H h__text__TEXT^hH__gcc_except_tab__TEXT^|a__literal16__TEXT_ xb__literal8__TEXT0_b__data__DATAP_(b__cstring__TEXTxf-i__compact_unwind__LD`4__eh_frame__TEXTxh h2  p P335NUHH=H5H_fH uHH=H]ÐUH]fDUHSPHH=H5HeH uHH=H5eHHt H tH[]H=H[]fUHAVSH0HuHKfHEЋFEHEHEH}ȃuoHutqH]H=7eHAt1H=HtH=Ht HLcHuL1H0[A^]f.@UHAWAVSH(HuHfHED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}}L}tlH=&dLAtbH=LtOH=Lt<tHLHUHpLM!IHLHUHpLM(HuLH(1Ef.EuzEf.EuzEf.Eu{$HuH(HUpf.Pu'z%xf.XuzEf.`u{'HuH(HpE~>1AfA.Du z HH9u!HuH(LDHzHHHHH9nsHHHH9t HtH UHAWAVSH(HuHWHEDvDuHG]ԉ]؅yHHL(MA)AumHuH}toH5wH}HU}tUIH5.xH}HU}t8}utH}1H([A^A_]ILLHHHuHcUHAWAVAUATSHHHHEHPH=WHXF`HGdhyHHHG(HpLPLAC6HcHHE1EIcHLELAH]C?HcHHE1EIcHIDHpHI͋`+dHPHHHPHuHPHuDHPHLtiHPLDtSHEHEf(Ef)EDHxE#A1HxzHPE1HHH9t HtHHH9t HtHHH;ELH[A\A]A^A_]1HMHxHI9sIH9s1HpHHH‰уH s1H}nHH)1H}LAALD L0AD AL0D@LPAD@ALPfD`LpfAD`ALpHHuHt*HHfD fADA H HuHxH9)HHHHtH}H4I4HHuH}HHxrWH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HH9uDHEE}As 1HuHuIDH9sLHI9s1HpHHH‰уH s1LeHH)1LLLD L0D L0D@LPD@LPfD`LpfD`LpHHuHt(HHfD fD H HuHuH9)HHHLHtH4H4HHuHHUrWH H HLHLHLHLHLHLHL HL HL(HL(HL0HL0HL8HL8HH9udHDLtHUHpHMMHpHHUHMMPEf.EuzEf.EuzEf.Eu{$HuHPHUE~E1HMfA.uzHH9xu"HuHPHUDE~>1ADf.u z HH9Eu!HuHPLDHKL-IEHHH9?DHHHH9tHt HHHH9t HtH fUHAVSH HuH&QHEDvDuHG]]y HHt%H(HtD9uEt1HHt51H}111HH [A^]HpHHuHtH5oHHHHH뱐UHAVSH0HuHPHEDvDuHG]܉]y HHt"H(HtD9uEHt1H}111 EHHH0[A^]UHAWAVAUATSHXHuHPHEDvDuHG]]yHHLo(MnA)H}A NHuLH51nH}HU}.IH5nH}HU} IH5nH}HU}IH5nH}HU}HH5mH}HU}HEH5mH}HU}HEH}HutsH5mH}HU}tYHEH}HutD}ELUЋEtQLLLLILMPuARuU 1HX[A\A]A^A_]E1MuM]LLLLILMPuARuA8H HuHHUHHHHHEH`HPHhFpHDžtH`"HuH`HuHEHE(E)E(E)EHEHEH}HuEf.EuzEf.EuzEf.Eu{!HuH`HU1Ef.EuzEf.EuzEf.Eu{$HuH`HUHu.HHH H H;Mt&1H H H;MuHĠ]fUHHHHHEH@HOHHFPHDžTH@fHu_H@HuBHEHE(E)E(E(M(U)`)p)UH}HuEf.EuzEf.EuzEf.Eu{!HuH@HU1Ef.`uQzOEf.hu@z>Ef.pu/z-Ef.xuzEf.EuzEf.Eu{$HuH@HUHu.HHH H H;Mt&1H H H;MuH]f.@UHAWAVSHHHHEH@H OHHD~DPHGTXyHHLw(MA)H@AuHut|H@HutcHEHE(E)E(E)`HEHpTtfH}HuEf.Ec1H H H;MHĨ[A^A_]E1M2IHuHULxEf.EuzEf.EuzEf.Eu{!HuH@HU1Ef.`u$z"Ef.huzEf.pu{$HuH@HUH HHH H H;Mf.@UHAWAVSHHHHEH HMH(D~D0HG48yHHLw(MA)H AHuH HpttHEHE(E)E(p(M(U)@)P)`4tiH}HpEf.Ef1H H H;M=H[A^A_]E1MIHuHpLEf.EuzEf.EuzEf.Eu{!HuH HU1pf.@uZzXxf.HuFzDEf.Pu5z3Ef.Xu$z"Ef.`uzEf.hu{'HuH HpHHHH H H;MUHAWAVSH(HuH`LHED~D}HG]ԉ]؅y HHtlLw(MtcA)AuGHuH}tIuLHHu1Ht9H5cHHH}1H([A^A_]HHUHAWAVSHHHHHEHH:LHDvDHGyHHL(MA)HAaHuZHHu=HH"HHHH@HHHLLHEHE(E)E(E)`HEHp(@) HPH0()HHtlL4$HuHUHL@LLn1H H H;M!HH[A^A_]E1MLIL4$HuHUHL@LL@Ef.