H __TEXT__text__TEXT__stubs__TEXTEE__stub_helper__TEXTPHTPH__cstring__TEXTLZ.L__unwind_info__TEXT{{__DATA_CONST@@__got__DATA_CONSTm8__DATA__la_symbol_ptr__DATAhp__data__DATApXp__bss__DATAP H__LINKEDIT@@ /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonComputationalGeometryPython310D-8.1.1.dylib"0@C H[ d`xp P3{ L2w2   a* /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonDataModelPython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonComputationalGeometry-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonTransformsPython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonMiscPython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonMathPython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonSystemPython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonCorePython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkWrappingPython310Core-8.1.1.dylib x/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonDataModel-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonTransforms-8.1.1.dylib x/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonMisc-8.1.1.dylib x/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonMath-8.1.1.dylib x/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonSystem-8.1.1.dylib x/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonCore-8.1.1.dylib p/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtksys-8.1.1.dylib 0/usr/lib/libc++.1.dylib 8< /usr/lib/libSystem.B.dylib&`8) dUHH=u@H5BHH 0@uHFAH=?@H3@]ÐUH]fDUHSPHH=@H5AH&H b@urH@H=?;H5H?Ht H ?tH[]H=?H[])fUHAVSH0HuHHEЋFEHEHEH}ȃuoHutqH]H=cHAt1H=HtH=Ht HLc?HuL>{1H0[A^]f.@UHAWAVSH(HuHHED~D}HG]ԉ]؅y2HHLw(HEMA)AuhHuH}}L}tlH=RLAtbH=LtOH=yLtHuLǿUHAVSH HuHHEDvDuHG]]yTHHH(HD9u3HPxHt9HHH5HPE1LE螾HucH}111RE1~HuCLHt6HH苾t)H腾HH1Q@H߾n1HH [A^]UHAVSH HuHHEDvDuHG]]y THHt"H(HtD9uEt$|ýHt(1.H}111H蛽HuHHHH [A^]UHAWAVSH8HuHHED~D}HG]̉]Ѕy 袽HHtZLw(MtQA)Au5HuH}荽t7}Et9L踽EHu;H}.1H8[A^A_]ILE豼HuE証UHAWAVSH(HuH6HED~D}HG]ԉ]؅y ¼HHt\Lw(MtSA)Au7H5ZH}HU莼}t0}t7LH˼ Hu9H}L1H([A^A_]ILHPѻHuHHАUHH=<H5=HH 0跻<uǻH<H=;萻H;]ÐUH]$fDUHSPHH=;H59=HH R(<ubHq<H=j;+H5MHW;Ht H D;tH[]H=4;H[]fUHAVSH0HuHHEЋFEHEHEH}ȃuoHutqH]H=HAt1H=HؼtH=zHżt H苺Lc/HuL.k1H0[A^]f.@UHAWAVSH(HuHHED~D}HG]ԉ]؅y"HHLw(HEMA)AuhHuH}}L}tlH=LAtbH=rLǻtOH=iL贻t1HH [A^]UHAWAVSH(HuHHED~D}HG]܉]y "HHt#H(HtD9uAEt萪Ht+12H}111Ҫ!HLceHuLdHHH([A^A_]f.DUHAWAVSH(HuHcHED~D}HG]ԉ]؅y bHHtsLw(MtjA)AuNHuH}MtP}EtRAf.u{AIL蕩Hu6H}թ1H([A^A_]IL]HuHH@UHAVSH0HuHHEDvDuHG]܉]y tHHt*H(Ht!D9u Et,EۨHt-16H}111%HE讨HuE襨HHH0[A^]UHAWAVSHHHHHEHHHD~DHGy蒨HHKLw(MA)HAHu]HHu@HH HEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHL§Ef.EjM1H *H H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!wHuHHU1Ef.`u$z"Ef.huzEf.pu{$#HuHHU蔦f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{';HuHH 詥HH<HH :H H;MdUHAWAVSHXHHHEHHHD~DHGyHH5Lw(MA)HAHu轤HHu蠤HH 耤HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL\ã1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1YEf.`u$z"Ef.huzEf.pu{$葢HuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'詡HuHH 股HrH H H;MϣUHH='H5n)HhH 0G](um\H(H=' H']ÐUH]΢fDUHSPHH=p'H5 )HH 'u\HA(H=:'軠H5ϿH''H聠t H 'tH[]H='H[]驠fUHAVSH0HuHEHEЋFEHEHEH}ȃuoHu莠tqH]H=@H聢At1H=HhtH= HUt HLc迟HuL辟1H0[A^]f.@UHAWAVSH(HuH}HED~D}HG]ԉ]؅y貟HHLw(HEMA)AuhHuH}臟}L}tlH=/LpAtbH=LWtOH=LDtz<@f.u*z(Hf.uzPf.u{'ۑHuHH I贑HHHH H H;MUHAWAVSHXHHHEHHHD~DHGy蒑HH5Lw(MA)HAHu]HHu@HH HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL\c1H @H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!腏HuHHU1Ef.`u$z"Ef.huzEf.pu{$1HuHHU袏f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'IHuHH 跎"HH EH H;MoUHH=H5HH 0u IHH=H]ÐUH]8fDUHSPHH=H5IHH 肍8uHHH=z[H5jHgH!t H TtH[]H=DH[]IfUHAVSH0HuHHEЋFEHEHEH}ȃuoHu.tqH]H=۵H!At1H=HtH=Ht H軌Lc_HuL^蛌1H0[A^]f.@UHAWAVSH(HuHHED~D}HG]ԉ]؅yRHHLw(HEMA)AuhHuH}'}L}tlH=ʴLAtbH=LtOH=Ltz<@f.u*z(Hf.uzPf.u{';HuHH 詅HH<HH :H H;MdUHAWAVSHXHHHEHHHD~DHGyHH5Lw(MA)HAHu轄HHu蠄HH 耄HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL\Ã1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1YEf.`u$z"Ef.huzEf.pu{$葂HuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'詁HuHH 肁HrH H H;MσUHH=H5HH 0Gum<HH=  H ]ÐUH]fDUHSPHH= H5IH5H 8u<HH=z 軀H5Hg H聀t H T tH[]H=D H[]驀fUHAVSH0HuHEHEЋFEHEHEH}ȃuoHu莀tqH]H=rH聂At1H=HhtH= HUt HLcHuL1H0[A^]f.@UHAWAVSH(HuH}HED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}}L}tlH=aLpAtbH=LWtOH=LDtz<@f.u*z(Hf.uzPf.u{';uHuHH uuHH<HH :H H;MdwUHAWAVSHXHHHEHHHD~DHGytHH5Lw(MA)HAHutHHutHH tHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLjt\s1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!rHuHHU1YsEf.`u$z"Ef.huzEf.pu{$rHuHHUsf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'qHuHH rqHrqH H H;MsUHH=5H5HH 0Gqum,HH= qH]ÐUH]rfDUHSPHH=H5iHH pXu,HH=pH5KHHpt H ttH[]H=dH[]pfUHAVSH0HuHExHEЋFEHEHEH}ȃuoHuptqH]H=HrAt1H=HhrtH= |HUrt HpLcoHuLoo1H0[A^]f.@UHAWAVSH(HuH}xHED~D}HG]ԉ]؅yoHHLw(HEMA)AuhHuH}o}L}tlH=LpqAtbH=LWqtOH=zLDqtz<@f.u*z(Hf.uzPf.u{'cHuHH cdcHHHH H H;MeUHAWAVSHXHaHHEHHeHD~DHGyBcHH5Lw(MA)HAHu cHHubHH bHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLc\b1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!5aHuHHU1aEf.`u$z"Ef.huzEf.pu{$`HuHHURaf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'_HuHH g`_H_H H H;MbUHH=H5~HH 0_muHH=p_H]ÐUH]`fDUHSPHH=H5HH 2_uXHQH=J _H5lH7H^t H $tH[]H=H[]^fUHAVSH0HuHfHEЋFEHEHEH}ȃuoHu^tqH]H=ݜH`At1H=a}H`tH=ZjH`t Hk^Lc^HuL^K^1H0[A^]f.