(__text__TEXT{d__gcc_except_tab__TEXT|dTg__data__DATA f@hؿt__cstring__TEXT`l/8o__compact_unwind__LD(x>__eh_frame__TEXTh h2  )pxl P335RUHH=H5HGlH uHH=H]ÐUH]fDUHSPHH=H5HkH uHH=H5kHHt H tH[]H=H[]fUHAVSH0HuHlHEЋFEHEHEH}ȃuoHutqH]H=kHAt1H=HtH=Ht HLcHuL1H0[A^]f.@UHAWAVSH(HuHmHED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}}L}tlH=jLAtbH=LtOH=Lt<tHLHUHpLM!IHLHUHpLM(HuLH(1Ef.EuzEf.EuzEf.Eu{$HuH(HUpf.Pu'z%xf.XuzEf.`u{'HuH(HpE~>1AfA.Du z HH9u!HuH(LDHzHHHHH9nsHHHH9t HtH UHAWAVSHHHHHEHH]HDvDHGyHHL(MA)HAaHuZHHu=HH"HHHH@HHHLLHEHE(E)E(E)`HEHp(@) HPH0()HHtlL4$HuHUHL@LLn1H H H;M!HH[A^A_]E1MLIL4$HuHUHL@LL@Ef.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@f.u*z(f.uzf.u{'HuHHHuHHHcH H H;MDUHAVSH0^HG)Ѓ$HuHZHEЉ]؉U܉UyHHH_(HHuH}H5yH}HU}IH5zH}HU}}uHLHHu}cHuHZHEЉ]؉U܉Uy HHtRH_(HtIH5EyH}HU}t/HHHuHcH5Y1H0[A^]LHLHAHHuf.DUHAWAVAUATSHHHHEHPHJZHXF`HGdhyHHHG(HpLPLAC6HcHHE1EIcHLELAH]C?HcHHE1EIcHIDHpHI͋`+dHPHHHPHuHPHuDHPHLtiHPLDtSHEHEf(Ef)EDHxE#A1HxzHPE1HHH9t HtHHH9t HtHHH;ELH[A\A]A^A_]1HMHxHI9sIH9s1HpHHH‰уH s1H}nHH)1H}LAALD L0AD AL0D@LPAD@ALPfD`LpfAD`ALpHHuHt*HHfD fADA H HuHxH9)HHHHtH}H4I4HHuH}HHxrWH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HH9uDHEE}As 1HuHuIDH9sLHI9s1HpHHH‰уH s1LeHH)1LLLD L0D L0D@LPD@LPfD`LpfD`LpHHuHt(HHfD fD H HuHuH9)HHHLHtH4H4HHuHHUrWH H HLHLHLHLHLHLHL HL HL(HL(HL0HL0HL8HL8HH9udHDLtHUHpHMMHpHHUHMMPEf.EuzEf.EuzEf.Eu{$HuHPHUE~E1HMfA.uzHH9xu"HuHPHUDE~>1ADf.u z HH9Eu!HuHPLDHKL-IEHHH9?DHHHH9tHt HHHH9t HtH fUHAVSH HuH3THEDvDuHG]]y HHtH(HtD9uEt!1Ht+12H}111!HhHcHuHHHH [A^]UHAWAVAUATSHHHHEЋFH(HSH0Dž8HG<@yHHH(HEHEHHuHMSHEHEEH}AC6HcH(L(1EIcIHE؋E+E H5 pH}HU}IH}H`H}LDH}HuEEArKH9JI91HHLLHtI4H4HHuHvI H ILHLILHLILHLHI9uBH5Q1FH}1H(H0H9tHtH(111HHH;EHHĸ[A\A]A^A_]DHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9^EEEhEpH`HMLLxE~41I H; u HI9uHuH}LDEf.Eu$z"Ef.huzEf.pu{!HuH}HUH xHH(H0H9HH(H0H9t HtH UHAWAVAUATSHHHHEHpH0QHxFEHGMMyHHL(HpAC6HcH8L81EIcM,LDME+E HpHuHpLDHEHEf(Ef)EDEArII9IDI91)HHHHt@I4ItHHuHpDI ILILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uHp1H8H@H9E1b؃HpHHH‰уH s1sHH)1AALADALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt/HHffADA fADALH HuH9^}tHuLLIHuLLxEf.EuzEf.EuzEf.Eu{!HuHpHU1E~G1fAfA.Du z HH9u!HuHpLDHtD1H8H@H9t HtHHH;Eu4HHĨ[A\A]A^A_]HHH8H@H9uHH8H@H9t HtH UHAWAVAUATSHHHHHHEЋz}HpHNHxHEEHpAC6HcH0L01EIcIHE؋E+EDH5gHpHU}9IHpHlHpLDHpHuEEArKH9 JI91HHLLHtI4H4HHuHI H ILHLILHLILHLHI9u_H0HBMH8HDž@DžHH5tfH0HppHH0HuEEEEEEHuHEf.EuzEf.EuzEf.Eu{$HuH0HUHuIHHvHHH;E=H=HĨ[A\A]A^A_]H5L15Hp1H0H8H9t HtHHH;EHHĨ[A\A]A^A_]DHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9AEEEEEElHMLLE~71I H; u HI9u!HuHpLDEf.EuzEf.EuzEf.Eu{$HuHpHUH,HHH0H8H9 %HH0H8H9t HtH fDUHAWAVAUATSHhFHH HcHHpH3LHxEHGEEyHH H(HHHH5KHpHKHxHEEH5?bHpHU}HHHpHIKHxHEEH5bHpHU}t;HH5aHpHU}tHHHW1HHh[A\A]A^A_]HuHJHEHEEH}AC6HcHpLp1EIcIHE؋E+EăH5 