu~H5q\H}HU}`IH5]\H}HU}?IH5W\H}HU}IH5C\H}HU}HH5"\H}HU}HEH5 \H}HU}HEH}HuH5[H}HU}HEH}HutnEEMULLLLILMPuuuA8H Hu0HH& E1M[1HX[A\A]A^A_]f.UHAWAVSHHHHHEHHFHDvDHGyHHZL(MYH&A#Hu*HHu HHHHHH@HHHLLyHEHE(E)E(E)`HEHp(@) HPH0HH()IL4$HuHUHL@LL@Ef.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@f.u*z(f.uzf.u{'HuHHHuHHu.Hc& E1M1H H H;MuHH[A^A_]UHAWAVSH(HuHEHEDvDuHGEԉE؅yHHL(MAHuH}H5KVH}HU}tfIH5UH}HU}tIuILLHHHu(Hc H}H}1H([A^A_]ÐUHAWAVAUATSHHHHEH`H/GHhFpHGtxyHHHG(HXL`LAC6HcHHE1EIcHLELAH]C?HcHHE1EIcHMHIDHXttH`p^H`HPYH`Hu<H`HuD!H`HTH`HuDHEHEf(Ef)EEEH}ArJI9KH91D)HHLHtH4I4HHuHH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HI9uH1H`E1HHH9t HtHHH9t HtHHH;ELH[A\A]A^A_]DHpHHH‰уH s1jHH)1LAALD L0AD AL0D@LPAD@ALPfD`LpfAD`ALpHHuHt*HHfD fADA H HuL9.LHEELMArHMJH9JH91D)HHLHtLMI4H4HHuLMH)I H ILHLILHLILHLIL HL IL(HL(IL0HL0IL8HL8HI9uDHpHHH‰уH s1LMnHH)1LMAALLAD AL0D L0AD@ALPD@LPfAD`ALpfD`LpHHuHt*HHfADA fD H HuL9PDTHXHHUHMPEf.EuzEf.EuzEf.Eu{$HuH`HUE~E1HMfA.uzHH9Hu"HuH`HUDE~@1HMf.u z HI9u"HuH`HUDH'L-IEHHH9 HHHH9tHt HHHH9t HtH @UHAVSHHHHEDvHGD)&HuHCHEDu]]yHHiH_(H\H}HuB(E)`(E)pEEEEHuHf(pfMf(`fEfkPuEf.EuzEf.Eu{HuH}HU1HHHHHH;EHuHBHEDu]ĉ]ȅy HHtPH(HtGD9ucHHu0H߾HHHH;Et"NH5\B1HHH;Eu.HHĐ[A^]H}111HHH;EtUHAVSH0HuHCHEDvDuHG]܉]y HHt"H(HtD9uEHt1H}111 EHHH0[A^]UHAWAVSHhHHHEHuHBHED~D}HG]]yHHLw(MA)H}Au:HuHEHE(E)E}tHuL!dIHuLXEf.EuzEf.EuzEf.Eu{HuH}HU1Ht1H H H;Mu#Hh[A^A_]HcH H H;MtUHAWAVSHxHHHEHxH"CHED~D}HG]]yHHLw(MA)HxAu:HuHEHE(E)E}tHuL!jIHuL`EEf.EuzEf.EuzEf.Eu{!HuHxHU1Ht1H H H;Mu%Hx[A^A_]EH H H;MtUHAWAVSH(HuHtCHED~D}HG]܉]y HHt#H(HtD9uAEtHt+12H}111!HhLcHuLHHH([A^A_]f.DUHAVSH HuHDHEDvDuHG]]y HHt%H(HtD9uEt1HHt51H}111HH [A^]HpHHuHtH5GHHHHH뱐UHAWAVAUATSHHHHEHpHREHxFEHGMMyHHL(HpAC6HcH8L81EIcM,LDME+E HpHuHpLDHEHEf(Ef)EDEArII9IDI91)HHHHt@I4ItHHuHpDI ILILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uHp1H8H@H9E1b؃HpHHH‰уH s1sHH)1AALADALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt/HHffADA fADALH HuH9^}uIHuLLxEf.EuzEf.EuzEf.Eu{!HuHpHU1E~H1f.AfA.Du z HH9u!HuHpLDHtD1H8H@H9t HtHHH;Eu4HHĨ[A\A]A^A_]HHH8H@H9uHH8H@H9t HtH UHAWAVAUATSHHHHEHpHOBHxFEHGMMyHHL(HpAC6HcH8L81EIcM,LDME+E HpHuHpLDHEHEf(Ef)EDEArII9IDI91)HHHHt@I4ItHHuHpDI ILILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uHp1H8H@H9E1b؃HpHHH‰уH s1sHH)1AALADALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt/HHffADA fADALH HuH9^}uIHuLLEf.EuzEf.EuzEf.Eu{!HuHpHU1E~H1f.AfA.Du z HH9u!HuHpLDHtD1H8H@H9t HtHHH;Eu4HHĨ[A\A]A^A_]HHH8H@H9uHH8H@H9t HtH h㈵>(@MSo$   t ^   >OHD_ORRSSTT0U int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkCell C++: static vtkCell *SafeDownCast(vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkCell C++: vtkCell *NewInstance() InitializeV.Initialize(int, [int, ...], vtkPoints) C++: void Initialize(int npts, vtkIdType *pts, vtkPoints *p) V.Initialize(int, vtkPoints) C++: void Initialize(int npts, vtkPoints *p) V.Initialize() C++: virtual void Initialize() Initialize cell from outside with point ids and point coordinates specified. ShallowCopyV.ShallowCopy(vtkCell) C++: virtual void ShallowCopy(vtkCell *c) Copy this cell by reference counting the internal data structures. This is safe if you want a "read-only" copy. If you modify the cell you might wish to use DeepCopy(). DeepCopyV.DeepCopy(vtkCell) C++: virtual void DeepCopy(vtkCell *c) Copy this cell by completely copying internal data structures. This is slower but safer than ShallowCopy(). GetCellTypeV.GetCellType() -> int C++: virtual int