@UHAWAVSH(HuHfHED~D}HG]ԉ]؅y^HHLw(HEMA)AuhHuH}]}L}tlH=̛L_AtbH=P|L_tOH=IiL_t[1HH [A^]UHAWAVSH(HuHsHED~D}HG]܉]y "[HHt#H(HtD9uAEtZHt+12H}111Z!HLceZHuLdZHHH([A^A_]f.DUHAWAVSHHHaHHEHHTeHD~DHGyBZHHKLw(MA)HAHu ZHHuYHH YHEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHLhZEf.EjX1H ڒH H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!'XHuHHU1XEf.`u$z"Ef.huzEf.pu{$WHuHHUDXf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'VHuHH YWVHHHH H H;MYUHAWAVSHXHHHEHHrHD~DHGyVHH5Lw(MA)HAHumVHHuPVHH 0VHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLV\sU1H PH H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!THuHHU1 UEf.`u$z"Ef.huzEf.pu{$ATHuHHUTf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'YSHuHH S2SH"SH UH H;MUUHH=H5~HIH 0RmuHH=RH]ÐUH]TfDUHSPHH=H5HH Ru HQH=JkRH5H7H1Rt H $tH[]H=H[]YRfUHAVSH0HuHYHEЋFEHEHEH}ȃuoHu>RtqH]H=!H1TAt1H=pHTtH=]HTt HQLcoQHuLnQQ1H0[A^]f.@UHAWAVSH(HuH-ZHED~D}HG]ԉ]؅ybQHHLw(HEMA)AuhHuH}7Q}L}tlH=L SAtbH=oLStOH=\LRtz<@f.u*z(Hf.uzPf.u{'HHuHH ItHHHHH H H;MJUHAWAVSHXHqHHEHHudHD~DHGyRHHH5Lw(MA)HAHuHHHuHHH GHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLH\#G1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!EFHuHHU1FEf.`u$z"Ef.huzEf.pu{$EHuHHUbFf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{' EHuHH wEDHDH H H;M/GUHH=uH5Hc1DuDHKH=DDH8]fDUHSPHH= H5H]c1WDuaDHH=0DH5.cHHCt H tH[]H=H[]Df.@UHAVSH0HuHKHEЋFEHEHEH}ȃu\HuCt^H]H=bHEAtH=OHEt HCLcBCHuLAC~C1H0[A^]ÐUHAWAVSH(HuH LHED~D}HG]ԉ]؅yBCHHLw(HEMA)AuQHuH}Ct|}L}tYH=aLEAtOH=NLDtHuHHU1>Ef.`u$z"Ef.huzEf.pu{$=HuHHU(>f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'<HuHH ==<Hu0HvH&<< E1MF1H vH H;MuHH[A^A_]>fDUHAWAVSHXHqvHHEHHuXHD~DHGyR<HHLw(MHAHu<HHu;yHH ;YHEHE(E)E(E)`HEHp(( (0(@))))HPHIHuHUHLEf.EuzEf.EuzEf.Eu{!:HuHHU1;Ef.`u$z"Ef.huzEf.pu{$O:HuHHU:f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'g9HuHH 9@9Hu349&9p9 E1M;1H ?sH H;MuHX[A^A_]_;f.UHAWAVSH(HuH HED~D}HG]ԉ]؅y 9HHtmLw(MtdA)AuHHuH}8tJ}EtLAN0f.u{AF0IL;8Hu6H}{81H([A^A_]IL8HuH/rHf.UHAVSH0HuHHEDvDuHG]܉]y 8HHt'H(HtD9uEt)G0E~7Ht-16H}1117%HEQ7HuEH7HHH0[A^]f.UHAWAVSH(HuH*HED~D}HG]ԉ]؅y R7HHtmLw(MtdA)AuHHuH}=7tJ}EtLAN8f.u{AF8IL6Hu6H}61H([A^A_]ILS6HuHpHf.UHAVSH0HuHHEDvDuHG]܉]y d6HHt'H(HtD9uEt)G8E5Ht-16H}1116%HE5HuE5HHH0[A^]f.UHAWAVSH(HuHKHED~D}HG]ԉ]؅y 5HHtmLw(MtdA)AuHHuH}5tJ}EtLAN@f.u{AF@IL4Hu6H}51H([A^A_]IL4HuHnHf.UHAVSH0HuHȒHEDvDuHG]܉]y 4HHt'H(HtD9uEt)G@E4Ht-16H}111`4%HE3HuE3HHH0[A^]f.UHAWAVSH(HuHlHED~D}HG]ԉ]؅y 3HHtmLw(MtdA)AuHHuH}3tJ}EtLANHf.u{AFHIL+3Hu6H}k31H([A^A_]IL2HuHmHf.UHAVSH0HuHHEDvDuHG]܉]y 3HHt'H(HtD9uEt)GHEn2Ht-16H}1112%HEA2HuE82HHH0[A^]f.UHAWAVSH(HuHHED~D}HG]ԉ]؅y B2HHtmLw(MtdA)AuHHuH}-2tJ}EtLANPf.u{AFPIL{1Hu6H}11H([A^A_]ILC1HuHokHf.UHAVSH0HuH HEDvDuHG]܉]y T1HHt'H(HtD9uEt)GPE0Ht-16H}1111%HE0HuE0HHH0[A^]f.UHAWAVSH(HuHHED~D}HG]ԉ]؅y 0HHtmLw(MtdA)AuHHuH}}0tJ}EtLANXf.u{AFXIL/Hu6H} 01H([A^A_]IL/HuHiHf.UHAVSH0HuH+HEDvDuHG]܉]y /HHt'H(HtD9uEt)GXE/Ht-16H}111P/%HE.HuE.HHH0[A^]f.UHAWAVSH(HuHϏHED~D}HG]ԉ]؅y .HHtsLw(MtjA)AuNHuH}.tP}utTL1IA9F`tAF`IL.Hu6H}U.1H([A^A_]IL-HuH hH@UHAVSH HuHhHEDvDuHG]]y -HHtH(HtD9uEt!1f-Ht+12H}111-!H Hc;-HuH:-HHH [A^]UHAWAVSH(HuHPHED~D}HG]܉]y B-HHt#H(HtD9uAEt,Ht+12H}111,!H(Lc,HuL,HHH([A^A_]f.DUHAVSH HuH,HEDvDuHG]]y ,HHt H(HtD9uEt"_`+Ht*11H}1117, H0+HuHc+HHH [A^]UHAVSH HuHHEDvDuHG]]y +HHt+H(Ht"D9u!Et-H:+Ht(1.H}111|+H8+HuH>eHHH [A^]f.DUHAVSH HuHHEDvDuHG]]y +HHt(H(HtD9uEt*H1}*Ht(1.H}111*H@U*HuHdHHH [A^]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y b*HHtsLw(MtjA)AuNHuH}S*tP}utTL1IA9FdtAFdIL)Hu6H})1H([A^A_]ILH])HuHcH@UHAVSH HuHHEDvDuHG]]y t)HHtH(HtD9uEt!1(Ht+12H}111()!HPHc(HuH(HHH [A^]UHAWAVSH(HuHHED~D}HG]܉]y (HHt#H(HtD9uAEt0(Ht+12H}111r(!HXLc(HuL(HHH([A^A_]f.DUHAVSH HuHύHEDvDuHG]]y (HHt H(HtD9uEt"_du'Ht*11H}111' H`K'HuHcJ'HHH [A^]UHAVSH HuHHEDvDuHG]]y T'HHt+H(Ht"D9u!Et-HH&Ht(1.H}111&Hh&HuH`HHH [A^]f.DUHAVSH HuHPHEDvDuHG]]y &HHt(H(HtD9uEt*H1H%Ht(1.H}111?&Hp%HuH`HHH [A^]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y %HHtsLw(MtjA)AuNHuH}%tP}utTL1IA9FhtAFhIL%Hu6H}U%1H([A^A_]ILx$HuH _H@UHAVSH HuHHEDvDuHG]]y $HHtH(HtD9uEt!1f$Ht+12H}111$!HHc;$HuH:$HHH [A^]UHAWAVSH(HuHHED~D}HG]܉]y B$HHt#H(HtD9uAEt#Ht+12H}111#!HLc#HuL#HHH([A^A_]f.DUHAVSH HuHcHEDvDuHG]]y #HHt H(HtD9uEt"_h"Ht*11H}1117# H"HuHc"HHH [A^]UHAVSH HuH0HEDvDuHG]]y "HHt+H(Ht"D9u!Et-Hx:"Ht(1.H}111|"H"HuH>\HHH [A^]f.DUHAVSH HuHHEDvDuHG]]y "HHt(H(HtD9uEt*H1x}!Ht(1.H}111!HU!HuH[HHH [A^]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y b!HHtsLw(MtjA)AuNHuH}S!tP}utTL1IA9FltAFlIL Hu6H} 1H([A^A_]IL] HuHZH@UHAVSH HuHHEDvDuHG]]y t HHtH(HtD9uEt!1Ht+12H}111( !HHcHuHHHH [A^]UHAWAVSH(HuHHED~D}HG]܉]y HHt#H(HtD9uAEt0Ht+12H}111r!HLcHuLHHH([A^A_]f.DUHAVSH HuH>HEDvDuHG]]y HHt H(HtD9uEt"_luHt*11H}111 HKHuHcJHHH [A^]UHAVSH HuHxHEDvDuHG]]y THHt+H(Ht"D9u!Et-HHt(1.H}111HHuHWHHH [A^]f.DUHAVSH HuHHEDvDuHG]]y HHt(H(HtD9uEt*H1Ht(1.H}111?HHuHWHHH [A^]fUHAWAVSH(HuHˌHED~D}HG]ԉ]؅y HHtsLw(MtjA)AuNHuH}tP}utTL1IA9FptAFpILHu6H}U1H([A^A_]ILHuH VH@UHAVSH HuHÌHEDvDuHG]]y HHtH(HtD9uEt!1fHt+12H}111!HHc;HuH:HHH [A^]UHAWAVSH(HuH HED~D}HG]܉]y BHHt#H(HtD9uAEtHt+12H}111!HLcHuLHHH([A^A_]f.DUHAVSH HuHEHEDvDuHG]]y HHt H(HtD9uEt"_pHt*11H}1117 HHuHcHHH [A^]UHAVSH HuHvHEDvDuHG]]y HHt+H(Ht"D9u!Et-H:Ht(1.H}111|HHuH>SHHH [A^]f.DUHAVSH HuHHEDvDuHG]]y HHt(H(HtD9uEt*H1}Ht(1.H}111HUHuHRHHH [A^]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y bHHtsLw(MtjA)AuNHuH}StP}utTL1IA9FttAFtILHu6H}1H([A^A_]IL]HuHQH@UHAVSH HuHHEDvDuHG]]y tHHtH(HtD9uEt!1Ht+12H}111(!HHcHuHHHH [A^]UHAWAVSH(HuHHED~D}HG]܉]y HHt#H(HtD9uAEt0Ht+12H}111r!HLcHuLHHH([A^A_]f.DUHAVSH HuH1HEDvDuHG]]y HHt H(HtD9uEt"_tuHt*11H}111 H KHuHcJHHH [A^]UHAVSH HuHbHEDvDuHG]]y THHt+H(Ht"D9u!Et-HHt(1.H}111H(HuHNHHH [A^]f.DUHAVSH HuHzHEDvDuHG]]y HHt(H(HtD9uEt*H1Ht(1.H}111?H0HuHNHHH [A^]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y HHtsLw(MtjA)AuNHuH}tP}utTL1IA9FxtAFxILHu6H}U1H([A^A_]IL8HuH MH@UHAVSH HuHHEDvDuHG]]y HHtH(HtD9uEt!1fHt+12H}111!H@Hc;HuH:HHH [A^]UHAWAVSH(HuHHED~D}HG]܉]y BHHt#H(HtD9uAEtHt+12H}111!HHLcHuLHHH([A^A_]f.DUHAVSH HuHۑHEDvDuHG]]y HHt H(HtD9uEt"_xHt*11H}1117 HPHuHcHHH [A^]UHAVSH HuHHEDvDuHG]]y HHt+H(Ht"D9u!Et-H8:Ht(1.H}111|HXHuH>JHHH [A^]f.DUHAVSH HuHHEDvDuHG]]y HHt(H(HtD9uEt*H18}Ht(1.H}111H`UHuHIHHH [A^]fUHAWAVSH(HuH HED~D}HG]ԉ]؅y bHHtsLw(MtjA)AuNHuH}StP}utTL1IA9F|tAF|ILHu6H}1H([A^A_]ILh]HuHHH@UHAVSH HuH,HEDvDuHG]]y tHHtH(HtD9uEt!1 Ht+12H}111(!HpHc HuH HHH [A^]UHAWAVSH(HuHHED~D}HG]܉]y HHt#H(HtD9uAEt0 Ht+12H}111r !HxLc HuL HHH([A^A_]f.DUHAVSH HuHHEDvDuHG]]y  HHt H(HtD9uEt"_|u Ht*11H}111  HK HuHcJ HHH [A^]UHAVSH HuHZHEDvDuHG]]y T HHt+H(Ht"D9u!Et-Hh Ht(1.H}111 H HuHEHHH [A^]f.DUHAVSH HuHHEDvDuHG]]y HHt(H(HtD9uEt*H1h Ht(1.H}111? H HuHEHHH [A^]ÐUHH=H5>HH 0 -uHvH=o Hc]ÐUH]x fDUHSPHH=@H5ٮHH R ȭuxHH= + H5SHH t H tH[]H=ԬH[] fUHAVSH0HuHHEЋFEHEHEH}ȃuoHu tqH]H=ĕH At1H=(H tH=zH t H Lc/ HuL. k 1H0[A^]f.@UHAWAVSH(HuHHED~D}HG]ԉ]؅y" HHLw(HEMA)AuhHuH}}L}tlH=L AtbH=p'L tOH=iL tz<@f.u*z(Hf.uzPf.u{' HuHH yHH <HH <H H;M4UHAWAVSHXH;HHEHHHD~DHGyHH5Lw(MA)HAHuHHupHH PHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL^\1H p:H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1)Ef.`u$z"Ef.huzEf.pu{$aHuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'yHuHH RHBH u8H H;MUHH=H5>HِH 0-u=HvH=oHc]ÐUH]fDUHSPHH=@H5٤HtH ȣuظHH= H5@HHQt H tH[]H=ԢH[]yfUHAVSH0HuHHEЋFEHEHEH}ȃuoHu^tqH]H=HQAt1H=H8tH=H%t HLcHuL1H0[A^]f.@UHAWAVSH(HuHMHED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}W}L}tlH=L@AtbH=L'tOH=Ltz<@f.u*z(Hf.uzPf.u{'HuHH )HH-HH -H H;MUHAWAVSHXH-HHEHHHD~DHGyrHH5Lw(MA)HAHu=HHu HH HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLD\C1H ,H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!eHuHHU1Ef.`u$z"Ef.huzEf.pu{$HuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{')HuHH HH %*H H;MOUHH=5H5ΙHيH 0uHH=H]ÐUH]`fDUHSPHH=ЗH5iHtH bXu航HH=;H5@HHt H ttH[]H=dH[])fUHAVSH0HuHHEЋFEHEHEH}ȃuoHutqH]H=HAt1H= HtH=Ht HLc?HuL>{1H0[A^]f.@UHAWAVSH(HuHHED~D}HG]ԉ]؅y2HHLw(HEMA)AuhHuH}}L}tlH=LAtbH= LtOH=yLtHuLUHAVSH HuHHEDvDuHG]]yTHHH(HD9u3HPxHt9HHH5܆HPE1LEHucH}111RE1~HuCLHt6HHt)HHH1Q@H߾n1HH [A^]UHAWAVSH(HuHHED~D}HG]܉]y RHHt#H(HtD9uAEtHt+12H}111!HLcHuLHHH([A^A_]f.DUHAWAVSH(HuHHED~D}HG]ԉ]؅y HHtgLw(Mt^A)AuBHuH}tD}utHA9tAILHu6H}1H([A^A_]ILHuH#HUHAVSH HuH]HEDvDuHG]]y HHt#H(HtD9uEt%"Ht*11H}111d HHuHcHHH [A^]@UHAWAVSH(HuH*HED~D}HG]ԉ]؅y HHtsLw(MtjA)AuNHuH}tP}EtRAf.u{AIL5Hu6H}u1H([A^A_]ILHuH)"H@UHAVSH0HuH׈HEDvDuHG]܉]y HHt*H(Ht!D9u Et,E{Ht-16H}111%HENHuEEHHH0[A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅y RHHtsLw(MtjA)AuNHuH}=tP}EtRAf.u{AILHu6H}1H([A^A_]ILMHuHy H@UHAVSH0HuHXHEDvDuHG]܉]y dHHt*H(Ht!D9u Et,EHt-16H}111 %HEHuEHHH0[A^]UHAWAVSH(HuH,HED~D}HG]ԉ]؅y HHtsLw(MtjA)AuNHuH}tP}EtRAf.u{AILHu6H}1H([A^A_]ILHuHH@UHAVSH0HuH·HEDvDuHG]܉]y HHt*H(Ht!D9u Et,EHt-16H}111]%HEHuEHHH0[A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅y HHtgLw(Mt^A)AuBHuH}tD}utHA9tAIL1Hu6H}q1H([A^A_]ILHuH%HUHAVSH HuHHEDvDuHG]]y HHt#H(HtD9uEt%Ht*11H}111 HXHuHcWHHH [A^]@UHAWAVSH(HuHHED~D}HG]ԉ]؅y bHHtyLw(MtpA)AuTHuH}StV}utZL1IA9tAILHu6H}1H([A^A_]ILWHuHHf.@UHAVSH HuHHEDvDuHG]]y dHHtH(HtD9uEt!1Ht+12H}111!HHcHuHHHH [A^]UHAWAVSH(HuHwHED~D}HG]܉]y HHt#H(HtD9uAEt Ht+12H}111b!HLcHuLHHH([A^A_]f.DUHAVSH HuHRHEDvDuHG]]y HHt#H(HtD9uEt%bHt*11H}111 H8HuHc7HHH [A^]@UHAVSH HuH#HEDvDuHG]]y DHHt+H(Ht"D9u!Et-HHt(1.H}111HHuHHHH [A^]f.DUHAVSH HuHېHEDvDuHG]]y HHt(H(HtD9uEt*H1Ht(1.H}111/HHuHHHH [A^]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y HHtsLw(MtjA)AuNHuH}tP}EtRAf.u{AILHu6H}E1H([A^A_]ILHuHH@UHAVSH0HuHxHEDvDuHG]܉]y HHt*H(Ht!D9u Et,EKHt-16H}111%H EHuEHHH0[A^]UHAWAVSH(HuHsHED~D}HG]ԉ]؅y "HHtsLw(MtjA)AuNHuH} tP}EtRAf.u{AILUHu6H}1H([A^A_]IL(HuHIH@UHAVSH0HuHGHEDvDuHG]܉]y 4HHt*H(Ht!D9u Et,EHt-16H}111%H0EnHuEeHHH0[A^]UHAWAVSH(HuHBHED~D}HG]ԉ]؅y rHHtsLw(MtjA)AuNHuH}]tP}EtRAf.u{AILHu6H}1H([A^A_]IL8mHuHH@UHAVSH0HuHHEDvDuHG]܉]y HHt*H(Ht!D9u Et,EHt-16H}111-%H@EHuEHHH0[A^]UHAWAVSHHHHHEHHHD~DHGyHHKLw(MA)HAHumHHuPHH 0HEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHL"Ef.Ej]1H :H H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$3HuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'KHuHH $HHLHH JH H;MtUHAWAVSHXH!HHEHH%HD~DHGyHH5Lw(MA)HAHuHHuHH HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLv\1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1iEf.`u$z"Ef.huzEf.pu{$HuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'HuHH 'HH H H;MUHH=%H5HqH 0Wu}HH=~0H~]ÐUH]*fDUHSPHH=~H5YH H HuHH=~H5؎Hw~Ht H d~tH[]H=T~H[]fUHAVSH0HuHUHEЋFEHEHEH}ȃuoHutqH]H=IHAt1H=!HxtH=Het H+LcHuL 1H0[A^]f.