H mhm__text__TEXTh9hPq__gcc_except_tab__TEXTh9<__literal16__TEXT0:=__literal8__TEXT@:=__data__DATAP: =~^__cstring__TEXTp?[%B__compact_unwind__LDd8hx,__eh_frame__TEXThXk؂ h2  f@ P%%'?UHH=H5HW?H uHH=H]ÐUH]fDUHSPHH=H5H>H uHH=H5>HHt H tH[]H=H[]fUHAVSH0HuH@HEЋFEHEHEH}ȃHuH]H='>HAtDH=bHt1H=bHtH=bHt HLcHuL1H0[A^]UHAWAVSH(HuH@HED~D}HG]ԉ]؅yHHLw(HEMA)Au{HuH}}L}tH==LAtuH=aLtbH=aLtOH=aLtHEȋFEHGMԉM؅yHHL(H}AC6HcH}H]H]ME+EԃH}HuH}HDtn}uuIHULHuHUH}DHu,HHH}HEH9u$,H}1H}HEH9t HtHHX[A^A_]E1HH}HEH9t HtH fDUHAVSH HuH>HEDvDuHG]]y HHt%H(HtD9uEt1HHt51H}111HH [A^]HpHHuHtH5D[HHHHH뱐UHAWAVSH(HuH$@HED~D}HG]܉]y HHt#H(HtD9uA)EtHt+12H}111!HLcHuLHHH([A^A_]f.DUHAWAVSH(HuH?HED~D}HG]܉]y HHt#H(HtD9uAEtHt+12H}111!HLcHuLHHH([A^A_]f.DUHAVSH HuH?HEDvDuHG]]y HHt"H(HtD9uEt$Ht(1.H}111HHuHHHH [A^]UHAVSH HuHR?HEDvDuHG]]y HHtH(HtD9uEt!1Ht+12H}111!HHcHuHHHH [A^]UHAWAVSH(HuH AHED~D}HG]ԉ]؅y HHtJLw(MtAA)Au%HuH}t'}t.1Hu<tHLHUHpLM!IHLHUHpLM(HuLH(1Ef.EuzEf.EuzEf.Eu{$HuH(HUpf.Pu'z%xf.XuzEf.`u{'HuH(HpE~>1AfA.Du z HH9u!HuH(LDHzHHHHH9nsHHHH9t HtH UHAWAVSHHHHHEHHm;HDvDHGyHHL(MA)HAaHuZHHu=HH"HHHH@HHHLLHEHE(E)E(E)`HEHp(@) HPH0()HHtlL4$HuHUHL@LLn1H H H;M!HH[A^A_]E1MLIL4$HuHUHL@LL@Ef.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@f.u*z(f.uzf.u{'HuHHHuHHHcH H H;MDUHAWAVSH(HuH8HEDvDuHG]ԉ]؅yHHL(MA)AumHuH}toH5?H}HU}tUIH5x?H}HU}t8}utH}1H([A^A_]ILLHHHuHcUHAWAVAUATSHHHHEHPHT8HXF`HGdhyHHHG(HpLPLAC6HcHHE1EIcHLELAH]C?HcHHE1EIcHIDHpHI͋`+dHPHHHPHuHPHuDHPHLtiHPLDtSHEHEf(Ef)EDHxE#A1HxzHPE1HHH9t HtHHH9t HtHHH;ELH[A\A]A^A_]1HMHxHI9sIH9s1HpHHH‰уH s1H}nHH)1H}LAALD L0AD AL0D@LPAD@ALPfD`LpfAD`ALpHHuHt*HHfD fADA H HuHxH9)HHHHtH}H4I4HHuH}HHxrWH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HH9uDHEE}As 1HuHuIDH9sLHI9s1HpHHH‰уH s1LeHH)1LLLD L0D L0D@LPD@LPfD`LpfD`LpHHuHt(HHfD fD H HuHuH9)HHHLHtH4H4HHuHHUrWH H HLHLHLHLHLHLHL HL HL(HL(HL0HL0HL8HL8HH9udHDLtHUHpHMMHpHHUHMMPEf.EuzEf.EuzEf.Eu{$HuHPHUE~E1HMfA.uzHH9xu"HuHPHUDE~>1ADf.u z HH9Eu!HuHPLDHKL-IEHHH9?DHHHH9tHt HHHH9t HtH fUHAWAVSHxHHHEHxHj2HED~D}HG]]yHHLw(MA)HxAumHutoHxHutVH57HxHU}t9HMHM(E)E}utOHULHQ1H H H;MHx[A^A_]E1MGIHULHEf.EuzEf.EuzEf.Eu{$HuHxHUH`HcH H H;MZUHAWAVSHhHHHEHuH1HED~D}HG]]yHHLw(MA)H}AuZHuHEHE(E)E}t?H?HE( )E 1f.EuRzP2eIHuLXHcEf.EuzEf.EuzEf.Eu{HuH}HU1Ht1H H H;Mu#Hh[A^A_]HH H H;MtUHAVSH HuHC1HEDvDuHG]]y HHtH(HtD9uEt!1Ht+12H}111!HhHcHuHHHH [A^]UHAWAVAUATSHHHHEHpH;1HxFEHGMMyHHL(HpAC6HcH8L81EIcM,LDME+E HpHuHpLDHEHEf(Ef)EDEArII9IDI91)HHHHt@I4ItHHuHpDI ILILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uHp1H8H@H9E1b؃HpHHH‰уH s1sHH)1AALADALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt/HHffADA fADALH HuH9^}tHuLLIHuLLxEf.EuzEf.EuzEf.Eu{!HuHpHU1E~G1fAfA.Du z HH9u!HuHpLDHtD1H8H@H9t HtHHH;Eu4HHĨ[A\A]A^A_]HHH8H@H9uHH8H@H9t HtH UHAWAVAUATSHHHHEHpH-HxFEHGMMyHHL(HpAC6HcH8L81EIcM,LDME+E HpHuHpLDHEHEf(Ef)EDEArII9IDI91)HHHHt@I4ItHHuHpDI ILILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uHp1H8H@H9E1b؃HpHHH‰уH s1sHH)1AALADALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt/HHffADA fADALH HuH9^}tHuLLIHuLLEf.EuzEf.EuzEf.Eu{!HuHpHU1E~G1fAfA.Du z HH9u!HuHpLDHtD1H8H@H9t HtHHH;Eu4HHĨ[A\A]A^A_]HHH8H@H9uHH8H@H9t HtH SS$   t ^   ????HD?AABBCCOD[DDD-E;EEE]GqG|IIIJJJJJXM`MOOLRTRTT WWPYaY[([ \\]]T^`^__``aa[bpbLc^cvtkConvexPointSetvtkCommonDataModelPython.vtkConvexPointSetvtkConvexPointSet - a 3D cell