X 5x5__text__TEXTbx8__data__DATAp==__cstring__TEXT0__compact_unwind__LD0`x2?__eh_frame__TEXT`2(4 h2  (@@(D, P+UHH=H5HH uHH=H]ÐUH]fDUHSPHH=H5HH uHH=H5~HHt H tH[]H=H[]fUHAVSH0HuH HEЋFEHEHEH}ȃuoHutqH]H=HAt1H=-HtH=.Ht HLcHuL1H0[A^]f.@UHAWAVSH(HuHBHED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}}L}tlH=LAtbH=,LtOH=,LtH$LLLMIBH}1H8[A\A]A^A_]MUH$LLLMIAHuHHf.UHAWAVAUATSH(HuHHEDvDuHG]ĉ]ȅyHHLo(MA)AH5((H}HU}IH5(H}HU}IH5(H}HU}tlIH5 (H}HU}tOHH5'H}HU}t2}t=LLLLIIAH}1H([A\A]A^A_]MULLLLIIAHuHHUHAWAVAUATSH(HuHHEDvDuHG]ĉ]ȅyHHLo(MA)AH5&H}HU}IH5&H}HU}IH5&H}HU}tlIH5&H}HU}tOHH5|&H}HU}t2}t=LLLLIIAH}1H([A\A]A^A_]MULLLLIIAHuHHUHAVSH HuHHEDvDuHG]]y HHtH(HtD9uHt1H}111 HHHH [A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅y HHt\Lw(MtSA)Au7H5%H}HU}t0}t7LHHu9H}1H([A^A_]ILHHuHHUHAVSH HuHhHEDvDuHG]]y HHtH(HtD9uHt1H}111 HcHHH [A^]f.UHAVSH HuHHEDvDuHG]]y HHtH(HtD9uHt1H}111 HcHHH [A^]f.UHAVSH HuHHEDvDuHG]]y HHtH(HtD9uHt1H}111 HcHHH [A^]f.UHAWAVSH(HuHHED~D}HG]ԉ]؅y HHtWLw(MtNA)Au2HuH}t4uLHuHHH}1H([A^A_]fUHAWAVSH(HuHYHED~D}HG]ԉ]؅y HHtWLw(MtNA)Au2HuH}t4uLHuHHH}1H([A^A_]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y HHtkLw(MtbA)AuFHuH}tHHuH}t7uULHuHHH}1H([A^A_]IHD{  p"|"$$J%U%%%((R*m*?+T+a,x,--vtkSimpleCellTessellatorvtkCommonDataModelPython.vtkSimpleCellTessellatorvtkSimpleCellTessellator - helper class to perform cell tessellation Superclass: vtkGenericCellTessellator vtkSimpleCellTessellator is a helper class to perform adaptive tessellation of particular cell topologies. The major purpose for this class is to transform higher-order cell types (e.g., higher-order finite elements) into linear cells that can then be easily visualized by VTK. This class works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell classes. This algorithm is based on edge subdivision. An error metric along each edge is evaluated, and if the error is greater than some tolerance, the edge is subdivided (as well as all connected 2D and 3D cells). The process repeats until the error metric is satisfied. Since the algorithm is based on edge subdivision it inherently avoid T-junctions. A significant issue addressed by this algorithm is to insure face compatibility across neigboring cells. That is, diagonals due to face triangulation must match to insure that the mesh is compatible. The algorithm employs a precomputed table to accelerate the tessellation process. The table was generated with the help of vtkOrderedTriangulator the basic idea is that the choice of diagonal is made only by considering the relative value of the point ids. @sa vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkAttributesErrorMetric vtkGeometricErrorMetric vtkViewDependentErrorMetric IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkSimpleCellTessellator C++: static vtkSimpleCellTessellator *SafeDownCast( vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkSimpleCellTessellator C++: vtkSimpleCellTessellator *NewInstance() GetGenericCellV.GetGenericCell() -> vtkGenericAdaptorCell C++: virtual vtkGenericAdaptorCell *GetGenericCell() Get the higher order cell in order to access the evaluation function. TessellateFaceV.TessellateFace(vtkGenericAdaptorCell, vtkGenericAttributeCollection, int, vtkDoubleArray, vtkCellArray, vtkPointData) C++: void TessellateFace(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkIdType index, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) override; Tessellate a face of a 3D `cell'. The face is specified by the index value. The result is a set of smaller linear triangles