(yy__text__TEXT9|__gcc_except_tab__TEXT 9d;__data__DATA9X<PX__cstring__TEXTp> 38A__compact_unwind__LDqHt"__eh_frame__TEXTuw  h2  (_ P!>UHH=H5HW>H uHH=H]ÐUH]fDUHSPHH=H5H=H uHH=H5=HHt H tH[]H=H[]fUHAVSH0HuH DHEЋFEHEHEH}ȃHuH]H='=HAtDH=oHt1H=oHtH=toHt HLcHuL1H0[A^]UHAWAVSH(HuH4DHED~D}HG]ԉ]؅yHHLw(HEMA)Au{HuH}}L}tH=<LAtuH=hnLtbH=fnLtOH=[nLt<tHLHUHpLM!IHLHUHpLM(HuLH(1Ef.EuzEf.EuzEf.Eu{$HuH(HUpf.Pu'z%xf.XuzEf.`u{'HuH(HpE~>1AfA.Du z HH9u!HuH(LDHzHHHHH9nsHHHH9t HtH UHAWAVSH(HuH=HEDvDuHG]ԉ]؅yHHL(MA)AumHuH}toH5UH}HU}tUIH5UH}HU}t8}utH}1H([A^A_]ILLHHHuHcUHAWAVAUATSHHHHEHPHD?HXF`HGdhyHHHG(HpLPLAC6HcHHE1EIcHLELAH]C?HcHHE1EIcHIDHpHI͋`+dHPHHHPHuHPHuDHPHLtiHPLDtSHEHEf(Ef)EDHxE#A1HxzHPE1HHH9t HtHHH9t HtHHH;ELH[A\A]A^A_]1HMHxHI9sIH9s1HpHHH‰уH s1H}nHH)1H}LAALD L0AD AL0D@LPAD@ALPfD`LpfAD`ALpHHuHt*HHfD fADA H HuHxH9)HHHHtH}H4I4HHuH}HHxrWH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HH9uDHEE}As 1HuHuIDH9sLHI9s1HpHHH‰уH s1LeHH)1LLLD L0D L0D@LPD@LPfD`LpfD`LpHHuHt(HHfD fD H HuHuH9)HHHLHtH4H4HHuHHUrWH H HLHLHLHLHLHLHL HL HL(HL(HL0HL0HL8HL8HH9udHDLtHUHpHMMHpHHUHMMPEf.EuzEf.EuzEf.Eu{$HuHPHUE~E1HMfA.uzHH9xu"HuHPHUDE~>1ADf.u z HH9Eu!HuHPLDHKL-IEHHH9?DHHHH9tHt HHHH9t HtH fUHAVSH HuH<HEDvDuHG]]y HHt%H(HtD9uEt1HHt51H}111HH [A^]HpHHuHtH5MHHHHH뱐UHAWAVAUATSHXHuHI=HEDvDuHG]]yHHLo(MnA)H}A NHuLH5LH}HU}.IH5rLH}HU} IH5lLH}HU}IH5XLH}HU}HH57LH}HU}HEH5"LH}HU}HEH}HutsH5KH}HU}tYHEH}HutD}ELUЋEtQLLLLILMPuARuU 1HX[A\A]A^A_]E1MuM]LLLLILMPuARuA8H HuHHUHAWAVSHHHHHEHH#=HDvDHGyHHL(MA)HAaHuZHHu=HH"HHHH@HHHLLHEHE(E)E(E)`HEHp(@) HPH0()HHtlL4$HuHUHL@LLn1H H H;M!HH[A^A_]E1MLIL4$HuHUHL@LL@Ef.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@f.u*z(f.uzf.u{'HuHHHuHHHcH H H;MDUHSH(HHHEHH:HFHDžHHuкHHHEHE(E)EHHHH}HEf.EuzEf.EuzEf.Eu{!HuHHU1f.f.smf.WQf.;5f.f.f. f.(f.0f.8 f.@wq(f.H[U0f.P?98f.X#@f.`Hf.hPf.pXf.x`f.hf.uz}pf.ukzixf.uWzUEf.uFzDEf.u5z3Ef.u$z"Ef.uzEf.u{'HuHHHu.HHH H H;Mt&1H H H;MuH([]DUHSHHHHEHpH8HxFHDžHp HuкHpH QHEHE(E)EHH HH}HEf.EuzEf.EuzEf.Eu{!HuHpHU1f.ŀuezcf.ňuOzM f.Őu9z7HHSuR1H H H;MuUHĈ[]HuHpH QHuHHH H H;MtUHAWAVSH(HHHEHH9HD~DHGyHHLw(MA)HAHuHHthHEHE(E)EHHtiH}HEf.Ef1H H H;MH([A^A_]E1M"IHuHLxEf.EuzEf.EuzEf.Eu{!HuHHU1f.f.{f.e_f.ICf.-'f. f.f.f. f.(f.0f.8ic f.@MG(f.H1+0f.P8f.X@f.`Hf.hPf.pXf.x`f.uqzohf.u]z[pf.uIzGxf.u5z3Ef.u$z"Ef.uzEf.u{'HuHHHHHH H H;M|UHAWAVSHHHHEH`Hj6HhD~DpHGtxyHHLw(MA)H`AHuH`HQthHEHE(E)EHHttiH}HEf.Ef1H H H;M2HĈ[A^A_]E1M"IHuHLEf.EuzEf.EuzEf.Eu{!HuH`HU1f.@f.pu:z8f.xu$z"f.ŀuz HHSu'HuH`HQHHHH H H;Mf.UHSH(HuHI7HE؋FEHEH}ЃuEHutG}HHu2Ht6H599HHH([]þ1H([]HHH([]UHSH(HuH|7HE؋FEHEH}ЃuEHutG}HHu2Ht6H58HHH([]þ1H([]HHH([]$   t ^   >HD>EEF FG"GGGHHHHRIcII JJJ;KCKKKMM\RmRRWcWXX[[V_j_uazacc6eMefg?jTjkl=oJoppvtkTriQuadraticHexahedronvtkCommonDataModelPython.vtkTriQuadraticHexahedronvtkTriQuadraticHexahedron - cell represents a parabolic, 27-node isoparametric hexahedron Superclass: vtkNonLinearCell vtkTriQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to represent a three-dimensional, 27-node isoparametric triquadratic hexahedron. The interpolation is the standard finite