defined by a set of convex points Superclass: vtkCell3D vtkConvexPointSet is a concrete implementation that represents a 3D cell defined by a convex set of points. An example of such a cell is an octant (from an octree). vtkConvexPointSet uses the ordered triangulations approach (vtkOrderedTriangulator) to create triangulations guaranteed to be compatible across shared faces. This allows a general approach to processing complex, convex cell types. @sa vtkHexahedron vtkPyramid vtkTetra vtkVoxel vtkWedge IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkConvexPointSet C++: static vtkConvexPointSet *SafeDownCast(vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkConvexPointSet C++: vtkConvexPointSet *NewInstance() HasFixedTopologyV.HasFixedTopology() -> int C++: virtual int HasFixedTopology() See vtkCell3D API for description of this method. GetEdgePointsV.GetEdgePoints(int, [int, ...]) C++: void GetEdgePoints(int edgeId, int *&pts) override; See vtkCell3D API for description of these methods. GetFacePointsV.GetFacePoints(int, [int, ...]) C++: void GetFacePoints(int faceId, int *&pts) override; Get the list of vertices that define a face. The list is terminated with a negative number. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The faceId must range between 0<=faceIdGetNumberOfFaces(). GetParametricCoordsV.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. GetCellTypeV.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. RequiresInitializationV.RequiresInitialization() -> int C++: int RequiresInitialization() override; This cell requires that it be initialized prior to access. InitializeV.Initialize() C++: void Initialize() override; GetNumberOfEdgesV.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. GetEdgeV.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. GetNumberOfFacesV.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. GetFaceV.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; A convex point set has no explicit cell edge or faces; however implicitly (after triangulation) it does. Currently the method GetNumberOfEdges() always returns 0 while the GetNumberOfFaces() returns the number of boundary triangles of the triangulation of the convex point set. The method GetNumberOfFaces() triggers a triangulation of the convex point set; repeated calls to GetFace() then return the boundary faces. (Note: GetNumberOfEdges() currently returns 0 because it is a rarely used method and hard to implement. It can be changed in the future. ContourV.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Satisfy the vtkCell API. This method contours by triangulating the cell and then contouring the resulting tetrahedra. ClipV.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Satisfy the vtkCell API. This method contours by triangulating the cell and then adding clip-edge intersection points into the triangulation; extracting the clipped region. EvaluatePositionV.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Satisfy the vtkCell API. This method determines the subId, pcoords, and weights by triangulating the convex point set, and then determining which tetrahedron the point lies in. EvaluateLocationV.