H `rh`r__text__TEXTAhu__gcc_except_tab__TEXT AdD__literal16__TEXTAD__literal8__TEXTAE__data__DATAAE؂[__cstring__TEXTF#J__compact_unwind__LDi(m#__eh_frame__TEXT`mpȆ h2  І`Ќd P ">UHH=H5HFH uHH=H]ÐUH]fDUHSPHH=H5H2FH uHH=H5EHHt H tH[]H=H[]fUHAVSH0HuHIHEЋFEHEHEH}ȃHuH]H=gEHAtDH=gHt1H=gHtH=gHt HLcHuL1H0[A^]UHAWAVSH(HuHJHED~D}HG]ԉ]؅yHHLw(HEMA)Au{HuH}}L}tH=NDLAtuH=fLtbH=fLtOH=fLt<tHLHUHpLM!IHLHUHpLM(HuLH(1Ef.EuzEf.EuzEf.Eu{$HuH(HUpf.Pu'z%xf.XuzEf.`u{'HuH(HpE~>1AfA.Du z HH9u!HuH(LDHzHHHHH9nsHHHH9t HtH UHAWAVSH(HuH=HEDvDuHG]ԉ]؅yHHL(MA)AumHuH}toH5MH}HU}tUIH5$NH}HU}t8}utH}1H([A^A_]ILLHHHuHcUHAWAVAUATSHHHHEHPHl=HXF`HGdhyHHHG(HpLPLAC6HcHHE1EIcHLELAH]C?HcHHE1EIcHIDHpHI͋`+dHPHHHPHuHPHuDHPHLtiHPLDtSHEHEf(Ef)EDHxE#A1HxzHPE1HHH9t HtHHH9t HtHHH;ELH[A\A]A^A_]1HMHxHI9sIH9s1HpHHH‰уH s1H}nHH)1H}LAALD L0AD AL0D@LPAD@ALPfD`LpfAD`ALpHHuHt*HHfD fADA H HuHxH9)HHHHtH}H4I4HHuH}HHxrWH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HH9uDHEE}As 1HuHuIDH9sLHI9s1HpHHH‰уH s1LeHH)1LLLD L0D L0D@LPD@LPfD`LpfD`LpHHuHt(HHfD fD H HuHuH9)HHHLHtH4H4HHuHHUrWH H HLHLHLHLHLHLHL HL HL(HL(HL0HL0HL8HL8HH9udHDLtHUHpHMMHpHHUHMMPEf.EuzEf.EuzEf.Eu{$HuHPHUE~E1HMfA.uzHH9xu"HuHPHUDE~>1ADf.u z HH9Eu!HuHPLDHKL-IEHHH9?DHHHH9tHt HHHH9t HtH fUHAVSH HuH7HEDvDuHG]]y HHt%H(HtD9uEt1HHt51H}111HH [A^]HpHHuHtH5EHHHHH뱐UHAWAVAUATSHXHuH7HEDvDuHG]]yHHLo(MnA)H}A NHuLH5DH}HU}.IH5DH}HU} IH5DH}HU}IH5DH}HU}HH5xDH}HU}HEH5cDH}HU}HEH}HutsH50DH}HU}tYHEH}HutD}ELUЋEtQLLLLILMPuARuU 1HX[A\A]A^A_]E1MuM]LLLLILMPuARuA8H HuHHUHAWAVSHHHHHEHHn7HDvDHGyHHL(MA)HAaHuZHHu=HH"HHHH@HHHLLHEHE(E)E(E)`HEHp(@) HPH0()HHtlL4$HuHUHL@LLn1H H H;M!HH[A^A_]E1MLIL4$HuHUHL@LL@Ef.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@f.u*z(f.uzf.u{'HuHHHuHHHcH H H;MDUHAWAVSHhHHHEHuH4HED~D}HG]]yHHLw(MA)H}AuZHuHEHE(E)E}t?(g)EH?HE]1f.EuRzP2eIHuLXHcEf.EuzEf.EuzEf.Eu{HuH}HU1Ht1H H H;Mu#Hh[A^A_]HH H H;MtUHH`HHHEHH)4HFHDžHHuHH@}HEHE(E)E(@(P(`(p))))(E)(E)(E) HEH0H}H@Ef.EuzEf.EuzEf.Eu{!HuHHU1@f.93Hf.Pf.Xf.`f.hf.pf.xf.uyzwEf.uhzfEf.uWzUEf.uFzDEf.u5z3Ef. u$z"Ef.(uzEf.0u{'HuHH@Hu.HHH H H;Mt&1H H H;MuH`]UHSHHHHHEHHl2HFHDžHbHuк[HH@-;HEHE(E)EHH@hHH}HEf.EuzEf.EuzEf.Eu{!HuHHU1@f.D>Hf.("Pf. Xf.`f.hf.pf.xf.zf.d^f.HBf. ,&f.( f.0f.8f.@f.Hf.P~f.Xhbf.`LFf.h0*f.pf.xf.f.f.f.f.lff.PJ f.4.(f.0f.8f.@f.Hf.Pf.Xf.utzr`f.u`z^hf.uLzJpf.u8z6xf.u$z"Ef.uzEf.u{{HuHH@-Hu.HHH H H;Mt&1H H H;MuHH[]Ef. rlEf.(YSEf.0@:\UHAWAVSHhHHHEHHo.HD~DHGyHH5Lw(MA)HAHuHH HEHE(E)E( (0(@(P))))(`)(p)(E)HEHtiH}H Ef.Ef1H H H;M4Hh[A^A_]E1MIHuH LxEf.EuzEf.EuzEf.Eu{!HuHHU1 f.MG(f.1+0f.8f.@f.Hf.Pf.Xf.`f.uqzohf.u]z[pf.uIzGxf.u5z3Ef.u$z"Ef.uzEf.u{'HuHH HHHH H H;MfUHAWAVSHHHHHEHH+HD~DHGyHHLw(MA)HAHuHH0-thHEHE(E)EHH0htiH}H0Ef.Ef1H H H;M|HH[A^A_]E1M"IHuH0LEf.EuzEf.EuzEf.Eu{!HuHHU10f.8f.ys@f.]WHf.A;Pf.%Xf. `f.hf.pf.xf.f.}wf.a[f. E?f.()#f.0 f.8f.@f.Hf.Pf.X{f.`e_f.hICf.p-'f.x f.f.f.f.f.f.ic f.MG(f.1+0f.8f.@f.Hf.Pf.Xf.