aH}HU}IH}HuH}LDEEArKH9JI91HHLLHtI4H4HHuH[I H ILHLILHLILHLHI9u'HH}1HpHxH9oHf\Hp111EDHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9yuLLAE~41I H; u HI9uHuH}LDHAHHpHxH9HHpHxH9t HtH fnXUHAWAVAUATSHHHHEЋ~iHuHIHEHEEH}AC6HcH0L01EIcIHE؋E+E7H5]H}HU},IH}HlH}LDH}HuEEArKH9 JI91HHLLHtI4H4HHuHI H ILHLILHLILHLHI9u[H0H7HH8HDž@DžHH5\H0HU}HH5d\H0HU}IH0HuEpExEEHUHLEf.pu!zEf.xuzEf.Eu{$HuH0HUHuHBH5G12H}1H0H8H9t HtHHH;EHHĨ[A\A]A^A_]DHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9EEpExEElHMLLAE~41I H; u HI9uHuH}LDEf.pu!zEf.xuzEf.Eu{!HuH}HUH#AHH0H8H9HH0H8H9t HtH UHAWAVSHHHHHEHHFHDvDHGyHHGL(MA)HAHuHHuHHHH@HH}HLLZHEHE(E)E(E)`HEHp(@) HPH0()HHL4$HuHUHL@LLEf.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@HuHf.u*z(f.uzf.u{'HuHHHuHc1H H H;MuHH[A^A_]E1MUHAWAVAUATSHHHHHEHH"EHFHDžHAC$HcHL1EIcIHE؋+ZHHuSHH8HLDHH`HHHEHE(E)EEEArKH9JI91D)HHLHtI4H4HHuH{I H ILHLILHLILHLIL HL IL(HL(IL0HL0IL8HL8HI9uH1HHH9t HtHHH;EHHH[A\A]A^A_]DHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9W(`(p(U)P)@)0f(f)H HH}H`LLAEf.EuzEf.EuzEf.Eu{!HuHHU1E~<1Af.u z HI9u!HuHLD`f.0u`z^hf.8uLzJpf.@u8z6xf.Hu$z"Ef.PuzEf.Xu{'HuHH`f.u*z(f.uz f.u{'HuHHHIcHHHH9HHHH9t HtH UHAWAVSH(HuHAHED~D}HG]ԉ]؅y HHt`Lw(MtWA)Au;H55OH}HU}t4LHHuHcH}1H([A^A_]fUHAWAVSH8HuH BHEDvDuHG]̉]Ѕy HHtyL(MtpA)AuTH5uNH}HU}tMIHuH}t9ELLHuHcH}1H8[A^A_]UHAWAVATSHPHHHEHHCHFHDžHAC?HcHL1EIcIHE؋+ZHHuSHH8HLDHHpHH HEHE(E)EEEArKH9JI91D)HHLHtI4H4HHuHyI H ILHLILHLILHLIL HL IL(HL(IL0HL0IL8HL8HI9uH1HHH9t HtHHH;EHHP[A\A^A_]DHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9Y(p(M(U)`)P)@f( f)H0HH}HpL LEf.EuzEf.EuzEf.Eu{!HuHHU1E~<1Af.u z HI9u!HuHLDpf.@uZzXxf.HuFzDEf.Pu5z3Ef.Xu$z"Ef.`uzEf.hu{'HuHHp f.u*z((f.uz0f.u{'HuHH HHHHH9HHHH9t HtH fDUHAWAVAUATSHHHHEHHH?HFHDžHH߾ACD-HcH0L0E1EIcILEH߾AC?HcHhHh1EIcHHHE؋+HHHLD~HHuaHHFHHD(HHPHHHHDEArII9II91)HHHHtI4I4HHuHI I ILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uEH1HhHpH9t HtH0H8H9t HtHHH;EGHHĸ[A\A]A^A_]ÉHpHHH‰уH s1pHH)1AALAALAD AL0AD AL0AD@ALPAD@ALPAD`ALpAD`ALpHHuHt*HHADA ADA H HuH92H(E(M(U)U)M)pDHELAs1HHHHH9sHH9s1HpHHH‰уH s 1LoHH)1LAALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuHH9)HHHHtLI4H4HHuLHHrWI H ILHLILHLILHLIL HL IL(HL(IL0HL0IL8HL8HH9uH`H@(P)0()H HHH$HULPLHE~=1AfA.u z HH9u!HuHLDEf.puKzIEf.xu:z8Ef.Eu,z*Ef.EuzEf.EuzEf.Eu{$HuHHUE~J1Hf.uzHH9u%HuHHDPf.0u*z(Xf.8uz`f.@u{'HuHHPf.u*z(f.uz f.u{'HuHHHHcHHhHpH9 H%H HHhHpH9t HtH0H8H9t HtH f.UHAVSHHHHEHPH9HXF`HDždH5?HPHU}HH5o?HPHU}dIHPHHFHPHuк)HPHu HEHE(E)E(E)pHEHEHHUHMHLEf.EuzEf.EuzEf.Eu{$HuHPHUоEf.pu!zEf.xuzEf.Eu{$HuHPHUHu HcHP1H H H;Mu Hİ[A^]fDUHAVSH HuH:HEDvDuHG]]y HHt'H(HtD9uEt)Ht*11H}111 HHuHHH [A^]UHAWAVSH(HuHy;HED~D}HG]ԉ]؅y HHtmLw(EMtIA)H}Au@Hut/}EtEA8tAILHt81>1+E1#ILHuHHH([A^A_]UHAVSH`HHHEHuH'#HEFEHEH5<H}HU}HH59<H}HU}IH}HuкHEHE(E)EHUHLEf.EuzEf.EuzEf.Eu{!HuH}HUоHu2HHH H H;Mt*H}1H