in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==3 \pre valid_index_range: (index>=0) && (indexGetNumberOfBoundaries(2)) \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 TessellateV.Tessellate(vtkGenericAdaptorCell, vtkGenericAttributeCollection, vtkDoubleArray, vtkCellArray, vtkPointData) C++: void Tessellate(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) override; Tessellate a 3D `cell'. The result is a set of smaller linear tetrahedra in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==3 \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 TriangulateV.Triangulate(vtkGenericAdaptorCell, vtkGenericAttributeCollection, vtkDoubleArray, vtkCellArray, vtkPointData) C++: void Triangulate(vtkGenericAdaptorCell *cell, vtkGenericAttributeCollection *att, vtkDoubleArray *points, vtkCellArray *cellArray, vtkPointData *internalPd) override; Triangulate a 2D `cell'. The result is a set of smaller linear triangles in `cellArray' with `points' and point data `internalPd'. \pre cell_exists: cell!=0 \pre valid_dimension: cell->GetDimension()==2 \pre att_exists: att!=0 \pre points_exists: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 ResetV.Reset() C++: void Reset() Reset the output for repeated use of this class. InitializeV.Initialize(vtkGenericDataSet) C++: void Initialize(vtkGenericDataSet *ds) override; Initialize the tessellator with a data set `ds'. GetFixedSubdivisionsV.GetFixedSubdivisions() -> int C++: int GetFixedSubdivisions() Return the number of fixed subdivisions. It is used to prevent from infinite loop in degenerated cases. For order 3 or higher, if the inflection point is exactly on the mid-point, error metric will not detect that a subdivision is required. 0 means no fixed subdivision: there will be only adaptive subdivisions. * The algorithm first performs `GetFixedSubdivisions' non adaptive * subdivisions followed by at most `GetMaxAdaptiveSubdivisions' adaptive * subdivisions. Hence, there are at most `GetMaxSubdivisionLevel' * subdivisions. * \post positive_result: result>=0 && result<=GetMaxSubdivisionLevel() GetMaxSubdivisionLevelV.GetMaxSubdivisionLevel() -> int C++: int GetMaxSubdivisionLevel() Return the maximum level of subdivision. It is used to prevent from infinite loop in degenerated cases. For order 3 or higher, if the inflection point is exactly on the mid-point, error metric will not detect that a subdivision is required. 0 means no subdivision, neither fixed nor adaptive. \post positive_result: result>=GetFixedSubdivisions() GetMaxAdaptiveSubdivisionsV.GetMaxAdaptiveSubdivisions() -> int C++: int GetMaxAdaptiveSubdivisions() Return the maximum number of adaptive subdivisions. \post valid_result: result==GetMaxSubdivisionLevel()-GetFixedSubdivisions() SetFixedSubdivisionsV.SetFixedSubdivisions(int) C++: void SetFixedSubdivisions(int level) Set the number of fixed subdivisions. See GetFixedSubdivisions() for more explanations. \pre positive_level: level>=0 && level<=GetMaxSubdivisionLevel() \post is_set: GetFixedSubdivisions()==level SetMaxSubdivisionLevelV.SetMaxSubdivisionLevel(int) C++: void SetMaxSubdivisionLevel(int level) Set the maximum level of subdivision. See GetMaxSubdivisionLevel() for more explanations. \pre positive_level: level>=GetFixedSubdivisions() \post is_set: level==GetMaxSubdivisionLevel() SetSubdivisionLevelsV.SetSubdivisionLevels(int, int) C++: void SetSubdivisionLevels(int fixed, int maxLevel) Set both the number of fixed subdivisions and the maximum level of subdivisions. See GetFixedSubdivisions(), GetMaxSubdivisionLevel() and GetMaxAdaptiveSubdivisions() for more explanations. \pre positive_fixed: fixed>=0 \pre valid_range: fixed<=maxLevel \post fixed_is_set: fixed==GetFixedSubdivisions() \post maxLevel_is_set: maxLevel==GetMaxSubdivisionLevel() vtkGenericCellTessellatorvtkObjectvtkObjectBasevtkGenericAdaptorCellvtkGenericAttributeCollectionvtkDoubleArrayvtkCellArrayvtkPointDatavtkGenericDataSetOP `!'a!!!PXxXpxX ! a` ! ! !