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@f.u*z(f.uzf.u{'HuHHHuHHHcH H H;MDUHAWAVSHhHHHEHuHIHED~D}HG]]yHHLw(MA)H}AuTHuHEHE(E)E}t9(G*)EHES*1f.EuRzP2eIHuLXHcEf.EuzEf.EuzEf.Eu{HuH}HU1Ht1H H H;Mu#Hh[A^A_]HH H H;MtfDUHAWAVSHxHHHEHxHHHED~D}HG]]yHHLw(MA)HxAu:HuHEHE(E)E}tHuL!jIHuL`EEf.EuzEf.EuzEf.Eu{!HuHxHU1Ht1H H H;Mu%Hx[A^A_]EH H H;MtUHH HHHEHHwHHFHDžHHuzHHu]HH`=HH HEHE(E)E(E)EHEHE(`)@HpHP( )H0Hf(Ef(MfXfX`f^ &f) MUXXp^&0f.Euzff.Eu z f.Mu{!HuHHU1Ef.EuzEf.EuzEf.Eu{$HuHHU`f.@u*z(hf.Huzpf.Pu{'HuHH` f.u*z((f.uz0f.u{'HuHH HuHH1H H H;Mu H ]f.@UHH0HHHEHHmFHF HDž$HHuHHuHH`(E)EHEHE(E)EHEHE(`)@HpHP`hEEpEME0E8f.Mu$z"0f.Euz8f.Eu{!HuHHU1Ef.EuzEf.EuzEf.Eu{$HuHHU`f.@u*z(hf.Huzpf.Pu{'HuHH`H\\\\0\8\f(Yf(Y\YY\YY\YYXYXWQY"H H H;Mt&1H H H;MuH0]UHHHHHEHPHDHXF`HDždHPHuHPHuHPHuHPHuk(E)E(E)E(E)E(E)pH}HuHUHMHEf.EuzEf.Eu{!HuHPHU1Ef.EuzEf.Eu{$HuHPHUEf.EuzEf.Eu{$HuHPHUEf.puzEf.xu{$HuHPHUHuH1H H H;Mu H]fDUHSHHHHEHHvCHF HDž$HdHu]HHu@HHu#HHuHHP(E)E(E)E(E)E(E)p(P)0H`H@H}HuHUHMLPEf.EuzEf.Eu{!HuHHU1Ef.EuzEf.Eu{$HuHHUEf.EuzEf.Eu{$HuHHUEf.puzEf.xu{$HuHHUPf.0u*z(Xf.8uz`f.@u{'HuHHPHuHc1H H H;Mu H[]fUHSHHHHHEHH!DHFHDžHJHuкCHHu&HHPHH HHHHHEHE(E)E(E)pHEHE(P)0H`H@( )()()H}HuHPH LLEf.EuzEf.EuzEf.Eu{!HuHHU1Ef.pu!zEf.xuzEf.Eu{$HuHHUPf.0u*z(Xf.8uz`f.@u{'HuHHP f.uz(f.u{'HuHH f.uzf.u{'HuHHf.uzf.u{'HuHHHuHc1H H H;Mu HH[]UHHHzu H=]H5 B1]ÐUHH HHHEHHCHFHDžHHuHHuHH`wHH WHEHE(E)E(E)EHEHE(`)@HpHP( )H0H`]\fhfmf\uUf(\DEfA(fff\f(fYf(fYffYf\f) fY\0f.uuzf.Uu z fD.Eu{!HuHHU1Ef.EuzEf.EuzEf.Eu{$HuHHU`f.@u*z(hf.Huzpf.Pu{'HuHH` f.u*z((f.uz0f.u{'HuHH HuHH1H H H;Mu H ]@UHSHHHHEHPHAHXF`HDždHPHuкHPHuHPHPlHPHLHPH,HPH HEHE(E)E(E)pHEHE(P)0H`H@()H HHH()HH()pH}HuHPHLLEf.EuzEf.EuzEf.Eu{!HuHPHU1Ef.pu!zEf.xuzEf.Eu{$HuHPHUPf.0u*z(Xf.8uz`f.@u{'HuHPHPf.u*z(f.uz f.u{'HuHPHf.u*z(f.uzf.u{'HuHPHf.pu*z(f.xuzf.u{'HuHPHHuHc1H H H;Mu HĨ[]f.UHSH8HHHEHH?HFHDžHHuкHHucHHPCHH#HHHEHE(E)E(E)pHEHE(P)0H`H@()H HH}HuHPHEf.EuzEf.EuzEf.Eu{!HuHHU1Ef.pu!zEf.xuzEf.Eu{$HuHHUPf.0u*z(Xf.8uz`f.@u{'HuHHPf.u*z(f.uz f.u{'HuHHHuHc1H H H;Mu H8[]fDUHHHzu H=]H5>1]ÐUHAWAVAUATSHHHHEHhH7HpFxHDž|HhAC6HcH0L01EIcIHE؋x+|H5bAHhHU} IHhHuHhLDHhHuEEArKH9JI91HHLLHtf.DI4H4HHuHYfDI H ILHLILHLILHLHI9uHh1H0H8H9t HtHHH;EHHĨ[A\A]A^A_]DHpHHH‰уH s1hHH)1AALLAD AL0D L0AD@ALPD@LPAD`ALpD`LpHHuHt(HHADA D H HuL9lHEHEf(Ef)EuHMLLE~91fI H; u HI9u!HuHhLDEf.EuzEf.EuzEf.Eu{$HuHhHUH9HHH0H8H9-2HH0H8H9t HtH f.UHH HHHEHH+3HFHDžHHuHHuHH`HH HEHE(E)E(E)EHEHE(`)@HpHP( )H0H`e\fhf}f\UDMfA(\DEfA(fff\f(fYf(ff(ffYf\f) fffYf: ffYf(fX\0f(YfXWQfWf.u{f^f) ^0f.UuzfD.Mu z fD.Eu{!HuHHU1Ef.EuzEf.EuzEf.Eu{$HuHHU`f.@u*z(hf.Huzpf.Pu{'HuHH` f.u*z((f.uz0f.u{'HuHH HuHH1H H H;Mu H ]UHHHHHEH H6H(F0HDž4H >Hu7H HuH H`H H HHEHE(E)E(E)EHEHE(`)@HpHP~HH@HH}HuH`HEf.EuzEf.EuzEf.Eu{!HuH HU1Ef.EuzEf.EuzEf.Eu{$HuH HU`f.@u*z(hf.Huzpf.Pu{'HuH H`1f.@f.