H H;MuH`[A^]@UHAWAVATSHHHHEHxH!HEFEHEHxAC6HcH@L@1EIcIHE؋E+EHxHu HxLDHxHuEEArKH9JI91D)HHLHtfI4H4HHuHfDI H ILHLILHLILHLIL HL IL(HL(IL0HL0IL8HL8HI9uHx1H@HHH9t HtHHH;EHHĠ[A\A^A_]DHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9QHEHEf(Ef)E}HULE~K1f.DAf.u z HI9u!HuHxLDEf.EuzEf.EuzEf.Eu{$HuHxHUH,HHH@HHH9 %HH@HHH9t HtH $   t ^   )bPn  ^(E  ^ K#b   P  P  P$   w^klHDlmmnnoo]pippp%q6qqq=rNrrrPsXsssttvvmx~xyyzz,|8|:}F}9~G~~~/8l|g{ҋюhCZ_v!! vtkPolygonvtkCommonDataModelPython.vtkPolygonvtkPolygon - a cell that represents an n-sided polygon Superclass: vtkCell vtkPolygon is a concrete implementation of vtkCell to represent a 2D n-sided polygon. The polygons cannot have any internal holes, and cannot self-intersect. Define the polygon with n-points ordered in the counter- clockwise direction; do not repeat the last point. IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkPolygon C++: static vtkPolygon *SafeDownCast(vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkPolygon C++: vtkPolygon *NewInstance() GetCellTypeV.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. GetCellDimensionV.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell API for descriptions of these methods. GetNumberOfEdgesV.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell API for descriptions of these methods. GetNumberOfFacesV.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell API for descriptions of these methods. GetEdgeV.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; See the vtkCell API for descriptions of these methods. GetFaceV.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; See the vtkCell API for descriptions of these methods. CellBoundaryV.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell API for descriptions of these methods. ContourV.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; See the vtkCell API for descriptions of these methods. ClipV.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tris, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. EvaluatePositionV.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; See the vtkCell API for descriptions of these methods. EvaluateLocationV.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; See the vtkCell API for descriptions of these methods. IntersectWithLineV.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; See the vtkCell API for descriptions of these methods. TriangulateV.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; V.Triangulate(vtkIdList) -> int C++: int Triangulate(vtkIdList *outTris) See the vtkCell API for descriptions of these methods. DerivativesV.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; See the vtkCell API for descriptions of these methods. IsPrimaryCellV.