GetCellType() Return the type of cell. GetCellDimensionV.GetCellDimension() -> int C++: virtual int GetCellDimension() Return the topological dimensional of the cell (0,1,2, or 3). IsLinearV.IsLinear() -> int C++: virtual int IsLinear() Non-linear cells require special treatment beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells. RequiresInitializationV.RequiresInitialization() -> int C++: virtual int RequiresInitialization() Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures. IsExplicitCellV.IsExplicitCell() -> int C++: virtual int IsExplicitCell() Explicit cells require additional representational information beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells. RequiresExplicitFaceRepresentationV.RequiresExplicitFaceRepresentation() -> int C++: virtual int RequiresExplicitFaceRepresentation() Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods). SetFacesV.SetFaces([int, ...]) C++: virtual void SetFaces(vtkIdType *faces) GetFacesV.GetFaces() -> (int, ...) C++: virtual vtkIdType *GetFaces() GetPointsV.GetPoints() -> vtkPoints C++: vtkPoints *GetPoints() Get the point coordinates for the cell. GetNumberOfPointsV.GetNumberOfPoints() -> int C++: vtkIdType GetNumberOfPoints() Return the number of points in the cell. GetNumberOfEdgesV.GetNumberOfEdges() -> int C++: virtual int GetNumberOfEdges() Return the number of edges in the cell. GetNumberOfFacesV.GetNumberOfFaces() -> int C++: virtual int GetNumberOfFaces() Return the number of faces in the cell. GetPointIdsV.GetPointIds() -> vtkIdList C++: vtkIdList *GetPointIds() Return the list of point ids defining the cell. GetPointIdV.GetPointId(int) -> int C++: vtkIdType GetPointId(int ptId) For cell point i, return the actual point id. GetEdgeV.GetEdge(int) -> vtkCell C++: virtual vtkCell *GetEdge(int edgeId) Return the edge cell from the edgeId of the cell. GetFaceV.GetFace(int) -> vtkCell C++: virtual vtkCell *GetFace(int faceId) Return the face cell from the faceId of the cell. CellBoundaryV.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. EvaluatePositionV.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: virtual int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. EvaluateLocationV.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: virtual void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) ContourV.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: virtual void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is nullptr, then no interpolation is performed. Also, if the output cell data is non-nullptr, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) ClipV.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: virtual void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-nullptr, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) IntersectWithLineV.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition p1[3], p2[3] and tolerance tol. The method returns non-zero value if intersection occurs. A parametric distance t between 0 and 1 along the ray representing the intersection point, the point coordinates x[3] in data coordinates and also pcoords[3] in parametric coordinates. subId is the index within the cell if a composed cell like a triangle strip. TriangulateV.Triangulate(int, vtkIdList, vtkPoints) -> int C++: virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. DerivativesV.