@u6z4HH9uX1H H H;Mu[H]Hu$LH HHuHHH H H;Mtf.DUHHHHHEH H3H(F0HDž4H HuH HuH H`H57H HU}tHMHM(E)E(E)EHMHM(`)@HpHPH}HuH`HEf.EuzEf.EuzEf.Eu{!HuH HU1Ef.EuzEf.EuzEf.Eu{$HuH HU`f.@u*z(hf.Huzpf.Pu{'HuH H`HuHH1H H H;Mu H]$   t ^   ^UUUUUU?UUUUUU?@@UUUUUU?@?fHDfQgZg[h_hTiaiiijjjj6kGkkkNl_lllZmgm/n7n3pDpqqrrMsYsLt`tttluquxwwqxxxyyxzz{{F|X|}}~~Ɂn ˆЈߋ+:!!!!ӓvtkTrianglevtkCommonDataModelPython.vtkTrianglevtkTriangle - a cell that represents a triangle Superclass: vtkCell vtkTriangle is a concrete implementation of vtkCell to represent a triangle located in 3-space. IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkTriangle C++: static vtkTriangle *SafeDownCast(vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkTriangle C++: vtkTriangle *NewInstance() GetEdgeV.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Get the edge specified by edgeId (range 0 to 2) and return that edge's coordinates. GetCellTypeV.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. GetCellDimensionV.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell API for descriptions of these methods. GetNumberOfEdgesV.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell API for descriptions of these methods. GetNumberOfFacesV.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell API for descriptions of these methods. GetFaceV.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; See the vtkCell API for descriptions of these methods. CellBoundaryV.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell API for descriptions of these methods. ContourV.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; See the vtkCell API for descriptions of these methods. EvaluatePositionV.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; See the vtkCell API for descriptions of these methods. EvaluateLocationV.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; See the vtkCell API for descriptions of these methods. TriangulateV.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; See the vtkCell API for descriptions of these methods. DerivativesV.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; See the vtkCell API for descriptions of these methods. GetParametricCoordsV.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; See the vtkCell API for descriptions of these methods. ComputeAreaV.ComputeArea() -> float C++: double ComputeArea() A convenience function to compute the area of a vtkTriangle. ClipV.