@UHAWAVSH(HuHHED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}}L}tlH=8LAtbH=LgtOH= LTtz<@f.u*z(Hf.uzPf.u{'HuHH iHHHH H H;M$UHAWAVSHXHHHEHHHD~DHGyHH5Lw(MA)HAHu}HHu`HH @HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL`\1H `H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$QHuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'iHuHH BH2H eH H;MUHH=sH5NuHH 0=tu-~HtH=sHss]ÐUH](fDUHSPHH=PsH5tH7H su}H!tH=s{H5HsHAt H rtH[]H=rH[]ifUHAVSH0HuHHEЋFEHEHEH}ȃuoHuNtqH]H=tHAAt1H=H(tH=Ht HLcHuL~1H0[A^]f.@UHAWAVSH(HuH=HED~D}HG]ԉ]؅yrHHLw(HEMA)AuhHuH}G}L}tlH=cL0AtbH=LtOH=Ltz<@f.u*z(Hf.uzPf.u{'[HuHH ɺ4HH\HH ZH H;M脼UHAWAVSHXH1HHEHH5HD~DHGyHH5Lw(MA)HAHuݹHHuHH 蠹HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL\1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1yEf.`u$z"Ef.huzEf.pu{$豷HuHHU"f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'ɶHuHH 7袶H蒶H H H;Mf.UHAWAVSH(HuHƀHED~D}HG]ԉ]؅y 蒶HHt`Lw(MtWA)Au;H5*H}HU^}t4LHCHuHHH}1H([A^A_]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y ҵHHt`Lw(MtWA)Au;H5jH}HU螵}t4LH艶"HuHNHH}X1H([A^A_]fUHAWAVSH(HuH\HED~D}HG]ԉ]؅y HHt`Lw(MtWA)Au;H5H}HU޴}t4LHϵbHuHHH}蘴1H([A^A_]fUHAVSH HuHHEDvDuHG]]y THHt$H(HtD9uEt&HHt+12H}111!HH薳HuHHHH [A^]fUHAVSH HuH HEDvDuHG]]y 褳HHt$H(HtD9uEt&HHt+12H}111S!HHHuHoHHH [A^]fUHAVSH HuHmHEDvDuHG]]y HHt$H(HtD9uEt&HaHt+12H}111裲!HH6HuH迲HHH [A^]fUHAWAVSH(HuH͂HED~D}HG]ԉ]؅y BHHt`Lw(MtWA)Au;H5H}HU}t4LH#蒱HuHHH}ȱ1H([A^A_]fUHAVSH HuHHEDvDuHG]]y 脱HHt$H(HtD9uEt&HHt+12H}1113!HHưHuHOHHH [A^]fUHAWAVSH(HuH~HED~D}HG]ԉ]؅y ҰHHtXLw(MtOA)Au3HuH}ɰt5HuL裱*HuHVHH}`1H([A^A_]ÐUHAWAVSHHHuHHED~D}HG]܉]y"HHLw(MA)H}AuqHutsH}HutbH}HutQH}Huүt@HuEMUL軰0HuH\Hj1HH[A^A_]E1MZf.UHAWAVSH(HuHYHED~D}HG]ԉ]؅y HHtgLw(Mt^A)AuBHuH}tD}utHA9tAILQHu6H}葮1H([A^A_]ILHuHEHUHAVSH HuH]HEDvDuHG]]y 4HHt#H(HtD9uEt%袭Ht*11H}111 HxHuHcwHHH [A^]@UHAVSH HuHHEDvDuHG]]y 脭HHt+H(Ht"D9u!Et-HHt(1.H}111,H¬HuHHHH [A^]f.DUHAVSH HuHHEDvDuHG]]y ĬHHt(H(HtD9uEt*H1-Ht(1.H}111oHHuH1HHH [A^]fUHAWAVSH(HuHÃHED~D}HG]ԉ]؅y HHtgLw(Mt^A)AuBHuH}tD}utHA9tAILQHu6H}葫1H([A^A_]ILHuHEHUHAVSH HuHHEDvDuHG]]y 4HHt#H(HtD9uEt%袪Ht*11H}111 HxHuHcwHHH [A^]@UHAVSH HuHȃHEDvDuHG]]y 脪HHt+H(Ht"D9u!Et-HHt(1.H}111,H©HuHHHH [A^]f.DUHAVSH HuHƃHEDvDuHG]]y ĩHHt(H(HtD9uEt*H1-Ht(1.H}111oHHuH1HHH [A^]fUHAWAVSH(HuHՃHED~D}HG]ԉ]؅y HHtyLw(MtpA)AuTHuH}tV}utZL1IA9tAIL?Hu6H}1H([A^A_]ILHuH3Hf.@UHAVSH HuH.HEDvDuHG]]y HHtH(HtD9uEt!1膧Ht+12H}111ȧ!HHc[HuHZHHH [A^]UHAWAVSH(HuHHED~D}HG]܉]y bHHt#H(HtD9uAEtЦHt+12H}111!HLc襦HuL褦HHH([A^A_]f.DUHAVSH HuHHEDvDuHG]]y 褦HHt#H(HtD9uEt%Ht*11H}111T HHuHcHHH [A^]@UHAWAVSH(HuH2HED~D}HG]ԉ]؅y HHtyLw(MtpA)AuTHuH}tV}utZL1IA9tAILHu6H}_1H([A^A_]ILHuHHf.@UHAVSH HuHHEDvDuHG]]y HHtH(HtD9uEt!1fHt+12H}111訤!H Hc;HuH:HHH [A^]UHAWAVSH(HuHIHED~D}HG]܉]y BHHt#H(HtD9uAEt谣Ht+12H}111!H(Lc腣HuL脣HHH([A^A_]f.DUHAVSH HuHHEDvDuHG]]y 脣HHt#H(HtD9uEt%Ht*11H}1114 H0ȢHuHcǢHHH [A^]@UHAWAVSH(HuHHED~D}HG]ԉ]؅y ҢHHtsLw(MtjA)AuNHuH}轢tP}EtRAf.u{AILHu6H}E1H([A^A_]IL8͡HuHH@UHAVSH0HuHzHEDvDuHG]܉]y HHt*H(Ht!D9u Et,EKHt-16H}111荡%H@EHuEHHH0[A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅y "HHtsLw(MtjA)AuNHuH} tP}EtRAf.u{AILUHu6H}蕠1H([A^A_]ILHHuHIH@UHAVSH0HuHbHEDvDuHG]܉]y 4HHt*H(Ht!D9u Et,E蛟Ht-16H}111ݟ%HPEnHuEeHHH0[A^]ÐUHH=UVH5WHtH 0GVumZH&WH=V HV]ÐUH]^fDUHSPHH=UH5WHH xVuZHVH=U軞H5ۏHUH聞t H UtH[]H=UH[]驞fUHAVSH0HuHEHEЋFEHEHEH}ȃuoHu莞tqH]H=LH聠At1H=HhtH= HUt HLc违HuL辝1H0[A^]f.@UHAWAVSH(HuH}HED~D}HG]ԉ]؅y貝HHLw(HEMA)AuhHuH}臝}L}tlH=;LpAtbH=LWtOH=LDtz<@f.u*z(Hf.uzPf.u{'+HuHH 虎HH,HH *H H;MTUHAWAVSHXHHHEHHHD~DHGyHH5Lw(MA)HAHu譍HHu萍HH pHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLԎ\賌1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!ՋHuHHU1IEf.`u$z"Ef.huzEf.pu{$聋HuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'虊HuHH rHbH H H;M迌UHH=%EH5FHH 07Eu]EHEH=DHD]ÐUH]fDUHSPHH=DH5YFHXH ҉HEuDHEH=D諉H5$HwDHqt H dDtH[]H=TDH[]陉fUHAVSH0HuH5HEЋFEHEHEH}ȃuoHu~tqH]H=HqAt1H=HXtH=HEt H Lc诈HuL讈1H0[A^]f.@UHAWAVSH(HuHmHED~D}HG]ԉ]؅y袈HHLw(HEMA)AuhHuH}w}L}tlH=L`AtbH=LGtOH=L4t~HuE5~HHH0[A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅y B~HHtsLw(MtjA)AuNHuH}-~tP}EtRAf.u{AILu}Hu6H}}1H([A^A_]IL=}HuHiH@UHAVSH0HuH7HEDvDuHG]܉]y T}HHt*H(Ht!D9u Et,E|Ht-16H}111|%HE|HuE|HHH0[A^]UHAWAVSH(HuHrHED~D}HG]ԉ]؅y |HHtsLw(MtjA)AuNHuH}}|tP}EtRAf.u{AIL{Hu6H}|1H([A^A_]IL{HuHH@UHAVSH0HuHqHEDvDuHG]܉]y {HHt*H(Ht!D9u Et,E {Ht-16H}111M{%HEzHuEzHHH0[A^]UHAWAVSH(HuH_qHED~D}HG]ԉ]؅y zHHtsLw(MtjA)AuNHuH}ztP}EtRAf.u{AILzHu6H}Uz1H([A^A_]ILyHuH H@UHAVSH0HuHpHEDvDuHG]܉]y yHHt*H(Ht!D9u Et,E[yHt-16H}111y%HE.yHuE%yHHH0[A^]UHAWAVSHHH1HHEHH$HD~DHGyyHHKLw(MA)HAHuxHHuxHH xHEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHLyEf.Ejw1H H H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!vHuHHU1kwEf.`u$z"Ef.huzEf.pu{$vHuHHUwf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'uHuHH )vuHHHH H H;MwUHAWAVSHXHHHEHHHD~DHGyruHH5Lw(MA)HAHu=uHHu uHH uHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLu\Ct1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!esHuHHU1sEf.`u$z"Ef.huzEf.pu{$sHuHHUsf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{')rHuHH rrHqH %H H;MOtUHH=1H52HQwH 0q1u,H1H=0qH0]ÐUH]rfDUHSPHH=0H5I2HvH bq81u,H1H=z0;qH5vHg0Hqt H T0tH[]H=D0H[])qfUHAVSH0HuHxHEЋFEHEHEH}ȃuoHuqtqH]H=)vHsAt1H=HrtH=|Hrt HpLc?pHuL>p{p1H0[A^]f.