(8[8[__text__TEXTt.^V__gcc_except_tab__TEXTt.x<1__data__DATA.`1hL__cstring__TEXTP3 6__compact_unwind__LDSVk __eh_frame__TEXTVHYl h2  lXq P:UHH=H5H73H uHH=H]ÐUH]fDUHSPHH=H5H2H uHH=H52HHt H tH[]H=H[]fUHAVSH0HuHc4HEЋFEHEHEH}ȃuoHutqH]H=2HAt1H=RHtH=RHt HLcHuL1H0[A^]f.@UHAWAVSH(HuH4HED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}}L}tlH=0LAtbH=PLtOH=PLt<tHLHUHpLM!IHLHUHpLM(HuLH(1Ef.EuzEf.EuzEf.Eu{$HuH(HUpf.Pu'z%xf.XuzEf.`u{'HuH(HpE~>1AfA.Du z HH9u!HuH(LDHzHHHHH9nsHHHH9t HtH UHAWAVSHHHHHEHH})HDvDHGyHHL(MA)HAaHuZHHu=HH"HHHH@HHHLLHEHE(E)E(E)`HEHp(@) HPH0()HHtlL4$HuHUHL@LLn1H H H;M!HH[A^A_]E1MLIL4$HuHUHL@LL@Ef.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUHuH@f. u*z(Hf.(uzPf.0u{'HuHH@f.u*z(f.uzf.u{'HuHHHuHHHcH H H;MDUHAWAVSH(HuHg(HEDvDuHG]ԉ]؅yHHL(MA)AumHuH}toH51H}HU}tUIH5'2H}HU}t8}utH}1H([A^A_]ILLHHHuHcUHAWAVAUATSHHHHEHPH)HXF`HGdhyHHHG(HpLPLAC6HcHHE1EIcHLELAH]C?HcHHE1EIcHIDHpHI͋`+dHPHHHPHuHPHuDHPHLtiHPLDtSHEHEf(Ef)EDHxE#A1HxzHPE1HHH9t HtHHH9t HtHHH;ELH[A\A]A^A_]1HMHxHI9sIH9s1HpHHH‰уH s1H}nHH)1H}LAALD L0AD AL0D@LPAD@ALPfD`LpfAD`ALpHHuHt*HHfD fADA H HuHxH9)HHHHtH}H4I4HHuH}HHxrWH I HLILHLILHLILHL IL HL(IL(HL0IL0HL8IL8HH9uDHEE}As 1HuHuIDH9sLHI9s1HpHHH‰уH s1LeHH)1LLLD L0D L0D@LPD@LPfD`LpfD`LpHHuHt(HHfD fD H HuHuH9)HHHLHtH4H4HHuHHUrWH H HLHLHLHLHLHLHL HL HL(HL(HL0HL0HL8HL8HH9udHDLtHUHpHMMHpHHUHMMPEf.EuzEf.EuzEf.Eu{$HuHPHUE~E1HMfA.uzHH9xu"HuHPHUDE~>1ADf.u z HH9Eu!HuHPLDHKL-IEHHH9?DHHHH9tHt HHHH9t HtH fUHAVSH HuH&HEDvDuHG]]y HHtH(HtD9uEt!1Ht+12H}111!HhHcHuHHHH [A^]UHAWAVSHhHHHEHuHC'HED~D}HG]]yHHLw(MA)H}Au:HuHEHE(E)E}tHuL!dIHuLXEf.EuzEf.EuzEf.Eu{HuH}HU1Ht1H H H;Mu#Hh[A^A_]HcH H H;MtUHAWAVATSH`HuH&HEFEHEH}AC6HcH}L}1EIcIHE؋E+ẼH}HuH}LDH5'H}HU}EEArK H9J I91HHLLHtfDIN>@@EEFFIILLXLP,PQQMR\RvtkTriangleStripvtkCommonDataModelPython.vtkTriangleStripvtkTriangleStrip - a cell that represents a triangle strip Superclass: vtkCell vtkTriangleStrip is a concrete implementation of vtkCell to represent a 2D triangle strip. A triangle strip is a compact representation of triangles connected edge to edge in strip fashion. The connectivity of a triangle strip is three points defining an initial triangle, then for each additional triangle, a single point that, combined with the previous two points, defines the next triangle. IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkTriangleStrip C++: static vtkTriangleStrip *SafeDownCast(vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkTriangleStrip C++: vtkTriangleStrip *NewInstance() GetCellTypeV.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. GetCellDimensionV.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell API for descriptions of these methods. GetNumberOfEdgesV.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell API for descriptions of these methods. GetNumberOfFacesV.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell API for descriptions of these methods. GetEdgeV.