element, triquadratic isoparametric shape function. The cell includes 8 edge nodes, 12 mid-edge nodes, 6 mid-face nodes and one mid-volume node. The ordering of the 27 points defining the cell is point ids (0-7,8-19, 20-25, 26) where point ids 0-7 are the eight corner vertices of the cube; followed by twelve midedge nodes (8-19); followed by 6 mid-face nodes (20-25) and the last node (26) is the mid-volume node. Note that these midedge nodes correspond lie on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), (7,4), (0,4), (1,5), (2,6), (3,7). The mid-surface nodes lies on the faces defined by (first edge nodes id's, than mid-edge nodes id's): (0,1,5,4;8,17,12,16), (1,2,6,5;9,18,13,17), (2,3,7,6,10,19,14,18), (3,0,4,7;11,16,15,19), (0,1,2,3;8,9,10,11), (4,5,6,7;12,13,14,15). The last point lies in the center of the cell (0,1,2,3,4,5,6,7). top 7--14--6 | | 15 25 13 | | 4--12--5 middle 19--23--18 | | 20 26 21 | | 16--22--17 bottom 3--10--2 | | 11 24 9 | | 0-- 8--1 @sa vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge vtkBiQuadraticQuad @par Thanks: Thanks to Soeren Gebbert who developed this class and integrated it into VTK 5.0. IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkTriQuadraticHexahedron C++: static vtkTriQuadraticHexahedron *SafeDownCast( vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkTriQuadraticHexahedron C++: vtkTriQuadraticHexahedron *NewInstance() GetCellTypeV.GetCellType() -> int C++: int GetCellType() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetCellDimensionV.GetCellDimension() -> int C++: int GetCellDimension() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetNumberOfEdgesV.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetNumberOfFacesV.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetEdgeV.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. GetFaceV.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. CellBoundaryV.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. ContourV.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is nullptr, then no interpolation is performed. Also, if the output cell data is non-nullptr, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) EvaluatePositionV.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. EvaluateLocationV.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) TriangulateV.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. DerivativesV.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). GetParametricCoordsV.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. ClipV.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this triquadratic hexahedron using scalar value provided. Like contouring, except that it cuts the hex to produce linear tetrahedron. IntersectWithLineV.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Line-edge intersection. Intersection has to occur within [0,1] parametric coordinates and with specified tolerance. InterpolationFunctionsV.