`f.uqzohf.u]z[pf.uIzGxf.u5z3Ef.u$z"Ef.uzEf. u{'HuHH0-HHHH H H;MUHSH(HuH'HE؋FEHEH}ЃuEHutG}HHu2Ht6H5z)HHH([]þ1H([]HHH([]UHSH(HuH'HE؋FEHEH}ЃuEHutG}HHu2Ht6H5(HHH([]þ1H([]HHH([]$   t ^   UUUUUU?UUUUUU?UUUUUU?FHDFJJKLLMMMMMNN*O;OOOxPPQ"QQQSSUUkW|WXXYYZZ[[]]__P`g`aacdJe\e~ggQh^hvtkQuadraticLinearWedgevtkCommonDataModelPython.vtkQuadraticLinearWedgevtkQuadraticLinearWedge - cell represents a, 12-node isoparametric wedge Superclass: vtkNonLinearCell vtkQuadraticLinearWedge is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 12-node isoparametric linear quadratic wedge. The interpolation is the standard finite element, quadratic isoparametric shape function in xy - layer and the linear functions in z - direction. The cell includes mid-edge node in the triangle edges. The ordering of the 12 points defining the cell is point ids (0-5,6-12) where point ids 0-5 are the six corner vertices of the wedge; followed by six midedge nodes (6-12). Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3). The Edges (0,3), (1,4), (2,5) don't have midedge nodes. @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkQuadraticLinearWedge C++: static vtkQuadraticLinearWedge *SafeDownCast( vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkQuadraticLinearWedge C++: vtkQuadraticLinearWedge *NewInstance() GetCellTypeV.GetCellType() -> int C++: int GetCellType() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetCellDimensionV.GetCellDimension() -> int C++: int GetCellDimension() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetNumberOfEdgesV.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetNumberOfFacesV.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetEdgeV.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetFaceV.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. CellBoundaryV.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. ContourV.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value EvaluatePositionV.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value EvaluateLocationV.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value TriangulateV.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value DerivativesV.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value GetParametricCoordsV.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; The quadratic linear wege is splitted into 4 linear wedges, each of them is contoured by a provided scalar value ClipV.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic linear wedge using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron. IntersectWithLineV.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Line-edge intersection. Intersection has to occur within [0,1] parametric coordinates and with specified tolerance. GetParametricCenterV.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the quadratic linear wedge in parametric coordinates. InterpolationFunctionsV.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[15]) @deprecated Replaced by vtkQuadraticLinearWedge::InterpolateFunctions as of VTK 5.2 InterpolationDerivsV.