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this triangle using scalar value provided. Like contouring, except that it cuts the triangle to produce other triangles. InterpolationFunctionsV.InterpolationFunctions([float, float, float], [float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double sf[3]) @deprecated Replaced by vtkTriangle::InterpolateFunctions as of VTK 5.2 InterpolationDerivsV.InterpolationDerivs([float, float, float], [float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[6]) @deprecated Replaced by vtkTriangle::InterpolateDerivs as of VTK 5.2 InterpolateFunctionsV.InterpolateFunctions([float, float, float], [float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double sf[3]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) InterpolateDerivsV.InterpolateDerivs([float, float, float], [float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[6]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) GetEdgeArrayV.GetEdgeArray(int) -> (int, ...) C++: int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge (`edgeId`). Ids are related to the cell, not to the dataset. IntersectWithLineV.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Plane intersection plus in/out test on triangle. The in/out test is performed using tol as the tolerance. GetParametricCenterV.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the triangle in parametric coordinates. GetParametricDistanceV.GetParametricDistance([float, float, float]) -> float C++: double GetParametricDistance(double pcoords[3]) override; Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. TriangleCenterV.TriangleCenter([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void TriangleCenter(double p1[3], double p2[3], double p3[3], double center[3]) Compute the center of the triangle. TriangleAreaV.TriangleArea([float, float, float], [float, float, float], [float, float, float]) -> float C++: static double TriangleArea(double p1[3], double p2[3], double p3[3]) Compute the area of a triangle in 3D. See also vtkTriangle::ComputeArea() CircumcircleV.Circumcircle([float, float], [float, float], [float, float], [float, float]) -> float C++: static double Circumcircle(double p1[2], double p2[2], double p3[2], double center[2]) Compute the circumcenter (center[3]) and radius squared (method return value) of a triangle defined by the three points x1, x2, and x3. (Note that the coordinates are 2D. 3D points can be used but the z-component will be ignored.) BarycentricCoordsV.BarycentricCoords([float, float], [float, float], [float, float], [float, float], [float, float, float]) -> int C++: static int BarycentricCoords(double x[2], double x1[2], double x2[2], double x3[2], double bcoords[3]) Given a 2D point x[2], determine the barycentric coordinates of