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[27]) @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateFunctions as of VTK 5.2 InterpolationDerivsV.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[81]) @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateDerivs as of VTK 5.2 InterpolateFunctionsV.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[27]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) InterpolateDerivsV.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[81]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) GetEdgeArrayV.GetEdgeArray(int) -> (int, ...) C++: static int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. GetFaceArrayV.GetFaceArray(int) -> (int, ...) C++: static int *GetFaceArray(int faceId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. vtkNonLinearCellvtkCellvtkObjectvtkObjectBasevtkIdListvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDatavtkPointsp_voidOP `!:a!!aa@aaaa` a YX MXA 9XAH9a'XA`9@#!$-X@&;a*+.0a`5va78zRx $OAC $D AC $lAC B$XAC G$:AC I$(AC G$ AC G$4AC I$\ AC I$AC I$PAC I$AC I$AC I$$8AC I,LГYAC M$|pAC I$AC G,@-AC M$@;AC L$$X+AC H$L`AC H$tAC L$vAC L$AC E$AC EzPLRx 4$HM׿AC P4\`ǿAC P4h'AC P97=8=-8)-8G-88"-8M-8D-8o87=_8=-I8)-A8G-98(8"- 8L-8D-77[-7\=77=7"-7F-7"-7F-6"-6\=6=-^6R-E6]-6A-5A-5?-5s5\=T5[-B5\=857=(5"-#5F-5"-I2F--2"-1\=1=-1S-u1]-I1A-)1A-0?-00\=0[-w0\=m07=a0"-\0F-:0"-"0\=0=-/F-/"-l/R-`/]--/A- /A-..\=.\=.=-|.[-n.\=d.7=X."-S.F-1."-+F-k+"-<+S-0+]-*A-*A-**\=w*[-e*\=^*#-M*"-H*<-,*"-'*F-*"-)F-)"-a);-C)"->)F-)"-(F-("-D(\=;(=-*(P-'D-l'A-L'A-,'C-'C-&A-&A-&?-h&S&\=4&7=(&"-%=-%U-%D-z%>-m%b%E-G%>-:%%%>-%%>-$$>-$$>-$$>-$$C-R$?-($$7=#)-#G-##"-#=-#"-#Q-|#?-R#1#8-)#Y-#Y-"[-"7=""-"F-""-h"F-K""-"F-!"-!I-H\=AY-$Y-=-A-D-|A-aA-DD-@-:-@-:-p?-<'\=#-"-=-"-J->-u>-h]D-.?-8-Y-[-7="-F-f"-?F-"-F-"-<-x"-PN-0\=)Y- =-A-A-A-D-g@-Q:-0?-\=8-Y-Y-y[-U#-@"-;F-"-;-"-F-"-m<-Q"-LF-,"-F-"-eO-\=zY-]Y-==-PA-6C-A-D-A-A-d@-G:-"@- :- ?-  \=p 7=d "- =- V- >-  E- >- y >-l W >-J 5 >-(  >-  >-  >-  >-  C-b ?-8  [- \= #- "- F- "-] \=T =-C K- >-  A- D- ?- p \=Z H-M "-, =- "- X-D-?-H-}"-\=-B"-:W-%D-?-#-"-|=-d"->?-#-"-=-"-~?-T#-"-=-"-?-\#-O"-<=-$"-?-2-.-,-sH-f"-\=-F"-2?-H-"-=-y"-eM>-@"#-"-=-9-^-^-^-wf^-^EB-?-=-#-"-9-^-y^-qf^-^M^-E2B-6-!-'-5-*-zslVT-IB'-=6/5-'!*-xh`XH@8( xh`XH@8(     xh `XH@8( @$80/4+&%3X10-(`@ `XPZ@ ZZ`@ `@ #ZM90;Px     9  @ c  b` R   T 9 AH9 X .`9 @# $# @& *N . 0 `578f`7[z4 &EH~Zz6q]n3V 3/>P;^%ss` gC^_memcpy_PyType_Ready__ZN13vtkPythonArgs8GetValueERx_PyvtkTriQuadraticHexahedron_ClassNew_PyvtkNonLinearCell_ClassNew_PyVTKObject_New__ZL37PyvtkTriQuadraticHexahedron_StaticNewv__ZdaPv__ZN25vtkTriQuadraticHexahedron3NewEv__ZN25vtkTriQuadraticHexahedron19GetParametricCoordsEv__ZN25vtkTriQuadraticHexahedron12CellBoundaryEiPdP9vtkIdList_PyVTKObject_GetSet__Py_NoneStruct_PyVTKObject_GetObject__ZN25vtkTriQuadraticHexahedron11TriangulateEiP9vtkIdListP9vtkPoints__ZL35PyvtkTriQuadraticHexahedron_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKObject_AsBuffer_strcmp_PyVTKAddFile_vtkTriQuadraticHexahedron___stack