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; See the vtkCell API for descriptions of these methods. GetFaceV.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; See the vtkCell API for descriptions of these methods. CellBoundaryV.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell API for descriptions of these methods. ContourV.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; See the vtkCell API for descriptions of these methods. ClipV.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. EvaluatePositionV.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. EvaluateLocationV.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) IntersectWithLineV.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition p1[3], p2[3] and tolerance tol. The method returns non-zero value if intersection occurs. A parametric distance t between 0 and 1 along the ray representing the intersection point, the point coordinates x[3] in data coordinates and also pcoords[3] in parametric coordinates. subId is the index within the cell if a composed cell like a triangle strip. TriangulateV.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. DerivativesV.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). IsPrimaryCellV.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells). GetParametricCenterV.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the point cloud in parametric coordinates. DecomposeStripV.DecomposeStrip(int, [int, ...], vtkCellArray) C++: static void DecomposeStrip(int npts, vtkIdType *pts, vtkCellArray *tris) Given a triangle strip, decompose it into a list of (triangle) polygons. The polygons are appended to the end of the list of triangles. vtkCellvtkObjectvtkObjectBasevtkIdListvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDatavtkPointsOP `!'a!!a`a !!aPa a YX@ -XpMXAt.XA.;a !a@"'XA.p)! *_a+ A.zRx $OAC $D AC $lAC B$hAC G$'AC I$AC G$ AC G$4xAC I$\AC I$AC G$0AC G$AC I$`AC I$$AC I,LYAC M,|г-AC M$@;AC L$XAC I$AC G$$_AC IzPLRx 4$MAC P4\(AC P4p'AC P4xAC Kn.4-f.S-3.3=#.-.E-.--J-,S-,9-,,:-,,?-+B-+=-+6-+{+U-m+V=f+ -J+V=<+-7+D-+-*9-*N-*>-l*;-B*0*V=* -)-)9-)-);-)a)4-Y)S-5)S-)U-(3=(-(D-(-(D-{(-N(D-/(-'G-x$V=q$S-T$S-4$9-#>-#B-#>-#>-t#B- #<-#6-"<-"6-";-l"W"V=3" -&"-"9-!-!H-!:-!!:-!!B-^!;-4!!U-!V= - - 8- - D- -d D-B - 7--D--D-k-V=9-M-*B- >->-A-A->-y>->;-V=4-S-U-3=w-rD-V-/D- -D--8-h-@K- V=S-9->->->-B-W<-A6- ;-V=4-S-S-iU-E -0-+D- -7--D--]8-A-<D--D--UL-qV=jS-MS--9-@>-&A- >-B->->-T<-76-<-6-;-V=d3=X- 9-P-B-:-C-w:-jU:-H4:-':- :-  :-  A- ;-X 0 3=$ - 9- Q- :-} r C-[ :-N 9 :-,  :-  :-  :-  :-  :- q :-d U A-" ;-  U- V= - - D- - V= 9- I- :-  >- B-o ;-E 0 V= F- -9--B-;-dJF-=-9--R-B-;-f -Y-F9-.- ;- --9--\;-2 --9--;-t< -/-9--;-.-o*-c(-SF-F-<9-&-;-F--s9-Y-E-:-  --9-5-W-zoW-gVW-N5@-;-9- --}5-qW-i^W-VEW-=.@-2--$-1-&-zslVO-IB$-=6/1-'!&-8( xh`XH@8(     xh `XH@8( @!8,+0'#"/X-0)%TT`@80T T`@ `@ [TM\.0PC  7   `> t h P  D @ n p9 t. & . q  ! @"u . p) * +L ."