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; The inverse of EvaluatePosition. IntersectWithLineV.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Triangulates the cells and then intersects them to determine the intersection point. TriangulateV.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Triangulate using methods of vtkOrderedTriangulator. DerivativesV.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Computes derivatives by triangulating and from subId and pcoords, evaluating derivatives on the resulting tetrahedron. CellBoundaryV.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Returns the set of points forming a face of the triangulation of these points that are on the boundary of the cell that are closest parametrically to the point specified. GetParametricCenterV.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the cell in parametric coordinates. IsPrimaryCellV.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; A convex point set is triangulated prior to any operations on it so it is not a primary cell, it is a composite cell. InterpolateFunctionsV.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double pcoords[3], double *sf) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) InterpolateDerivsV.InterpolateDerivs([float, float, float], [float, ...]) C++: void InterpolateDerivs(double pcoords[3], double *derivs) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) vtkCell3DvtkCellvtkObjectvtkObjectBasep_voidvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDatavtkIdListvtkPointsOP `!:a!!!pzaAh9zaA9p!@ a a !p ! a ! apYX-XMXA9PXA9p ;a$a%'XA9-a.a@0!08XA9058XA:zRx $POAC $Dx AC $l`AC B$ȗAC G$:AC I$AC G$  AC G$4AC G$\AC G$(AC I$AC I$XAC G$AC G$$hAC I$LAC G$tAC I,@YAC M,p-AC M$;AC L$$AC I$L AC I$tAC I$AC GzPLRx ,$zAC I,THzAC I4(MAC P4@AC P4'AC P4,p8kAC P4dx8KAC Pb9>-Z9a-:9c-9==8d=8a-8(-8O-8(-|8O-`8(-8Y-7D-6I-6I-5G-5@-5F-\5G5d="5>-5a-4c-4==4d=4a-4(-4O-l4(-<4O- 4(-3\-2D-1I-1I-~1G-h1@-G1F-11d=0)-0(-0D-0(-|0F-R0<0c-.0d='0)- 0d=/(-/O-/(-/D-/s/@/I- /F-..d=.c-.d=.)-.(-.O-g.(--d=-D--U--E---I--M-O-F-%--d=,>-,a-,a-,c-,==p,(-k,O-O,(-(,O- ,(-+O-+(-s+S-(d=(a-'a-'D-m'I-W'M-<'I-!'I-'M-&G-&@-q&G-[&@-0&F-%%d=%)-%(-%D-v%(-o%T-R%E-E%5%E-(%%M-$F-$$c-$d=$)-}$(-x$C-\$(-W$O-5$(-#O-#(-#B-s#(-n#O-O#(-#O-"(-t"d=k"D-Z"Z-!M-!I-|!I-\!L-A!L-&!I- !I- F-  d=c >-[ a-; c- == (- O-(-O-(-_O-@(-C-(-V-d=a-D-I-lI-LI-/M-G-@-F-|gd=G>-?a-a-c-)-(-O-(-pB-R(-MO-+(-C-(-O-(-|O-`(-W-d=a-a-D-I-L-I-{M-`I-;I-G-@-G-@-`F-,d===(-D-^-QM-:E--"N-E-E-E-E-E-uaE-TEL-F-==(-lD-W_-E- N-E-E-E-E-xdE-WCE-6"E-E-L-F-jQ-](-<D-"(-`-M- F-  )-} (-k D-S (-L X-, F-  Q- (- D- (- M-^ F-4  )- (- D- (- F- U ==I (-9 D-! (- R- F-  )- (-| D-d (-> F-  )- (- D- (-~ F-T 6 ==* /-" P-  (-D-(-[-F-d>-\a-,a-D-==(-A-(-J-M-]H-J@-,F->-a-a-D-n==b(-]A-C(-!J- M-H-@-F-V)-I(-6D-(-F-8-4-2-sQ-f(-\D-F(-2F-Q-(-D-y(-eME-@")-(-D-?-e-e-e-wfe-^EK-F-D-)-(-?