@UHAWAVSH(HuHxHED~D}HG]ԉ]؅y2pHHLw(HEMA)AuhHuH}p}L}tlH=uLqAtbH=LqtOH=y{LqtnHuLnUHAVSH HuHxHEDvDuHG]]yTnHHH(HD9u3HPxHt9HHH5TsHPE1LEmHucH}111mRE1~mHuCLnHt6HHmt)HmHH1Q@H߾nm1HH [A^]UHAWAVSH(HuH;lHED~D}HG]ԉ]؅y RmHHtsLw(MtjA)AuNHuH}=mtP}EtRAf.u{AILlHu6H}l1H([A^A_]ILMlHuHyH@UHAVSH0HuHlHEDvDuHG]܉]y dlHHt*H(Ht!D9u Et,EkHt-16H}111 l%HEkHuEkHHH0[A^]UHAWAVSH(HuHkHED~D}HG]ԉ]؅y kHHtsLw(MtjA)AuNHuH}ktP}EtRAf.u{AILjHu6H}k1H([A^A_]ILjHuHɤH@UHAVSH0HuHkHEDvDuHG]܉]y jHHt*H(Ht!D9u Et,EjHt-16H}111]j%HEiHuEiHHH0[A^]UHAWAVSH(HuH|HED~D}HG]܉]y iHHt#H(HtD9uAEt`iHt+12H}111i!HLc5iHuL4iHHH([A^A_]f.DUHAWAVSHHH1HHEHH$tHD~DHGyiHHKLw(MA)HAHuhHHuhHH hHEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHLhEf.Ejg1H H H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!fHuHHU1kgEf.`u$z"Ef.huzEf.pu{$fHuHHUgf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'eHuHH )feHHHH H H;MgUHAWAVSHXHHHEHHHD~DHGyreHH5Lw(MA)HAHu=eHHu eHH eHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL2e\Cd1H H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!ecHuHHU1cEf.`u$z"Ef.huzEf.pu{$cHuHHUcf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{')bHuHH bbHaH %H H;MOdUHH=5$H5%H`nH 0a$uH%H=#aH#]ÐUH]vbfDUHSPHH=#H5i%HmH baX$uH$H=#;aH5mH#Hat H t#tH[]H=d#H[])afUHAVSH0HuHhHEЋFEHEHEH}ȃuoHuatqH]H=8mHcAt1H=HbtH=lHbt H`Lc?`HuL>`{`1H0[A^]f.@UHAWAVSH(HuHhHED~D}HG]ԉ]؅y2`HHLw(HEMA)AuhHuH}`}L}tlH='lLaAtbH=~LatOH=ykLat^HuL^UHAVSH HuHhHEDvDuHG]]yT^HHH(HD9u3HPxHt9HHH5cjHPE1LE]HucH}111]RE1~]HuCL^Ht6HH]t)H]HH1Q@H߾n]1HH [A^]UHAWAVSH(HuHuHED~D}HG]܉]y R]HHt#H(HtD9uAEt\Ht+12H}111]!HLc\HuL\HHH([A^A_]f.DUHAWAVSH(HuHokHED~D}HG]ԉ]؅y \HHtsLw(MtjA)AuNHuH}}\tP}EtRAf.u{AIL[Hu6H}\1H([A^A_]IL[HuHH@UHAVSH0HuHkHEDvDuHG]܉]y [HHt*H(Ht!D9u Et,E [Ht-16H}111M[%HEZHuEZHHH0[A^]UHAWAVSHHHHHEHHeHD~DHGyZHHKLw(MA)HAHuZHHupZHH PZHEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHLXZEf.Ej}Y1H ZH H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!XHuHHU1YEf.`u$z"Ef.huzEf.pu{$SXHuHHUXf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'kWHuHH WDWHHlHH jH H;MYUHAWAVSHXHAHHEHHEsHD~DHGy"WHH5Lw(MA)HAHuVHHuVHH VHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLV\U1H ЏH H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!UHuHHU1UEf.`u$z"Ef.huzEf.pu{$THuHHU2Uf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'SHuHH GTSHSH ՍH H;MUUHH=H5^HnhH 0wSMuHH=PSH]ÐUH]XUfDUHSPHH=`H5H hH Su8H1H=*RH5gHHRt H tH[]H=H[]RfUHAVSH0HuHuZHEЋFEHEHEH}ȃuoHuRtqH]H=FgHTAt1H=AqHTtH=:^HTt HKRLcQHuLQ+R1H0[A^]f.@UHAWAVSH(HuHZHED~D}HG]ԉ]؅yQHHLw(HEMA)AuhHuH}Q}L}tlH=5fLSAtbH=0pLStOH=)]LtSteHPE1LEPHu+H}Ⱦ[P1H0[A^]E1OHuLwPUHAVSH HuHHZHEDvDuHG]]yPHHH(HD9u3HPxHt9HHH5qdHPE1LENOHucH}111ORE1.OHuCLOHt6HH;Ot)H5OHH1Q@H߾O1HH [A^]UHAWAVSH(HuHgHED~D}HG]܉]y OHHt#H(HtD9uAEtpNHt+12H}111N!HLcENHuLDNHHH([A^A_]f.DUHAWAVSHHHAHHEHH4YHD~DHGy"NHHKLw(MA)HAHuMHHuMHH MHEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHLNEf.EjL1H H H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!LHuHHU1{LEf.`u$z"Ef.huzEf.pu{$KHuHHU$Lf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'JHuHH 9KJHH̄HH ʄH H;MLUHAWAVSHXHHHEHHfHD~DHGyJHH5Lw(MA)HAHuMJHHu0JHH JHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL>K\SI1H 0H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!uHHuHHU1HEf.`u$z"Ef.huzEf.pu{$!HHuHHUHf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'9GHuHH GGHGH 5H H;M_IUHH=H5^H`H 0FMuHH=FH]ÐUH]HfDUHSPHH=`H5H{`H rFuH1H=*KFH5G`HHFt H tH[]H= H[]9FfUHAVSH0HuHMHEЋFEHEHEH}ȃuoHuFtqH]H=_HHAt1H=dHGtH=QHGt HELcOEHuLNEE1H0[A^]f.@UHAWAVSH(HuH NHED~D}HG]ԉ]؅yBEHHLw(HEMA)AuhHuH}E}L}tlH=^LGAtbH=cLFtOH=PLFtHuHyH@UHAVSH0HuHdHEDvDuHG]܉]y ?HHt*H(Ht!D9u Et,Ek>Ht-16H}111>%HE>>HuE5>HHH0[A^]UHAWAVSH(HuHbHED~D}HG]ԉ]؅y B>HHtsLw(MtjA)AuNHuH}->tP}EtRAf.u{AILu=Hu6H}=1H([A^A_]IL==HuHiwH@UHAWAVSH(HuHUHED~D}HG]܉]y R=HHt#H(HtD9uAEt<Ht+12H}111=!HLc<HuL<HHH([A^A_]f.DUHAWAVSHHHvHHEHHGHD~DHGyr<HHKLw(MA)HAHu=<HHu <HH <HEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHL=Ef.Ej-;1H uH H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!W:HuHHU1:Ef.`u$z"Ef.huzEf.pu{$:HuHHUt:f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'9HuHH 98HHsHH sH H;MD;UHAWAVSHXHrHHEHHTHD~DHGy8HH5Lw(MA)HAHu8HHu8HH `8HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLj9\71H qH H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!6HuHHU197Ef.`u$z"Ef.huzEf.pu{$q6HuHHU6f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'5HuHH 5b5HR5H oH H;M7UHH=uH5HUH 0'5uMHFH=?5H3]ÐUH]6fDUHSPHH=H5HqUH 4uHH=4H5=UHHa4t H tH[]H=H[]4fUHAVSH0HuH%<HEЋFEHEHEH}ȃuoHun4tqH]H=THa6At1H=RHH6tH=?H56t H3Lc3HuL331H0[A^]f.@UHAWAVSH(HuH]<HED~D}HG]ԉ]؅y3HHLw(HEMA)AuhHuH}g3}L}tlH=SLP5AtbH=QL75tOH=>L$5tH}HU]2}t@HHtCHH5RHPE1LE1Hu+H}Ⱦ 21H0[A^]E11HuL'2UHAVSH HuH;HEDvDuHG]]y1HHH(HD9u3HPxHt9HHH5QHPE1LE0HucH}111B1RE10HuCLg1Ht6HH0t)H0HH1Q@H߾01HH [A^]UHAWAVSH(HuHz<@f.u*z(Hf.uzPf.u{'{,HuHH ,T,HH|fHH zfH H;M.UHAWAVSHXHQfHHEHHUHHD~DHGy2,HH5Lw(MA)HAHu+HHu+HH +HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL,\+1H dH H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!%*HuHHU1*Ef.`u$z"Ef.huzEf.pu{$)HuHHUB*f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'(HuHH W)(H(H bH H;M+UHH=uH5HMH 0(uHFH=?`(H3]ÐUH]*fDUHSPHH=H5H[MH "(uHHH='H5'MHH't H tH[]H=H[]'fUHAVSH0HuH/HEЋFEHEHEH}ȃuoHu'tqH]H=LH)At1H=QFH)tH=J3H)t H['Lc&HuL&;'1H0[A^]f.@UHAWAVSH(HuH/HED~D}HG]ԉ]؅y&HHLw(HEMA)AuhHuH}&}L}tlH=KL(AtbH=@EL(tOH=92L(t$HuCL$Ht6HHK$t)HE$HH1Q@H߾.$1HH [A^]UHAWAVSH(HuH<HED~D}HG]܉]y $HHt#H(HtD9uAEt#Ht+12H}111#!HLcU#HuLT#HHH([A^A_]f.DUHAWAVSHHHQ]HHEHHD.HD~DHGy2#HHKLw(MA)HAHu"HHu"HH "HEHE(E)E(E)`HEHp(( (0(@))))HPHtpHuHUHL$Ef.Ej!1H [H H;MHH[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!!HuHHU1!Ef.