the point. Barycentric coordinates are a natural coordinate system for simplices that express a position as a linear combination of the vertices. For a triangle, there are three barycentric coordinates (because there are three vertices), and the sum of the coordinates must equal 1. If a point x is inside a simplex, then all three coordinates will be strictly positive. If two coordinates are zero (so the third =1), then the point x is on a vertex. If one coordinates are zero, the point x is on an edge. In this method, you must specify the vertex coordinates x1->x3. Returns 0 if triangle is degenerate. ProjectTo2DV.ProjectTo2D([float, float, float], [float, float, float], [float, float, float], [float, float], [float, float], [float, float]) -> int C++: static int ProjectTo2D(double x1[3], double x2[3], double x3[3], double v1[2], double v2[2], double v3[2]) Project triangle defined in 3D to 2D coordinates. Returns 0 if degenerate triangle; non-zero value otherwise. Input points are x1->x3; output 2D points are v1->v3. ComputeNormalV.ComputeNormal(vtkPoints, int, [int, ...], [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]) V.ComputeNormal([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ComputeNormal(double v1[3], double v2[3], double v3[3], double n[3]) Compute the triangle normal from a points list, and a list of point ids that index into the points list. ComputeNormalDirectionV.ComputeNormalDirection([float, float, float], [float, float, float], [float, float, float], [float, float, float]) C++: static void ComputeNormalDirection(double v1[3], double v2[3], double v3[3], double n[3]) Compute the (unnormalized) triangle normal direction from three points. TrianglesIntersectV.TrianglesIntersect([float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float], [float, float, float]) -> int C++: static int TrianglesIntersect(double p1[3], double q1[3], double r1[3], double p2[3], double q2[3], double r2[3]) Determine whether or not triangle (p1,q1,r1) intersects triangle (p2,q2,r2). This method is adapted from Olivier Devillers, Philippe Guigue. Faster Triangle-Triangle Intersection Tests. RR-4488, IN-RIA. 2002. . PointInTriangleV.PointInTriangle([float, float, float], [float, float, float], [float, float, float], [float, float, float], float) -> int C++: static int PointInTriangle(double x[3], double x1[3], double x2[3], double x3[3], double tol2) Given a point x, determine whether it is inside (within the tolerance squared, tol2) the triangle defined by the three coordinate values p1, p2, p3. Method is via comparing dot