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[45]) @deprecated Replaced by vtkQuadraticLinearWedge::InterpolateDerivs as of VTK 5.2 InterpolateFunctionsV.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[15]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) InterpolateDerivsV.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[45]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) GetEdgeArrayV.GetEdgeArray(int) -> (int, ...) C++: static int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. GetFaceArrayV.GetFaceArray(int) -> (int, ...) C++: static int *GetFaceArray(int faceId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. vtkNonLinearCellvtkCellvtkObjectvtkObjectBasevtkIdListvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDatavtkPointsp_voidOP `!:a!!aa@aaaa` a YX MXA AXAHAa'XA`A@#!$-X@&;a*a,  /0P5a 9a?@zRx $OAC $D AC $lAC B$AC G$:AC I$ȔAC G$ PAC G$4(AC I$\AC I$XAC I$AC I$AC I$0AC I$$ؙAC I,LpYAC M$|AC I$8AC G,-AC M$;AC L$$AC I$LP AC $tH0AC H$PAC L$AC L$AC E$AC EzPLRx 4$MOAC P4\أ?AC P4'AC PA8=@>-@*-@H-@@#-@N-@E-@o@8=_@>-I@*-A@H-9@(@#- @M-@E-??\-?]=?8=?#-?G-?#-:G-:#-N:]=E:>-:S-:^-9B-9B-~9@-H939]=9\-9]=88=8#-8G-8#-_7G-C7#-6]=6>-6T- 6B-5B-5@-x5c5]=4]=4>-4\-4]=48=4#-4G-4#-'0G- 0#-/S-/^-/B-}/B-D///]= /]=/>-.\-.]=.8=.#-.G-.#-S-G-7-#--T-|,B-\,B-#,,]=+\-+]=+$-+]=+#-+G-+#-[+>-?+%++B-*@-**]=w*\-e*]=^*$-M*#-H*=-,*#-'*G-*#-)G-)#-a)<-C)#->)G-)#-(G-(#-D(]=;(>-*(Q-'E-l'B-L'B-,'D-'D-&B-&B-&@-h&S&]=4&8=(&#-%>-%V-%E-z%?-m%b%F-G%?-:%%%?-%%?-$$?-$$?-$$?-$$D-R$@-($$8=#*-#H-###-#>-##-#R-|#@-R#1#9-)#Z-#Z-"\-"8="#-"G-"#-h"G-K"#-"G-!#-!J-H]=AZ-$Z->-B-E-|B-aB-DE-A-;-A-;-p@-<']=$-#->-#-K-?-u?-h]E-.@-9-Z-\-8=#-G-f#-?G-#-G-#-=-x#-PO-0]=)Z- >-B-B-B-E-gA-Q;-0@-]=9-Z-Z-y\-U$-@#-;G-#-<-#-G-#-m=-Q#-LG-,#-G-#-eP-]=zZ-]Z-=>-PB-6D-B-E-B-B-dA-G;-"A- ;- @-  ]=p 8=d #- >- W- ?-  F- ?- y ?-l W ?-J 5 ?-(  ?-  ?-  ?-  ?-  D-b @-8  \- ]= $- #- G- #-] ]=T >-C L- ?-  B- E- @- p ]=Z I-M #-, >- #- Y-E-@-I-}#-\>-B#-:X-%E-@-$-#-|>-d#->@-$-#->-#-~@-T$-#->-#-@-\$-O#-<>-$#-@-3-/---sI-f#-\>-F#-2@-I-#->-y#-eM?-@"$-#->-:-_-_-_-wf_-^EC-@->-$-#-:-_-y_-qf_-^M_-E2C-7-"-(-6-+-zslVU-IB(-=6/6-'!+-xh`XH@8( xh`XH@8(     xh `XH@8( @%8105,'&4X20.)`@ `XP[@ [[`@ `@ K[MAPCPt    7 ^ @ W  @`    8 A %HA & `A @# $ @&L * ,$  / P5d  9y?@`T\j l:XtPx(C/l7d8{|'$R]=BKX%P_memcpy_PyType_Ready__ZN13vtkPythonArgs8GetValueERx_PyvtkNonLinearCell_ClassNew_PyvtkQuadraticLinearWedge_ClassNew_PyVTKObject_New__ZL35PyvtkQuadraticLinearWedge_StaticNewv__ZdaPv__ZN23vtkQuadraticLinearWedge3NewEv__ZN23vtkQuadraticLinearWedge19GetParametricCoordsEv__ZN23vtkQuadraticLinearWedge12CellBoundaryEiPdP9vtkIdList_PyVTKObject_GetSet__Py_NoneStruct_PyVTKObject_GetObject__ZN23vtkQuadraticLinearWedge11TriangulateEiP9vtkIdListP9vtkPoints__ZL33PyvtkQuadraticLinearWedge_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKObject_AsBuffer_strcmp___stack_chk_fail_PyObject_GC_Del__ZN13vtkPythonArgs5ArrayIdEC1El_PyVTKObject_Check__