@ a aazRx $OAC $D AC $lAC B$AC G$'AC I$AC G$ 0AC G$4AC G,\AC M,xAC M,PxAC M$AC G$AC I$<AC G$d8AC G$AC G$(AC I$AC I$8AC IQ,-9*=--(9-0-0-.-,-u*=i-d;-U0-..- ,- *= - 8- 0-~ .-T  - ,- - <- .-  -v ,-^ -W :-< .-  - ,- - 7- .-r O *=C -" ,- - 3- --  .- m *=d ,-L -G >-, .-  *= - ,- 5-h --[ K --> . --!  -- --.-_*=S- ,- 4---------l--_2.-*=-,-6-]--P@--3#--1-----.-h82-+-,--.-%-o!-c-S2-F-<,-&-.-2--s,-Y-E--- --,-+-?-zo?-gV?-N5/-.-,---}+-q?-i^?-VE?-=./-)---(--zslV=-IB-=6/(-'!-xh`XH@8(     xh `XH@8( @8#"'&X$0 @ `@ `@ p+P  h  PN  p  _` c   @   `/mT?z*ST%9F2_i s@w_PyType_Ready__ZN13vtkPythonArgs8GetValueERx_PyvtkSimpleCellTessellator_ClassNew_PyvtkGenericCellTessellator_ClassNew_PyVTKObject_New__ZL36PyvtkSimpleCellTessellator_StaticNewv__ZN24vtkSimpleCellTessellator3NewEv__ZN24vtkSimpleCellTessellator5ResetEv__ZN24vtkSimpleCellTessellator26GetMaxAdaptiveSubdivisionsEv__ZN24vtkSimpleCellTessellator20GetFixedSubdivisionsEv__ZN24vtkSimpleCellTessellator22GetMaxSubdivisionLevelEv_PyVTKObject_GetSet__ZN24vtkSimpleCellTessellator10InitializeEP17vtkGenericDataSet__Py_NoneStruct_PyVTKObject_GetObject__ZL34PyvtkSimpleCellTessellator_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKAddFile_vtkSimpleCellTessellator_PyVTKObject_AsBuffer_strcmp_PyObject_GC_Del_PyVTKObject_Check__ZN24vtkSimpleCellTessellator20SetSubdivisionLevelsEii__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs8GetValueERi__ZN24vtkSimpleCellTessellator20SetFixedSubdivisionsEi__ZN24vtkSimpleCellTessellator22SetMaxSubdivisionLevelEi_PyLong_FromLong_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZL31PyvtkSimpleCellTessellator_Type_PyType_Type_PyErr_Occurred_PyVTKClass_Add__Py_Dealloc__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN24vtkSimpleCellTessellator14TessellateFaceEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionxP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData__ZN24vtkSimpleCellTessellator11TriangulateEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData__ZN24vtkSimpleCellTessellator10TessellateEP21vtkGenericAdaptorCellP29vtkGenericAttributeCollectionP14vtkDoubleArrayP12vtkCellArrayP12vtkPointData__ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZL39PyvtkSimpleCellTessellator_SafeDownCastP7_objectS0___ZL32PyvtkSimpleCellTessellator_ResetP7_objectS0___ZL53PyvtkSimpleCellTessellator_GetMaxAdaptiveSubdivisionsP7_objectS0___ZL47PyvtkSimpleCellTessellator_SetFixedSubdivisionsP7_objectS0___ZL47PyvtkSimpleCellTessellator_GetFixedSubdivisionsP7_objectS0___ZL47PyvtkSimpleCellTessellator_SetSubdivisionLevelsP7_objectS0___ZL41PyvtkSimpleCellTessellator_GetGenericCellP7_objectS0___ZL49PyvtkSimpleCellTessellator_SetMaxSubdivisionLevelP7_objectS0___ZL49PyvtkSimpleCellTessellator_GetMaxSubdivisionLevelP7_objectS0___ZL35PyvtkSimpleCellTessellator_IsTypeOfP7_objectS0___ZL37PyvtkSimpleCellTessellator_InitializeP7_objectS0___ZL38PyvtkSimpleCellTessellator_TriangulateP7_objectS0___ZL37PyvtkSimpleCellTessellator_TessellateP7_objectS0___ZL38PyvtkSimpleCellTessellator_NewInstanceP7_objectS0___ZL41PyvtkSimpleCellTessellator_TessellateFaceP7_objectS0___ZL30PyvtkSimpleCellTessellator_IsAP7_objectS0_