products. (Note: in current implementation the tolerance only works in the neighborhood of the three vertices of the triangle. ComputeQuadricV.ComputeQuadric([float, float, float], [float, float, float], [float, float, float], [[float, float, float, float], [float, float, float, float], [float, float, float, float], [float, float, float, float]]) C++: static void ComputeQuadric(double x1[3], double x2[3], double x3[3], double quadric[4][4]) V.ComputeQuadric([float, float, float], [float, float, float], [float, float, float], vtkQuadric) C++: static void ComputeQuadric(double x1[3], double x2[3], double x3[3], vtkQuadric *quadric) Calculate the error quadric for this triangle. Return the quadric as a 4x4 matrix or a vtkQuadric. (from Peter Lindstrom's Siggraph 2000 paper, "Out-of-Core Simplification of Large Polygonal Models") vtkCellvtkObjectvtkObjectBasevtkIdListvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDatavtkPointsp_voidViPP *vtkPoints *k *dPPPP *d *d *d *dPPPA *d *d *d *d[4]PPPV *d *d *d *vtkQuadricvtkQuadricOP `!'a!!apa0aa!`a0 a YXP MXA^XA^a'XA^#!#!$-X&P(@*2a,a/a/;a 4za5ma7 :]=J?BF/F<J3@N PQ/QXA^pUY0\ZzRx $hfOAC $Df AC $lxfAC B$fAC G$g'AC I$hAC G$ iAC G$4iAC I$\jAC I$0kAC I$kAC I$`lAC G$lAC I$$mAC I,L(oYAC M$|~AC I$AC G$AC G,-AC M$$AC $LAC $tP2AC L$hAC L$БAC I$x;AC L$zAC I$<mAC I$d0AC $]AC $PJAC $xAC H$@AC H$,/AC $T<AC $|3AC H$ AC H$/AC $AC $xAC $DpZAC zPLRx 4$HmMsAC P4\`ucAC P4h{'CAC P4а/AC P^-o^=f^k-R^L=F^6-A^v-^6-]v-]6-]v-t]6-E]V-\l-\\p-\p-\p-S\>\=\-\=\L=[6-[y-[1[6-[=[k-b[1[[1U[v-3[6-Zv-Z6-Zv-Z6-YZW->Z-!Z1Z1Yx-Y1Yp-Yp-lYp-3YY=Y-X=Xk-XL=X6-Xv-X6-\Xv-:X6-Wv-W6-Wv-W6-)Vp- Vp-Up-Up-U~U=`UM-XU}-8U-UL=U6-Tv-T6-Tw-T6-sTU-lS=eS}-FSk-Rp-hRq-NRt-1Rl-!RQo-Qg-QQ=wQj-rQkQ|-eQ,FQ-.Q=%Qk-Q8-Q6-Qv-P6-Pv-}P6-v->6->v->6-s>S-3>p->p-=p-=p-===g==^=k-O=-A==:=7-5=}<6-x<v-V<6-<v-;6-;v-;6-:p-:p-|:p-C:.:=:-9=9k-9L=96-9v-96-f9v-D96-9v-86-8v-86-m8G87p-7p-7p-l7p-377= 7-6=67-6=66-6v-66-a6k-P6`-&6p-5m-55=5-5=58-e5=W56-R5v-956-4k-444p-l4m-B404=4-4=38-36-3i-36-3v-36-d3v-B36-3h-26-2v-26-2v-k26-1=1k-1\-*1t- 1p-0p-0s-0s-0p-y0p->0m-0/=/L=/k-/>-/z-//6-/T-u/t-N/m-$/ /-.=.L=.6-.v-.6-E.v-).6--=-k--_-9-p--p-,m-,,=n,-\,=R,L=B,6-=,v-,6-+v-+6-^+=U+k-.+a-*p-*p-*m-h*S*=*=*k-*-)=)L=)6-)v-)6-W)v-;)6- )_-(p-(p-s(^(=8(=/(k- (-(=(L='6-'v-'6-'v-'6-^'a-)'p- 'p-&&=&L=&6-I&k-8&c-&t-%l-%%u-%l-%%l-%t%l-g%S%l-F%2%l-%%%l-%$s-$m-$e$7-Y$k-A$6-7$N-$m-##L=#>-#z-##6-#k-t#6-l#^-L#m-"##M-"}-"}-"-"L="6-{"v-_"6-8"v-"6-!v-!6-!O-=}-}-k-}p-gt-Lp-1p-t-n-g-n-kg-@m- =8-6-k-6-Q-bl-UEl-8-t-m-M-}--gL=W6-Rv-66-v-6-v-6-ai-H6- Y-=}-k-p-p-p-t-7n-!g-m-=M-}-k}-I-%8-6- v-6-h-6-v-{6-=i-!6-v-6-v-6-5Z-Q=J}--}- k- p-s-p-t-p-p-4n-g- n- g- m-| g =@ L=4 6- k- d- l-  u-k l-^ I l-< ' l-  l-  l-  l-  l-  l-t e s-2 m-  - = 8- 6- v- 6-- =$ k- R- l-  p- t- m-U @ =! {- 6-k-6-t-m-tF8-96-&k-6-m-8-6-lk-T6-.m-8-6-k-6-nm-D 8-6-k-6-m-j{-]6-<k-"6-e-t-m-G-oC-cA-S{-F6-<k-&6-m-{-6-sk-Y6-E-l- 8-6-k-f--zo-gV-N5r-m-k-8-6-}f-q-i^-VE-=.r-K-5-<-J-?