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; See the vtkCell API for descriptions of these methods. ComputeAreaV.ComputeArea() -> float C++: double ComputeArea() V.ComputeArea(vtkPoints, int, [int, ...], [float, float, float]) -> float C++: static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts, double normal[3]) Compute the area of a polygon. This is a convenience function which simply calls static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts, double normal[3]); with the appropriate parameters from the instantiated vtkPolygon. InterpolateFunctionsV.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double x[3], double *sf) override; Compute the interpolation functions/derivatives. (aka shape functions/derivatives) Two interpolation algorithms are available: 1/r^2 and Mean Value Coordinate. The former is used by default. To use the second algorithm, set UseMVCInterpolation to be true. The function assumes the input point lies on the polygon plane without checking that. ComputeNormalV.ComputeNormal(vtkPoints, int, [int, ...], [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]) V.ComputeNormal(vtkPoints, [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, double n[3]) V.ComputeNormal(vtkIdTypeArray, vtkPoints, [float, float, float]) C++: static void ComputeNormal(vtkIdTypeArray *ids, vtkPoints *pts, double n[3]) V.ComputeNormal(int, [float, ...], [float, float, float]) C++: static void ComputeNormal(int numPts, double *pts, double n[3]) Computes the unit normal to the polygon. If pts=nullptr, point indexing is assummed to be {0, 1, ..., numPts-1}. IsConvexV.IsConvex() -> bool C++: bool IsConvex() V.IsConvex(vtkPoints, int, [int, ...]) -> bool C++: static bool IsConvex(vtkPoints *p, int numPts, vtkIdType *pts) V.IsConvex(vtkIdTypeArray, vtkPoints) -> bool C++: static bool IsConvex(vtkIdTypeArray *ids, vtkPoints *p) V.IsConvex(vtkPoints) -> bool C++: static bool IsConvex(vtkPoints *p) Determine whether or not a polygon is convex. This is a convenience function that simply calls static bool IsConvex(int numPts, vtkIdType *pts, vtkPoints *p) with the appropriate parameters from the instantiated vtkPolygon. ComputeCentroidV.ComputeCentroid(vtkPoints, int, [int, ...], [float, float, float]) -> bool C++: static bool ComputeCentroid(vtkPoints *p, int numPts, vtkIdType *pts, double centroid[3]) V.ComputeCentroid(vtkIdTypeArray, vtkPoints, [float, float, float]) -> bool C++: static bool ComputeCentroid(vtkIdTypeArray *ids, vtkPoints *pts, double centroid[3]) Compute the centroid of a set of points. Returns false if the computation is invalid (this occurs when numPts=0 or when ids is empty). ParameterizePolygonV.ParameterizePolygon([float, float, float], [float, float, float], float, [float, float, float], float, [float, float, float]) -> int