-e-ye-qfe-^Me-E2K-<-'---;-0-zslV]-IB--=6/;-'!0-#! xh`XH@8( xh`XH@8(   xh `XH@8( @*865:1,+9X703.bb`@ bbb`@ `@80b b`@ bMP: ;tP b ~ Gph9 [9, pj @ 0    p   4  f p  9m P9 p 8 $ %9- . @0Q 0905m:u`/%<H/LsdcaO;xM|*wQ \ @  ^'"_PyType_Ready__ZN13vtkPythonArgs8GetValueERx_PyvtkConvexPointSet_ClassNew_PyvtkCell3D_ClassNew_PyVTKObject_New__ZL29PyvtkConvexPointSet_StaticNewv__ZdaPv__ZN17vtkConvexPointSet3NewEv__ZN17vtkConvexPointSet16GetNumberOfFacesEv__ZN17vtkConvexPointSet19GetParametricCoordsEv__ZN17vtkConvexPointSet10InitializeEv__ZN17vtkConvexPointSet12CellBoundaryEiPdP9vtkIdList_PyVTKAddFile_vtkConvexPointSet_PyVTKObject_GetSet__Py_NoneStruct_PyVTKObject_GetObject__ZN17vtkConvexPointSet11TriangulateEiP9vtkIdListP9vtkPoints__ZL27PyvtkConvexPointSet_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKObject_AsBuffer_strcmp___stack_chk_fail_PyObject_GC_Del__ZN13vtkPythonArgs5ArrayIiEC1El__ZN13vtkPythonArgs5ArrayIdEC1El_PyVTKObject_Check__ZN13vtkPythonArgs8GetArrayEPii__ZN13vtkPythonArgs11SetArgValueEiPKii__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs11SetArgValueEii__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN17vtkConvexPointSet4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i__ZN17vtkConvexPointSet17IntersectWithLineEPdS0_dRdS0_S0_Ri__ZN13vtkPythonArgs8GetValueERi__ZN13vtkPythonArgs10GetArgSizeEi__ZN17vtkConvexPointSet7GetFaceEi_PyLong_FromLong_PyUnicode_FromString_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZL24PyvtkConvexPointSet_Type_PyType_Type__Unwind_Resume___stack_chk_guard__ZN13vtkPythonArgs11SetArgValueEid_PyErr_Occurred_PyVTKClass_Add__ZN13vtkPythonArgs8GetValueERd__Py_Dealloc__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonUtil13ManglePointerEPKvPKc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN17vtkConvexPointSet7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9___ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN17vtkConvexPointSet16EvaluateLocationERiPdS1_S1___ZL32PyvtkConvexPointSet_CellBoundaryP7_objectS0___ZL36PyvtkConvexPointSet_HasFixedTopologyP7_objectS0___ZL32PyvtkConvexPointSet_SafeDownCastP7_objectS0___ZL37PyvtkConvexPointSet_InterpolateDerivsP7_objectS0___ZL33PyvtkConvexPointSet_GetEdgePointsP7_objectS0___ZL33PyvtkConvexPointSet_GetFacePointsP7_objectS0___ZL40PyvtkConvexPointSet_InterpolateFunctionsP7_objectS0___ZL31PyvtkConvexPointSet_DerivativesP7_objectS0___ZL36PyvtkConvexPointSet_GetNumberOfEdgesP7_objectS0___ZL36PyvtkConvexPointSet_GetNumberOfFacesP7_objectS0___ZL39PyvtkConvexPointSet_GetParametricCoordsP7_objectS0___ZL27PyvtkConvexPointSet_ContourP7_objectS0___ZL39PyvtkConvexPointSet_GetParametricCenterP7_objectS0___ZL24PyvtkConvexPointSet_ClipP7_objectS0___ZL36PyvtkConvexPointSet_EvaluatePositionP7_objectS0___ZL42PyvtkConvexPointSet_RequiresInitializationP7_objectS0___ZL36PyvtkConvexPointSet_EvaluateLocationP7_objectS0___ZL33PyvtkConvexPointSet_IsPrimaryCellP7_objectS0___ZL28PyvtkConvexPointSet_IsTypeOfP7_objectS0___ZL30PyvtkConvexPointSet_InitializeP7_objectS0___ZL31PyvtkConvexPointSet_TriangulateP7_objectS0___ZL31PyvtkConvexPointSet_GetCellTypeP7_objectS0___ZL37PyvtkConvexPointSet_IntersectWithLineP7_objectS0___ZL27PyvtkConvexPointSet_GetEdgeP7_objectS0___ZL31PyvtkConvexPointSet_NewInstanceP7_objectS0___ZL27PyvtkConvexPointSet_GetFaceP7_objectS0___ZL23PyvtkConvexPointSet_IsAP7_objectS0___ZN17vtkConvexPointSet11DerivativesEiPdS0_iS0___ZN17vtkConvexPointSet16EvaluatePositionEPdS0_RiS0_RdS0___ZN17vtkConvexPointSet17InterpolateDerivsEPdS0___ZN17vtkConvexPointSet20InterpolateFunctionsEPdS0_GCC_except_table9GCC_except_table29GCC_except_table8GCC_except_table28GCC_except_table24GCC_except_table21___gxx_personality_v0GCC_except_table20