-zslVb-IB<-=6/J-'!?-20/xh-8(+ *)(&%xh$`XH#@8(" ! xh`XH@8( xh`XH@8(     xh `XH@8( @98EDI@;:HXF0B=`@ ~`@ `@ `XP~@ ~~`@ `@ {~MP_`tP c %Bp 0}  ` 0 E  P ^] ^Q ^ ## $ & P( @* , /n/  4Q5m 7  := ?7B Fe& FL J@NPQfQZ^pUY pf0\7`K]Q6( GSP,cAs7@'Mg< w44hnRxS*-s` wj ! Dqei_memcpy_PyType_Ready__ZN13vtkPythonArgs8GetValueERx_PyvtkCell_ClassNew_PyvtkTriangle_ClassNew_PyVTKObject_New__ZL23PyvtkTriangle_StaticNewv__ZdaPv__ZN11vtkTriangle3NewEv__ZN11vtkTriangle19GetParametricCoordsEv__ZN11vtkTriangle11ComputeAreaEv__ZN11vtkTriangle12CellBoundaryEiPdP9vtkIdList_PyVTKObject_GetSet__Py_NoneStruct_PyVTKObject_GetObject__ZN11vtkTriangle11TriangulateEiP9vtkIdListP9vtkPoints__ZL35PyvtkTriangle_ComputeNormal_Methods__ZL21PyvtkTriangle_Methods__ZL36PyvtkTriangle_ComputeQuadric_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKObject_AsBuffer_strcmp___stack_chk_fail_PyObject_GC_Del__ZN13vtkPythonArgs5ArrayIxEC1El__ZN13vtkPythonArgs5ArrayIdEC1El_PyVTKObject_Check__ZN13vtkPythonArgs8GetArrayEPxi__ZN13vtkPythonArgs8SetArrayEiPKxi__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs11SetArgValueEii__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN11vtkTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i__ZN11vtkTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri__ZN13vtkPythonArgs8GetValueERi__ZN13vtkPythonArgs9GetNArrayEPdiPKi__ZN13vtkPythonArgs9SetNArrayEiPKdiPKi__ZN11vtkTriangle12GetEdgeArrayEi__ZN13vtkPythonArgs10GetArgSizeEi__ZN11vtkTriangle7GetEdgeEi_PyLong_FromLong_PyUnicode_FromString_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_PyType_Type__ZL18PyvtkTriangle_Type__Unwind_Resume_PyVTKAddFile_vtkTriangle_PyFloat_FromDouble___stack_chk_guard__ZN13vtkPythonArgs11SetArgValueEid_PyErr_Occurred_PyVTKClass_Add__ZN11vtkTriangle14ComputeQuadricEPdS0_S0_PA4_d__ZN11vtkTriangle15PointInTriangleEPdS0_S0_S0_d__ZN13vtkPythonArgs8GetValueERd__ZN11vtkTriangle13ComputeNormalEP9vtkPointsiPxPd__ZN11vtkTriangle21GetParametricDistanceEPd__Py_Dealloc__ZN11vtkTriangle14ComputeQuadricEPdS0_S0_P10vtkQuadric__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonUtil13ManglePointerEPKvPKc__ZN13vtkPythonArgs13ArgCountErrorEiPKc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN11vtkTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