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs11SetArgValueEii__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN23vtkQuadraticLinearWedge4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i__ZN23vtkQuadraticLinearWedge17IntersectWithLineEPdS0_dRdS0_S0_Ri__ZN13vtkPythonArgs8GetValueERi__ZN23vtkQuadraticLinearWedge12GetEdgeArrayEi__ZN23vtkQuadraticLinearWedge12GetFaceArrayEi__ZN13vtkPythonArgs10GetArgSizeEi__ZN23vtkQuadraticLinearWedge7GetEdgeEi__ZN23vtkQuadraticLinearWedge7GetFaceEi_PyLong_FromLong_PyUnicode_FromString_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_PyType_Type__ZL30PyvtkQuadraticLinearWedge_Type__Unwind_Resume_PyVTKAddFile_vtkQuadraticLinearWedge___stack_chk_guard__ZN13vtkPythonArgs11SetArgValueEid_PyErr_Occurred_PyVTKClass_Add__ZN13vtkPythonArgs8GetValueERd__Py_Dealloc__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonUtil13ManglePointerEPKvPKc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN23vtkQuadraticLinearWedge7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9___ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN23vtkQuadraticLinearWedge16EvaluateLocationERiPdS1_S1___ZL38PyvtkQuadraticLinearWedge_CellBoundaryP7_objectS0___ZL38PyvtkQuadraticLinearWedge_GetEdgeArrayP7_objectS0___ZL38PyvtkQuadraticLinearWedge_GetFaceArrayP7_objectS0___ZL38PyvtkQuadraticLinearWedge_SafeDownCastP7_objectS0___ZL45PyvtkQuadraticLinearWedge_InterpolationDerivsP7_objectS0___ZL43PyvtkQuadraticLinearWedge_InterpolateDerivsP7_objectS0___ZL48PyvtkQuadraticLinearWedge_InterpolationFunctionsP7_objectS0___ZL46PyvtkQuadraticLinearWedge_InterpolateFunctionsP7_objectS0___ZL37PyvtkQuadraticLinearWedge_DerivativesP7_objectS0___ZL42PyvtkQuadraticLinearWedge_GetNumberOfEdgesP7_objectS0___ZL42PyvtkQuadraticLinearWedge_GetNumberOfFacesP7_objectS0___ZL45PyvtkQuadraticLinearWedge_GetParametricCoordsP7_objectS0___ZL33PyvtkQuadraticLinearWedge_ContourP7_objectS0___ZL45PyvtkQuadraticLinearWedge_GetParametricCenterP7_objectS0___ZL30PyvtkQuadraticLinearWedge_ClipP7_objectS0___ZL42PyvtkQuadraticLinearWedge_EvaluatePositionP7_objectS0___ZL42PyvtkQuadraticLinearWedge_EvaluateLocationP7_objectS0___ZL42PyvtkQuadraticLinearWedge_GetCellDimensionP7_objectS0___ZL34PyvtkQuadraticLinearWedge_IsTypeOfP7_objectS0___ZL37PyvtkQuadraticLinearWedge_TriangulateP7_objectS0___ZL37PyvtkQuadraticLinearWedge_GetCellTypeP7_objectS0___ZL43PyvtkQuadraticLinearWedge_IntersectWithLineP7_objectS0___ZL33PyvtkQuadraticLinearWedge_GetEdgeP7_objectS0___ZL37PyvtkQuadraticLinearWedge_NewInstanceP7_objectS0___ZL33PyvtkQuadraticLinearWedge_GetFaceP7_objectS0___ZL29PyvtkQuadraticLinearWedge_IsAP7_objectS0___ZN23vtkQuadraticLinearWedge11DerivativesEiPdS0_iS0___ZN23vtkQuadraticLinearWedge16EvaluatePositionEPdS0_RiS0_RdS0___ZN23vtkQuadraticLinearWedge19InterpolationDerivsEPdS0___ZN23vtkQuadraticLinearWedge22InterpolationFunctionsEPdS0_GCC_except_table18GCC_except_table16GCC_except_table15___gxx_personality_v0