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: virtual void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). GetBoundsV.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) V.GetBounds() -> (float, float, float, float, float, float) C++: double *GetBounds() Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Copy result into user provided array. GetLength2V.GetLength2() -> float C++: double GetLength2() Compute Length squared of cell (i.e., bounding box diagonal squared). GetParametricCenterV.GetParametricCenter([float, float, float]) -> int C++: virtual int GetParametricCenter(double pcoords[3]) Return center of the cell in parametric coordinates. Note that the parametric center is not always located at (0.5,0.5,0.5). The return value is the subId that the center is in (if a composite cell). If you want the center in x-y-z space, invoke the EvaluateLocation() method. GetParametricDistanceV.GetParametricDistance([float, float, float]) -> float C++: virtual double GetParametricDistance(double pcoords[3]) Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.) IsPrimaryCellV.IsPrimaryCell() -> int C++: virtual int IsPrimaryCell() Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells). GetParametricCoordsV.GetParametricCoords() -> (float, ...) C++: virtual double *GetParametricCoords() Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. InterpolateFunctionsV.InterpolateFunctions([float, float, float], [float, ...]) C++: virtual void InterpolateFunctions(double pcoords[3], double *weight) Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. Typically overridden in subclasses. InterpolateDerivsV.InterpolateDerivs([float, float, float], [float, ...]) C++: virtual void InterpolateDerivs(double pcoords[3], double *derivs) vtkObjectvtkObjectBasevtkPointsp_void0 <= ptId && ptId < GetPointIds()->GetNumberOfIds()vtkIdListvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDataJP!P!a!!eXAG0 a a ! !P a ! !p! 4XAG`!0!!`!!!Pa aaaPLXAG"XA H'>X)X,a0a 1XA$H 8!@:!:_a@<ma=ap>!@?(XAHHpC(XA`HzRx $sJAC $DsAC C$ltAC G$uAC I$uAC G$xvAC G$ {AC I$4x|AC I$\0}AC G$}AC G$@~AC I$~AC G$`AC G$$AC G$LAC G$tXAC G$AC G$8AC G$AC G$HAC G$<AC I$dXAC I$AC I$AC I,p>AC M, AC M$<pAC L$dHAC I$0AC J$(AC G$_AC I$تmAC I$, AC I$TAC GzPLRx 4$reAC M4\|4AC M4LcAC P4SAC P4@3AC P4<((AC P4t (AC PGK-Gm-jGo-MGJ=(Gp=!Gm-F3-F_-F3-F_-F3-OES-\DY-BDY-CW-CN-CV-CCp=bCK-ZCm-:Co-CJ=Bp=Bm-B3-B_-B3-{B_-_B3-AS-,@Y-@Y-?W-?N-?V-l?W?p=6?J=*?<-"?a-? ?3->S->3->h->V->L>5-?>3-,>S->3-=V-==o-=p==4-v=p=h=3-c=_-G=3-=S-<i-<Y-<V-e<P<p=;<o--<p=&<5- <p=;3-;_-;3-;S-;g-`;Y-,;V-;:p=:4-:S-:3-:c-|:V-R:;:o--:p=&:S-9p=9R-99p=9M-93-9l-9V-9j9p=`9J=P93-K9_-293-8k-8Y-8V-j818p=8K-8m-7m-7o-7J=73-7_-s73-K7_-.73-7_-63- 4p=4m-3m-3S-2Y-2]-2Y-2Y-d2]-?2T-2W-1N-1W-1N-1V-L171p=1S-0T-05-03-0U-00U-00]-N0V-$00o-/p=/S-/T-/5-/3-/P-/3-/_-e/3-$/_-/3-.O-.3-._-.3-G._-+.3-_-]-A-Y-!-Y--\-,\-,Y-,Y-n,V-8,#,p=+S-+T-+J=+3-~+]-c+U-V+G+^-,+U-+ +U-**U-**U-**U-**U-y*j*\-2*V-*)S-)T-)J=)3-g)U-Z)K)^-0)U-#))U-)(U-((U-((U-((U-{(g(U-Z(F(U-9(*(\-'V-''K-'m-t'o-P'J=@'3-;'_-'3-&_-&3-&_-y&3-J&P-1&3-%p=%m-$S-#Y-#Y-#Y-#]-l#T-7#W-!#N-#V-""p="K-"m-j"m-H"o-$"5-"3- "_-!3-!O-!3-!_-z!3-J=23--d-U- ]-V-V-kU-Z-]-SX-=N-V-E-A-?-sb-f3-\S-F3-2V-b-3-S-y3-eMU-@" 5-3-S-L-q-q-u[->V-S-5-3-L-q-q-[-bAI-+2- 4- 5-I-I-2-5-2-:-H-xr=-kd]D=:-81*H-"=-xh.