`iSzL( =<kd#?dGJDIh! cu  _ A_PyType_Ready__ZN16vtkTriangleStrip14DecomposeStripEiPxP12vtkCellArray__ZN13vtkPythonArgs8GetValueERx_PyvtkTriangleStrip_ClassNew_PyvtkCell_ClassNew_PyVTKObject_New__ZL28PyvtkTriangleStrip_StaticNewv__ZdaPv__ZN16vtkTriangleStrip3NewEv__ZN16vtkTriangleStrip12CellBoundaryEiPdP9vtkIdList_PyVTKObject_GetSet__Py_NoneStruct_PyVTKObject_GetObject__ZN16vtkTriangleStrip11TriangulateEiP9vtkIdListP9vtkPoints__ZL26PyvtkTriangleStrip_Methods_PyObject_GenericSetAttr_PyObject_GenericGetAttr_PyVTKObject_Repr_PyVTKObject_AsBuffer_strcmp_PyVTKAddFile_vtkTriangleStrip___stack_chk_fail_PyObject_GC_Del__ZN13vtkPythonArgs5ArrayIxEC1El__ZN13vtkPythonArgs5ArrayIdEC1El_PyVTKObject_Check__ZN13vtkPythonArgs8GetArrayEPxi__ZN13vtkPythonArgs8SetArrayEiPKxi__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs11SetArgValueEii__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN16vtkTriangleStrip4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i__ZN16vtkTriangleStrip17IntersectWithLineEPdS0_dRdS0_S0_Ri__ZN13vtkPythonArgs8GetValueERi__ZN13vtkPythonArgs10GetArgSizeEi__ZN16vtkTriangleStrip7GetEdgeEi_PyLong_FromLong_PyDict_SetItemString_PyVTKObject_String_PyVTKObject_SetFlag_PyVTKObject_Delete_PyVTKObject_Traverse__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZL23PyvtkTriangleStrip_Type_PyType_Type__Unwind_Resume___stack_chk_guard__ZN13vtkPythonArgs11SetArgValueEid_PyErr_Occurred_PyVTKClass_Add__ZN13vtkPythonArgs8GetValueERd__ZN16vtkTriangleStrip19GetParametricCenterEPd__Py_Dealloc__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN16vtkTriangleStrip7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9___ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN16vtkTriangleStrip16EvaluateLocationERiPdS1_S1___ZL31PyvtkTriangleStrip_CellBoundaryP7_objectS0___ZL31PyvtkTriangleStrip_SafeDownCastP7_objectS0___ZL30PyvtkTriangleStrip_DerivativesP7_objectS0___ZL35PyvtkTriangleStrip_GetNumberOfEdgesP7_objectS0___ZL35PyvtkTriangleStrip_GetNumberOfFacesP7_objectS0___ZL26PyvtkTriangleStrip_ContourP7_objectS0___ZL38PyvtkTriangleStrip_GetParametricCenterP7_objectS0___ZL33PyvtkTriangleStrip_DecomposeStripP7_objectS0___ZL23PyvtkTriangleStrip_ClipP7_objectS0___ZL35PyvtkTriangleStrip_EvaluatePositionP7_objectS0___ZL35PyvtkTriangleStrip_EvaluateLocationP7_objectS0___ZL35PyvtkTriangleStrip_GetCellDimensionP7_objectS0___ZL32PyvtkTriangleStrip_IsPrimaryCellP7_objectS0___ZL27PyvtkTriangleStrip_IsTypeOfP7_objectS0___ZL30PyvtkTriangleStrip_TriangulateP7_objectS0___ZL30PyvtkTriangleStrip_GetCellTypeP7_objectS0___ZL36PyvtkTriangleStrip_IntersectWithLineP7_objectS0___ZL26PyvtkTriangleStrip_GetEdgeP7_objectS0___ZL30PyvtkTriangleStrip_NewInstanceP7_objectS0___ZL26PyvtkTriangleStrip_GetFaceP7_objectS0___ZL22PyvtkTriangleStrip_IsAP7_objectS0___ZN16vtkTriangleStrip11DerivativesEiPdS0_iS0___ZN16vtkTriangleStrip16EvaluatePositionEPdS0_RiS0_RdS0_GCC_except_table17GCC_except_table16GCC_except_table23___gxx_personality_v0GCC_except_table20