C++: int ParameterizePolygon(double p0[3], double p10[3], double &l10, double p20[3], double &l20, double n[3]) Create a local s-t coordinate system for a polygon. The point p0 is the origin of the local system, p10 is s-axis vector, and p20 is the t-axis vector. (These are expressed in the modeling coordinate system and are vectors of dimension [3].) The values l20 and l20 are the lengths of the vectors p10 and p20, and n is the polygon normal. PointInPolygonV.PointInPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> int C++: static int PointInPolygon(double x[3], int numPts, double *pts, double bounds[6], double n[3]) Determine whether point is inside polygon. Function uses ray-casting to determine if point is inside polygon. Works for arbitrary polygon shape (e.g., non-convex). Returns 0 if point is not in polygon; 1 if it is. Can also return -1 to indicate degenerate polygon. NonDegenerateTriangulateV.NonDegenerateTriangulate(vtkIdList) -> int C++: int NonDegenerateTriangulate(vtkIdList *outTris) Same as Triangulate(vtkIdList *outTris) but with a first pass to split the polygon into non-degenerate polygons. BoundedTriangulateV.BoundedTriangulate(vtkIdList, float) -> int C++: int BoundedTriangulate(vtkIdList *outTris, double tol) Triangulate polygon and enforce that the ratio of the smallest triangle area to the polygon area is greater than a user-defined tolerance. The user must provide the vtkIdList outTris. On output, the outTris list contains the ids of the points defining the triangulation. The ids are ordered into groups of three: each three-group defines one triangle. DistanceToPolygonV.DistanceToPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> float C++: static double DistanceToPolygon(double x[3], int numPts, double *pts, double bounds[6], double closest[3]) Compute the distance of a point to a polygon. The closest point on the polygon is also returned. The bounds should be provided to accelerate the computation. IntersectPolygonWithPolygonV.IntersectPolygonWithPolygon(int, [float, ...], [float, float, float, float, float, float], int, [float, ...], [float, float, float], float, [float, float, float]) -> int C++: static int IntersectPolygonWithPolygon(int npts, double *pts, double bounds[6], int npts2, double *pts2, double bounds2[3], double tol, double x[3]) Method intersects two polygons. You must supply the number of points and point coordinates (npts, *pts) and the bounding box (bounds) of the two polygons. Also supply a tolerance squared for controlling error. The method returns 1 if there is an intersection, and 0 if not. A single point of intersection x[3] is also returned if there is an