`XH,@8(+ *)('&xh$`XH#@8(" ! xh`XH@8( xh`XH@8(     xh `XH@8( @78CBG>98FXD0@;nn`@ nxpn`XPn@ `@ n`@ n`@ nMH{ J P8    GJ0 r   #   P  z  p  G`0`   Po   !W P G "  H '6 )A , 0s 1 $Ho  8X @: : @<P =? p>B@? HHpC`HPE)p7Y"K/eU?O.9z2aU-srYj  _PyType_Ready__ZN13vtkPythonArgs8GetValueERx_PyvtkObject_ClassNew_PyvtkCell_ClassNew_PyVTKObject_New__ZdaPv__ZN7vtkCell19GetParametricCoordsEv__ZN7vtkCell9GetBoundsEv__ZN13vtkPythonArgs16PureVirtualErrorEv__ZN7vtkCell10GetLength2Ev_PyVTKObject_GetSet__Py_NoneStruct_PyVTKObject_GetObject__ZN7vtkCell10InitializeEiPxP9vtkPoints__ZN7vtkCell10InitializeEiP9vtkPoints__ZL17PyvtkCell_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKObject_AsBuffer_strcmp_PyVTKAddFile_vtkCell___stack_chk_fail_PyObject_GC_Del__ZN13vtkPythonArgs5ArrayIxEC1El__ZN13vtkPythonArgs5ArrayIdEC1El_PyVTKObject_Check__ZN13vtkPythonArgs8GetArrayEPxi__ZN13vtkPythonArgs8SetArrayEiPKxi__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs11SetArgValueEii__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN13vtkPythonArgs10BuildTupleEPKdi__ZN13vtkPythonArgs8GetValueERi__ZN13vtkPythonArgs10GetArgSizeEi_PyLong_FromLong_PyLong_FromLongLong_PyUnicode_FromString_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZL14PyvtkCell_Type_PyType_Type__Unwind_Resume_PyFloat_FromDouble___stack_chk_guard__ZN13vtkPythonArgs11SetArgValueEid_PyErr_Occurred_PyVTKClass_Add__ZN13vtkPythonArgs8GetValueERd__ZN7vtkCell9GetBoundsEPd__ZN7vtkCell19GetParametricCenterEPd__ZN7vtkCell21GetParametricDistanceEPd__Py_Dealloc__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonUtil13ManglePointerEPKvPKc__ZN13vtkPythonArgs13ArgCountErrorEiPKc__ZN13vtkPythonArgs12PrecondErrorEPKc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN7vtkCell11ShallowCopyEPS___ZN7vtkCell8DeepCopyEPS___ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZL22PyvtkCell_CellBoundaryP7_objectS0___ZL21PyvtkCell_ShallowCopyP7_objectS0___ZL18PyvtkCell_DeepCopyP7_objectS0___ZL22PyvtkCell_SafeDownCastP7_objectS0___ZL27PyvtkCell_InterpolateDerivsP7_objectS0___ZL19PyvtkCell_GetPointsP7_objectS0___ZL27PyvtkCell_GetNumberOfPointsP7_objectS0___ZL30PyvtkCell_InterpolateFunctionsP7_objectS0___ZL21PyvtkCell_DerivativesP7_objectS0___ZL26PyvtkCell_GetNumberOfEdgesP7_objectS0___ZL18PyvtkCell_SetFacesP7_objectS0___ZL18PyvtkCell_GetFacesP7_objectS0___ZL26PyvtkCell_GetNumberOfFacesP7_objectS0___ZL29PyvtkCell_GetParametricCoordsP7_objectS0___ZL19PyvtkCell_GetBoundsP7_objectS0___ZL21PyvtkCell_GetPointIdsP7_objectS0___ZL17PyvtkCell_ContourP7_objectS0___ZL29PyvtkCell_GetParametricCenterP7_objectS0___ZL18PyvtkCell_IsLinearP7_objectS0___ZL14PyvtkCell_ClipP7_objectS0___ZL26PyvtkCell_EvaluatePositionP7_objectS0___ZL32PyvtkCell_RequiresInitializationP7_objectS0___ZL44PyvtkCell_RequiresExplicitFaceRepresentationP7_objectS0___ZL26PyvtkCell_EvaluateLocationP7_objectS0___ZL26PyvtkCell_GetCellDimensionP7_objectS0___ZL23PyvtkCell_IsPrimaryCellP7_objectS0___ZL24PyvtkCell_IsExplicitCellP7_objectS0___ZL18PyvtkCell_IsTypeOfP7_objectS0___ZL20PyvtkCell_InitializeP7_objectS0___ZL21PyvtkCell_TriangulateP7_objectS0___ZL21PyvtkCell_GetCellTypeP7_objectS0___ZL27PyvtkCell_IntersectWithLineP7_objectS0___ZL17PyvtkCell_GetEdgeP7_objectS0___ZL21PyvtkCell_NewInstanceP7_objectS0___ZL31PyvtkCell_GetParametricDistanceP7_objectS0___ZL17PyvtkCell_GetFaceP7_objectS0___ZL20PyvtkCell_GetPointIdP7_objectS0___ZL13PyvtkCell_IsAP7_objectS0___ZL20PyvtkCell_GetLength2P7_objectS0_GCC_except_table39GCC_except_table27GCC_except_table6GCC_except_table26GCC_except_table15GCC_except_table32___gxx_personality_v0GCC_except_table40