_chk_fail_PyObject_GC_Del__ZN13vtkPythonArgs5ArrayIdEC1El_PyVTKObject_Check__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs11SetArgValueEii__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN25vtkTriQuadraticHexahedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i__ZN25vtkTriQuadraticHexahedron17IntersectWithLineEPdS0_dRdS0_S0_Ri__ZN13vtkPythonArgs8GetValueERi__ZN25vtkTriQuadraticHexahedron12GetEdgeArrayEi__ZN25vtkTriQuadraticHexahedron12GetFaceArrayEi__ZN13vtkPythonArgs10GetArgSizeEi__ZN25vtkTriQuadraticHexahedron7GetEdgeEi__ZN25vtkTriQuadraticHexahedron7GetFaceEi_PyLong_FromLong_PyUnicode_FromString_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZL32PyvtkTriQuadraticHexahedron_Type_PyType_Type__Unwind_Resume___stack_chk_guard__ZN13vtkPythonArgs11SetArgValueEid_PyErr_Occurred_PyVTKClass_Add__ZN13vtkPythonArgs8GetValueERd__Py_Dealloc__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonUtil13ManglePointerEPKvPKc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN25vtkTriQuadraticHexahedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9___ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN25vtkTriQuadraticHexahedron16EvaluateLocationERiPdS1_S1___ZL40PyvtkTriQuadraticHexahedron_CellBoundaryP7_objectS0___ZL40PyvtkTriQuadraticHexahedron_GetEdgeArrayP7_objectS0___ZL40PyvtkTriQuadraticHexahedron_GetFaceArrayP7_objectS0___ZL40PyvtkTriQuadraticHexahedron_SafeDownCastP7_objectS0___ZL47PyvtkTriQuadraticHexahedron_InterpolationDerivsP7_objectS0___ZL45PyvtkTriQuadraticHexahedron_InterpolateDerivsP7_objectS0___ZL50PyvtkTriQuadraticHexahedron_InterpolationFunctionsP7_objectS0___ZL48PyvtkTriQuadraticHexahedron_InterpolateFunctionsP7_objectS0___ZL39PyvtkTriQuadraticHexahedron_DerivativesP7_objectS0___ZL44PyvtkTriQuadraticHexahedron_GetNumberOfEdgesP7_objectS0___ZL44PyvtkTriQuadraticHexahedron_GetNumberOfFacesP7_objectS0___ZL47PyvtkTriQuadraticHexahedron_GetParametricCoordsP7_objectS0___ZL35PyvtkTriQuadraticHexahedron_ContourP7_objectS0___ZL32PyvtkTriQuadraticHexahedron_ClipP7_objectS0___ZL44PyvtkTriQuadraticHexahedron_EvaluatePositionP7_objectS0___ZL44PyvtkTriQuadraticHexahedron_EvaluateLocationP7_objectS0___ZL44PyvtkTriQuadraticHexahedron_GetCellDimensionP7_objectS0___ZL36PyvtkTriQuadraticHexahedron_IsTypeOfP7_objectS0___ZL39PyvtkTriQuadraticHexahedron_TriangulateP7_objectS0___ZL39PyvtkTriQuadraticHexahedron_GetCellTypeP7_objectS0___ZL45PyvtkTriQuadraticHexahedron_IntersectWithLineP7_objectS0___ZL35PyvtkTriQuadraticHexahedron_GetEdgeP7_objectS0___ZL39PyvtkTriQuadraticHexahedron_NewInstanceP7_objectS0___ZL35PyvtkTriQuadraticHexahedron_GetFaceP7_objectS0___ZL31PyvtkTriQuadraticHexahedron_IsAP7_objectS0___ZN25vtkTriQuadraticHexahedron11DerivativesEiPdS0_iS0___ZN25vtkTriQuadraticHexahedron16EvaluatePositionEPdS0_RiS0_RdS0___ZN25vtkTriQuadraticHexahedron19InterpolationDerivsEPdS0___ZN25vtkTriQuadraticHexahedron22InterpolationFunctionsEPdS0_GCC_except_table18GCC_except_table16GCC_except_table15___gxx_personality_v0