intersection. IntersectConvex2DCellsV.IntersectConvex2DCells(vtkCell, vtkCell, float, [float, float, float], [float, float, float]) -> int C++: static int IntersectConvex2DCells(vtkCell *cell1, vtkCell *cell2, double tol, double p0[3], double p1[3]) Intersect two convex 2D polygons to produce a line segment as output. The return status of the methods indicated no intersection (returns 0); a single point of intersection (returns 1); or a line segment (i.e., two points of intersection, returns 2). The points of intersection are returned in the arrays p0 and p1. If less than two points of intersection are generated then p1 and/or p0 may be indeterminiate. Finally, if the two convex polygons are parallel, then "0" is returned (i.e., no intersection) even if the triangles lie on one another. GetUseMVCInterpolationV.GetUseMVCInterpolation() -> bool C++: virtual bool GetUseMVCInterpolation() Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to false by default. SetUseMVCInterpolationV.SetUseMVCInterpolation(bool) C++: virtual void SetUseMVCInterpolation(bool _arg) Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to false by default. vtkCellvtkObjectvtkObjectBasevtkIdListvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDatavtkPointsVVP *vtkIdTypeArray *vtkPoints *diPP *d *dvtkIdTypeArrayOP `!'a!!a`a !!aPa a YX@ -XpMXA|dXAd;a !!"'XAd)!*XAd@/8XAe3:XA(e8XALe=XAxeBaFmXAeKaLaMj AeRXAe[!]!P^a@_\!` AfzRx $^OAC $D _ AC $l_AC B$p_AC G$`'AC I$ aAC G$ aAC G$4bAC I$\cAC I$cAC G$8dAC G$dAC I$heAC I$$fAC I,LgYAC M,|i-AC M$Hy;AC L$`}AC G$AC G$$AC L$LAC I$tPAC I$AC J$AC G$xAC I$@\AC GzPLRx 4$(jM#AC P4\@rAC P4}'AC P4߾AC P48׾AC P4< :AC P4t(AC M4AC P4xmAC P4@jkAC N4TxOAC P4?AC NudM-md-Md-)dL=d7-d~-c7-c~-c7-vcW-tb=mb-Nbr-paw-Saw-9a|-au-`n-``=`=}`r-j`-\`=R`L=F`7-A`~-%`7-_T-_w-_s-__s-_`_N_=+_L=_7-^r-^7-^z-^t-d^=^5-0^7-^r-^7-]t-]]-|]=s]r-[]9-N]7-I]~-*]7-\~-\7-\b-_\w-B\w-%\{-\s-[[s-[[[=p[M-h[-K[-[-Z9-Z7-Z~-Z7-~Z~-\Z7-Z~-Y7-Y~-Y7-NY~-2Y7-Xd-U=U-U-Ur-Tw-T{-sTw-STw-5T|-Tw-Sw-S|-Su-Sn-bSu-KSn-SS=RM-R-R-R8-R7-{R~-YR7-R~-Q7-Q~-iQ7-DQ~-(Q7-P]-O=O-Or-Nw-Nw-bNw-HN|--Nw-Mu-Mn-MM=oMr-ZM9-MM7-FM_-2M{-Ms-MLt-LLr-L9-tL7-mLc-\Ls-OL.Lt-LKM-K-K-K9-K7-K~-aK7- K~-J7-J~-kJ7-FJ~-*J7-IX-H=H-Hr-Gw-Gw-dGw-JG|-/Gw-Fu-Fn-FF=tF-JF=AFr-0F9-#F7-F~-E7-Eo-E7-E~-vE7-5Eo-E7-E~-D7-D~-D7-nD`-Cw-C{-Cw-C{-fCw-ICw-Ct-BB=BM-B-B-[B5-IB7-DB~-(B7-A-A7-AZ-@=@-u@r-^@q-Y@M@5-@@7-;@~-@7-?Y-?w-?s-x?d?s-T?1?>w-s>x-\>|-?>s-2>>v-=n-===x=M-p=-/=5-=7-=-<7-<k-<r-;-;r-;5-;x-:|-:s-::v-:n-o:G:7-@:i-/:s-::s-9997-9j-9s-99m9q-f9Q97-J9l-$9t-88M-8-8-h8L=X87-S8~-487-8-77-7V-6=6-6r-s6q-n6g6-Q6=6=16L=%67- 6~-67-5U-5w-{5s-h5E54w-4x-j4|-J4s-:4 4v-3n-33=r3M-j3-J3--3L=3=3-27-2~-27-2~-p27-,2a-1r-,0w-0w-/u-/n-/t-l/W/=7/M-//- /-.8-.7-.~-.7-}.