9___ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3___ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN11vtkTriangle16EvaluateLocationERiPdS1_S1___ZL26PyvtkTriangle_CellBoundaryP7_objectS0___ZL26PyvtkTriangle_GetEdgeArrayP7_objectS0___ZL26PyvtkTriangle_SafeDownCastP7_objectS0___ZL32PyvtkTriangle_TrianglesIntersectP7_objectS0___ZL33PyvtkTriangle_InterpolationDerivsP7_objectS0___ZL31PyvtkTriangle_InterpolateDerivsP7_objectS0___ZL36PyvtkTriangle_InterpolationFunctionsP7_objectS0___ZL34PyvtkTriangle_InterpolateFunctionsP7_objectS0___ZL25PyvtkTriangle_DerivativesP7_objectS0___ZL30PyvtkTriangle_GetNumberOfEdgesP7_objectS0___ZL30PyvtkTriangle_GetNumberOfFacesP7_objectS0___ZL31PyvtkTriangle_BarycentricCoordsP7_objectS0___ZL33PyvtkTriangle_GetParametricCoordsP7_objectS0___ZL21PyvtkTriangle_ContourP7_objectS0___ZL28PyvtkTriangle_TriangleCenterP7_objectS0___ZL33PyvtkTriangle_GetParametricCenterP7_objectS0___ZL18PyvtkTriangle_ClipP7_objectS0___ZL30PyvtkTriangle_EvaluatePositionP7_objectS0___ZL36PyvtkTriangle_ComputeNormalDirectionP7_objectS0___ZL30PyvtkTriangle_EvaluateLocationP7_objectS0___ZL30PyvtkTriangle_GetCellDimensionP7_objectS0___ZL27PyvtkTriangle_ComputeNormalP7_objectS0___ZL22PyvtkTriangle_IsTypeOfP7_objectS0___ZL25PyvtkTriangle_TriangulateP7_objectS0___ZL25PyvtkTriangle_GetCellTypeP7_objectS0___ZL31PyvtkTriangle_IntersectWithLineP7_objectS0___ZL29PyvtkTriangle_PointInTriangleP7_objectS0___ZL26PyvtkTriangle_CircumcircleP7_objectS0___ZL21PyvtkTriangle_GetEdgeP7_objectS0___ZL25PyvtkTriangle_NewInstanceP7_objectS0___ZL35PyvtkTriangle_GetParametricDistanceP7_objectS0___ZL21PyvtkTriangle_GetFaceP7_objectS0___ZL28PyvtkTriangle_ComputeQuadricP7_objectS0___ZL25PyvtkTriangle_ComputeAreaP7_objectS0___ZL26PyvtkTriangle_TriangleAreaP7_objectS0___ZL25PyvtkTriangle_ProjectTo2DP7_objectS0___ZL17PyvtkTriangle_IsAP7_objectS0___ZL30PyvtkTriangle_ComputeNormal_s2P7_objectS0___ZL31PyvtkTriangle_ComputeQuadric_s2P7_objectS0___ZL30PyvtkTriangle_ComputeNormal_s1P7_objectS0___ZL31PyvtkTriangle_ComputeQuadric_s1P7_objectS0___ZN11vtkTriangle11DerivativesEiPdS0_iS0___ZN11vtkTriangle16EvaluatePositionEPdS0_RiS0_RdS0___ZN11vtkTriangle19InterpolationDerivsEPdS0___ZN11vtkTriangle22InterpolationFunctionsEPdS0___ZN11vtkTriangle12CircumcircleEPdS0_S0_S0___ZN11vtkTriangle17BarycentricCoordsEPdS0_S0_S0_S0___ZN11vtkTriangle18TrianglesIntersectEPdS0_S0_S0_S0_S0___ZN11vtkTriangle11ProjectTo2DEPdS0_S0_S0_S0_S0_GCC_except_table18GCC_except_table16GCC_except_table15__ZZL31PyvtkTriangle_ComputeQuadric_s1P7_objectS0_E5size3___gxx_personality_v0GCC_except_table40