-d.7-<.N--=-r---,r-,q-,*,w-,x-+}-+s-++v-+n-k+X+8-E+7-;+O-+t-**=*9-y*7-f*r-N*7-,*t-*)M-)-)-)-p)L=`)7-[)~-?)7-)~-(7-(~-(7-c(P-$=$-$-$r-]$w-G$|-,$w-$w-#|-#u-#n-a#u-K#n- #t-""="7-"q-z"q"9-d"7-]"Q-L"s-?"'"t-"!7-!R-!s-!!s-!!|-p!t-Z!!-!= 9- 7- p- 7- ~- 7-d ~-B 7- o-7-~-7-~-k7-=r-^-*|- w-w-{-{-w-yw->t-=M---L=w7-r~-V7-/~- 7-~-7-p-h7-@[- =-r-w-w-w-|-Wu-An- t-=M---i-E9-07-+~- 7-o-7-~-7-]p-A7-<~-7-~-7-U\-q=j-M--r-@w-&{- w-|-w-w-Tu-7n-u-n-t-=dL=X7- r-f-|-s-}-ws-jUs-H4s-'s- s-  s-  {- t-X 0 L=$ 7- r- g- s-} r }-[ s-N 9 s-,  s-  s-  s-  s-  s- q s-d U {-" t-  - = 9- 7- ~- 7- = r- S- s-  w- |-o t-E 0 = - 7-r-7-|-t-dJ-=7-r-7-h-|-t-f9-Y7-Fr-.7- t-9-7-r-7-\t-29-7-r-7-t-t<9-/7-r-7-t-G-oC-cA-S-F7-<r-&7-t--7-sr-Y7-E-s- 9-7-r-m--zo-gV-N5y-t-r-9-7-}m-q-i^-VE-=.y-K-6-=-J-?-zslVe-IB=-=6/J-'!?-10/.xh-`XH+@8() ('%$"xh `XH@8( xh`XH@8(     xh `XH@8( @:8EDI@<;HXF0B>`@ `XP@80 `@80 `@ `@ KM=C fjgP|h 9% `   P    5 @ Y p|d dd ! "Xd")=*d @/eO3l(e 8Le=xe B FqeKLU M/e R eM [ ] P^@_`f`X}x;[ovh5r HdCk T ;s: bD/@ 5 mL/  P B)_PyType_Ready__ZN13vtkPythonArgs8GetValueERx__ZN10vtkPolygon8IsConvexEP9vtkPointsiPx_PyvtkPolygon_ClassNew_PyvtkCell_ClassNew_PyVTKObject_New__ZL22PyvtkPolygon_StaticNewv__ZdaPv__ZN10vtkPolygon8IsConvexEv__ZN10vtkPolygon3NewEv__ZN10vtkPolygon11ComputeAreaEv__ZN10vtkPolygon12CellBoundaryEiPdP9vtkIdList__ZN10vtkPolygon24NonDegenerateTriangulateEP9vtkIdList__ZN10vtkPolygon11TriangulateEP9vtkIdList_PyVTKObject_GetSet__Py_NoneStruct_PyVTKObject_GetObject__ZN10vtkPolygon8IsConvexEP14vtkIdTypeArrayP9vtkPoints__ZN10vtkPolygon11TriangulateEiP9vtkIdListP9vtkPoints__ZN10vtkPolygon8IsConvexEP9vtkPoints__ZL20PyvtkPolygon_Methods__ZL34PyvtkPolygon_ComputeNormal_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKObject_AsBuffer_strcmp_PyVTKAddFile_vtkPolygon___stack_chk_fail_PyObject_GC_Del__ZN13vtkPythonArgs5ArrayIxEC1El__ZN13vtkPythonArgs5ArrayIdEC1El_PyVTKObject_Check__ZN13vtkPythonArgs8GetArrayEPxi__ZN13vtkPythonArgs8SetArrayEiPKxi__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs11SetArgValueEii__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN10vtkPolygon4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i__ZN10vtkPolygon17IntersectWithLineEPdS0_dRdS0_S0_Ri__ZN13vtkPythonArgs8GetValueERi__ZN13vtkPythonArgs10GetArgSizeEi__ZN10vtkPolygon7GetEdgeEi_PyBool_FromLong_PyLong_FromLong_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZL17PyvtkPolygon_Type_PyType_Type__Unwind_Resume_PyFloat_FromDouble__ZN10vtkPolygon18BoundedTriangulateEP9vtkIdListd___stack_chk_guard__ZN13vtkPythonArgs11SetArgValueEid_PyErr_Occurred_PyVTKClass_Add__ZN13vtkPythonArgs8GetValueERd__ZN10vtkPolygon11ComputeAreaEP9vtkPointsxPxPd__ZN10vtkPolygon13ComputeNormalEP9vtkPointsiPxPd__ZN10vtkPolygon15ComputeCentroidEP9vtkPointsiPxPd__ZN10vtkPolygon13ComputeNormalEP14vtkIdTypeArrayP9vtkPointsPd__ZN10vtkPolygon15ComputeCentroidEP14vtkIdTypeArrayP9vtkPointsPd__ZN10vtkPolygon13ComputeNormalEP9vtkPointsPd__Py_Dealloc__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonArgs13ArgCountErrorEiPKc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN13vtkPythonArgs8GetValueERb__ZN10vtkPolygon7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9___ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3___ZN10vtkPolygon22IntersectConvex2DCellsEP7vtkCellS1_dPdS2___ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN10vtkPolygon16EvaluateLocationERiPdS1_S1___ZL25PyvtkPolygon_CellBoundaryP7_objectS0___ZL21PyvtkPolygon_IsConvexP7_objectS0___ZL25PyvtkPolygon_SafeDownCastP7_objectS0___ZL33PyvtkPolygon_InterpolateFunctionsP7_objectS0___ZL35PyvtkPolygon_IntersectConvex2DCellsP7_objectS0___ZL24PyvtkPolygon_DerivativesP7_objectS0___ZL29PyvtkPolygon_GetNumberOfEdgesP7_objectS0___ZL29PyvtkPolygon_GetNumberOfFacesP7_objectS0___ZL20PyvtkPolygon_ContourP7_objectS0___ZL17PyvtkPolygon_ClipP7_objectS0___ZL29PyvtkPolygon_EvaluatePositionP7_objectS0___ZL35PyvtkPolygon_SetUseMVCInterpolationP7_objectS0___ZL35PyvtkPolygon_GetUseMVCInterpolationP7_objectS0___ZL29PyvtkPolygon_EvaluateLocationP7_objectS0___ZL29PyvtkPolygon_GetCellDimensionP7_objectS0___ZL30PyvtkPolygon_DistanceToPolygonP7_objectS0___ZL27PyvtkPolygon_PointInPolygonP7_objectS0___ZL40PyvtkPolygon_IntersectPolygonWithPolygonP7_objectS0___ZL32PyvtkPolygon_ParameterizePolygonP7_objectS0___ZL26PyvtkPolygon_IsPrimaryCellP7_objectS0___ZL26PyvtkPolygon_ComputeNormalP7_objectS0___ZL21PyvtkPolygon_IsTypeOfP7_objectS0___ZL37PyvtkPolygon_NonDegenerateTriangulateP7_objectS0___ZL31PyvtkPolygon_BoundedTriangulateP7_objectS0___ZL24PyvtkPolygon_TriangulateP7_objectS0___ZL24PyvtkPolygon_GetCellTypeP7_objectS0___ZL30PyvtkPolygon_IntersectWithLineP7_objectS0___ZL20PyvtkPolygon_GetEdgeP7_objectS0___ZL24PyvtkPolygon_NewInstanceP7_objectS0___ZL20PyvtkPolygon_GetFaceP7_objectS0___ZL28PyvtkPolygon_ComputeCentroidP7_objectS0___ZL24PyvtkPolygon_ComputeAreaP7_objectS0___ZL16PyvtkPolygon_IsAP7_objectS0___ZL29PyvtkPolygon_ComputeNormal_s4P7_objectS0___ZL29PyvtkPolygon_ComputeNormal_s3P7_objectS0___ZN10vtkPolygon11DerivativesEiPdS0_iS0___ZN10vtkPolygon27IntersectPolygonWithPolygonEiPdS0_iS0_S0_dS0___ZN10vtkPolygon16EvaluatePositionEPdS0_RiS0_RdS0___ZN10vtkPolygon13ComputeNormalEiPdS0___ZN10vtkPolygon20InterpolateFunctionsEPdS0___ZN10vtkPolygon19ParameterizePolygonEPdS0_RdS0_S1_S0___ZN10vtkPolygon17DistanceToPolygonEPdiS0_S0_S0___ZN10vtkPolygon14PointInPolygonEPdiS0_S0_S0_GCC_except_table28GCC_except_table37GCC_except_table17GCC_except_table26GCC_except_table16GCC_except_table25GCC_except_table24GCC_except_table23GCC_except_table32GCC_except_table22GCC_except_table31___gxx_personality_v0GCC_except_table20