`u$z"Ef.huzEf.pu{$ HuHHU4!f.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'HuHH I HHYHH YH H;M"UHAWAVSHXHYHHEHH;HD~DHGyHH5Lw(MA)HAHu]HHu@HH HEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHLr \c1H @XH H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1Ef.`u$z"Ef.huzEf.pu{$1HuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'IHuHH "HH EVH H;MoUHH=uH5HEH 0u HFH=?H3]ÐUH]rfDUHSPHH=H5HEH uHH=[H5eEHH!t H tH[]H=H[]IfUHAVSH0HuH"HEЋFEHEHEH}ȃuoHu.tqH]H=DH!At1H=9HtH=&Ht HLc_HuL^1H0[A^]f.@UHAWAVSH(HuH#HED~D}HG]ԉ]؅yRHHLw(HEMA)AuhHuH}'}L}tlH=CLAtbH=8LtOH=%Ltz<@f.u*z(Hf.uzPf.u{';HuHH HHz<@f.u*z(Hf.uzPf.u{'HuHH HrH IH H;MUHH=uH5H=H 0GumHFH=? H3]ÐUH]:fDUHSPHH=H5H3=H uHH=H5<HHt H tH[]H=H[]fUHAVSH0HuHEHEЋFEHEHEH}ȃuoHutqH]H=p<HAt1H=-HhtH= HUt HLc HuL  1H0[A^]f.@UHAWAVSH(HuH}HED~D}HG]ԉ]؅y HHLw(HEMA)AuhHuH} }L}tlH=_;LpAtbH=,LWtOH=LDtz<@f.u*z(Hf.uzPf.u{' HuHH yHH ?HH ?H H;M4UHAWAVSHXH>HHEHH HD~DHGyHH5Lw(MA)HAHuHHupHH PHEHE(E)E(E)`HEHp(( (0(@))))HPHtZHuHUHL\1H p=H H;MHX[A^A_]E1MIHuHUHLEf.EuzEf.EuzEf.Eu{!HuHHU1)Ef.`u$z"Ef.huzEf.pu{$aHuHHUf.f. f.uzzx(f.ufzd0f.uRzP8f.u>z<@f.u*z(Hf.uzPf.u{'yHuHH RHBH u;H H;MUHAVSH="IH HHHy>HEHQH_H9sHHɏHqH HAH9HHH/H=HaHvHHH1HɹHqH HH9L[A^]H=4H54T%8z%:z%z%@z%Bz%Dz%Fz%Hz%Jz%Lz%Nz%Pz%Rz%Tz%Vz%Xz%Zz%\z%^z%`z%bz%dz%fz%hz%jz%lz%nz%pz%rz%tz%vz%xz%zz%|z%~z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%z%{%{%{%{%{% {% {%{%{hRhHh2>hL4hc*h{ hhF hYLzAS%U7h*hhhh#hHhqhhhhhQxh{nhdhZh PhAFhfh4h'*hT hh hh6hxhhh$hShhhhhhhhvh*lhgbhXhNhDh:h,0hV&hshhvtkCardinalSplinevtkCommonComputationalGeometryPython.vtkCardinalSplinevtkCardinalSpline - computes an interpolating spline using a a Cardinal basis. Superclass: vtkSpline vtkCardinalSpline is a concrete implementation of vtkSpline using a Cardinal basis. @sa vtkSpline vtkKochanekSpline IsTypeOfV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkCardinalSpline C++: static vtkCardinalSpline *SafeDownCast(vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkCardinalSpline C++: vtkCardinalSpline *NewInstance() ComputeV.Compute() C++: void Compute() override; Compute Cardinal Splines for each dependent variable EvaluateV.Evaluate(float) -> float C++: double Evaluate(double t) override; Evaluate a 1D cardinal spline. DeepCopyV.DeepCopy(vtkSpline) C++: void DeepCopy(vtkSpline *s) override; Deep copy of cardinal spline data. vtkSplinevtkObjectvtkObjectBasevtkKochanekSplinevtkCommonComputationalGeometryPython.vtkKochanekSplinevtkKochanekSpline - computes an interpolating spline using a Kochanek basis. Superclass: vtkSpline Implements the Kochanek interpolating spline described in: Kochanek, D., Bartels, R., "Interpolating Splines with Local Tension, Continuity, and Bias Control," Computer Graphics, vol. 18, no. 3, pp. 33-41, July 1984. These splines give the user more control over the shape of the curve than the cardinal splines implemented in vtkCardinalSpline. Three parameters can be specified. All have a range from -1 to 1. Tension controls how sharply the curve bends at an input point. A value of -1 produces more slack in the curve. A value of 1 tightens the curve. Continuity controls the continuity of the first derivative at input points. Bias controls the direction of the curve at it passes through an input point. A value of -1 undershoots the point while a value of 1 overshoots the point. These three parameters give the user broad control over the shape of the interpolating spline. The original Kochanek paper describes the effects nicely and is recommended reading. @sa vtkSpline vtkCardinalSpline V.SafeDownCast(vtkObjectBase) -> vtkKochanekSpline C++: static vtkKochanekSpline *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkKochanekSpline C++: vtkKochanekSpline *NewInstance() V.Compute() C++: void Compute() override; Compute Kochanek Spline coefficients. V.Evaluate(float) -> float C++: double Evaluate(double t) override; Evaluate a 1D Kochanek spline. SetDefaultBiasV.SetDefaultBias(float) C++: virtual void SetDefaultBias(double _arg) Set the bias for all points. Default is 0. GetDefaultBiasV.GetDefaultBias() -> float C++: virtual double GetDefaultBias() Set the bias for all points. Default is 0. SetDefaultTensionV.SetDefaultTension(float) C++: virtual void SetDefaultTension(double _arg) Set the tension for all points. Default is 0. GetDefaultTensionV.GetDefaultTension() -> float C++: virtual double GetDefaultTension() Set the tension for all points. Default is 0. SetDefaultContinuityV.SetDefaultContinuity(float) C++: virtual void SetDefaultContinuity(double _arg) Set the continuity for all points. Default is 0. GetDefaultContinuityV.GetDefaultContinuity() -> float C++: virtual double GetDefaultContinuity() Set the continuity for all points. Default is 0. vtkParametricBoyvtkCommonComputationalGeometryPython.vtkParametricBoyvtkParametricBoy - Generate Boy's surface. Superclass: vtkParametricFunction vtkParametricBoy generates Boy's surface. This is a Model of the projective plane without singularities. It was found by Werner Boy on assignment from David Hilbert. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricBoy C++: static vtkParametricBoy *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricBoy C++: vtkParametricBoy *NewInstance() GetDimensionV.GetDimension() -> int C++: int GetDimension() override; Return the parametric dimension of the class. SetZScaleV.SetZScale(float) C++: virtual void SetZScale(double _arg) Set/Get the scale factor for the z-coordinate. Default is 1/8, giving a nice shape. GetZScaleV.GetZScale() -> float C++: virtual double GetZScale() Set/Get the scale factor for the z-coordinate. Default is 1/8, giving a nice shape. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Boy's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . EvaluateScalarV.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricFunctionvtkParametricConicSpiralvtkCommonComputationalGeometryPython.vtkParametricConicSpiralvtkParametricConicSpiral - Generate conic spiral surfaces that resemble sea-shells. Superclass: vtkParametricFunction vtkParametricConicSpiral generates conic spiral surfaces. These can resemble sea shells, or may look like a torus "eating" its own tail. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricConicSpiral C++: static vtkParametricConicSpiral *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricConicSpiral C++: vtkParametricConicSpiral *NewInstance() SetAV.SetA(float) C++: virtual void SetA(double _arg) Set/Get the scale factor. Default = 0.2 GetAV.GetA() -> float C++: virtual double GetA() Set/Get the scale factor. Default = 0.2 SetBV.SetB(float) C++: virtual void SetB(double _arg) Set/Get the A function coefficient. See the definition in Parametric surfaces referred to above. Default is 1. GetBV.GetB() -> float C++: virtual double GetB() Set/Get the A function coefficient. See the definition in Parametric surfaces referred to above. Default is 1. SetCV.SetC(float) C++: virtual void SetC(double _arg) Set/Get the B function coefficient. See the definition in Parametric surfaces referred to above. Default is 0.1. GetCV.GetC() -> float C++: virtual double GetC() Set/Get the B function coefficient. See the definition in Parametric surfaces referred to above. Default is 0.1. SetNV.SetN(float) C++: virtual void SetN(double _arg) Set/Get the C function coefficient. See the definition in Parametric surfaces referred to above. Default is 2. GetNV.GetN() -> float C++: virtual double GetN() Set/Get the C function coefficient. See the definition in Parametric surfaces referred to above. Default is 2. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A conic spiral surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricCrossCapvtkCommonComputationalGeometryPython.vtkParametricCrossCapvtkParametricCrossCap - Generate a cross-cap. Superclass: vtkParametricFunction vtkParametricCrossCap generates a cross-cap which is a non-orientable self-intersecting single-sided surface. This is one possible image of a projective plane in three-space. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricCrossCap C++: static vtkParametricCrossCap *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricCrossCap C++: vtkParametricCrossCap *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A cross-cap. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricDinivtkCommonComputationalGeometryPython.vtkParametricDinivtkParametricDini - Generate Dini's surface. Superclass: vtkParametricFunction vtkParametricDini generates Dini's surface. Dini's surface is a surface that possesses constant negative Gaussian curvature For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricDini C++: static vtkParametricDini *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricDini C++: vtkParametricDini *NewInstance() V.SetA(float) C++: virtual void SetA(double _arg) Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 1. V.GetA() -> float C++: virtual double GetA() Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 1. V.SetB(float) C++: virtual void SetB(double _arg) Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 0.2 V.GetB() -> float C++: virtual double GetB() Set/Get the scale factor. See the definition in Parametric surfaces referred to above. Default is 0.2 V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Dini's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricEllipsoidvtkCommonComputationalGeometryPython.vtkParametricEllipsoidvtkParametricEllipsoid - Generate an ellipsoid. Superclass: vtkParametricFunction vtkParametricEllipsoid generates an ellipsoid. If all the radii are the same, we have a sphere. An oblate spheroid occurs if RadiusX = RadiusY > RadiusZ. Here the Z-axis forms the symmetry axis. To a first approximation, this is the shape of the earth. A prolate spheroid occurs if RadiusX = RadiusY < RadiusZ. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricEllipsoid C++: static vtkParametricEllipsoid *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricEllipsoid C++: vtkParametricEllipsoid *NewInstance() SetXRadiusV.SetXRadius(float) C++: virtual void SetXRadius(double _arg) Set/Get the scaling factor for the x-axis. Default is 1. GetXRadiusV.GetXRadius() -> float C++: virtual double GetXRadius() Set/Get the scaling factor for the x-axis. Default is 1. SetYRadiusV.SetYRadius(float) C++: virtual void SetYRadius(double _arg) Set/Get the scaling factor for the y-axis. Default is 1. GetYRadiusV.GetYRadius() -> float C++: virtual double GetYRadius() Set/Get the scaling factor for the y-axis. Default is 1. SetZRadiusV.SetZRadius(float) C++: virtual void SetZRadius(double _arg) Set/Get the scaling factor for the z-axis. Default is 1. GetZRadiusV.GetZRadius() -> float C++: virtual double GetZRadius() Set/Get the scaling factor for the z-axis. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; An ellipsoid. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricEnnepervtkCommonComputationalGeometryPython.vtkParametricEnnepervtkParametricEnneper - Generate Enneper's surface. Superclass: vtkParametricFunction vtkParametricEnneper generates Enneper's surface. Enneper's surface is a a self-intersecting minimal surface possessing constant negative Gaussian curvature For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricEnneper C++: static vtkParametricEnneper *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricEnneper C++: vtkParametricEnneper *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Enneper's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uv are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricFigure8KleinvtkCommonComputationalGeometryPython.vtkParametricFigure8KleinvtkParametricFigure8Klein - Generate a figure-8 Klein bottle. Superclass: vtkParametricFunction vtkParametricFigure8Klein generates a figure-8 Klein bottle. A Klein bottle is a closed surface with no interior and only one surface. It is unrealisable in 3 dimensions without intersecting surfaces. It can be realised in 4 dimensions by considering the map $F:R^2 \rightarrow R^4 $ given by: - $f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)* sin(u/2)) $ This representation of the immersion in $R^3 $ is formed by taking two Mobius strips and joining them along their boundaries, this is the so called "Figure-8 Klein Bottle" For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricFigure8Klein C++: static vtkParametricFigure8Klein *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricFigure8Klein C++: vtkParametricFigure8Klein *NewInstance() SetRadiusV.SetRadius(float) C++: virtual void SetRadius(double _arg) Set/Get the radius of the bottle. Default is 1. GetRadiusV.GetRadius() -> float C++: virtual double GetRadius() Set/Get the radius of the bottle. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A Figure-8 Klein bottle. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkCommonComputationalGeometryPython.vtkParametricFunctionvtkParametricFunction - abstract interface for parametric functions Superclass: vtkObject vtkParametricFunction is an abstract interface for functions defined by parametric mapping i.e. f(u,v,w)->(x,y,z) where u_min <= u < u_max, v_min <= v < v_max, w_min <= w < w_max. (For notational convenience, we will write f(u)->x and assume that u means (u,v,w) and x means (x,y,z).) The interface contains the pure virtual function, Evaluate(), that generates a point and the derivatives at that point which are then used to construct the surface. A second pure virtual function, EvaluateScalar(), can be used to generate a scalar for the surface. Finally, the GetDimension() virtual function is used to differentiate 1D, 2D, and 3D parametric functions. Since this abstract class defines a pure virtual API, its subclasses must implement the pure virtual functions GetDimension(), Evaluate() and EvaluateScalar(). This class has also methods for defining a range of parametric values (u,v,w). @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. @sa vtkParametricFunctionSource - tessellates a parametric function @sa Implementations of derived classes implementing non-orentable surfaces: vtkParametricBoy vtkParametricCrossCap vtkParametricFigure8Klein vtkParametricKlein vtkParametricMobius vtkParametricRoman @sa Implementations of derived classes implementing orientable surfaces: vtkParametricConicSpiral vtkParametricDini vtkParametricEllipsoid vtkParametricEnneper vtkParametricRandomHills vtkParametricSuperEllipsoid vtkParametricSuperToroid vtkParametricTorus V.SafeDownCast(vtkObjectBase) -> vtkParametricFunction C++: static vtkParametricFunction *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricFunction C++: vtkParametricFunction *NewInstance() V.GetDimension() -> int C++: virtual int GetDimension() Return the dimension of parametric space. Depending on the dimension, then the (u,v,w) parameters and associated information (e.g., derivates) have meaning. For example, if the dimension of the function is one, then u[0] and Duvw[0...2] have meaning. This is a pure virtual function that must be instantiated in a derived class. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) Performs the mapping $f(uvw)->(Pt,Duvw)$f. This is a pure virtual function that must be instantiated in a derived class. * uvw are the parameters, with u corresponding to uvw[0], * v to uvw[1] and w to uvw[2] respectively. Pt is the returned Cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Note that the first three values in Duvw are Du, the next three are Dv, * and the final three are Dw. Du Dv Dw are the partial derivatives of the * function at the point Pt with respect to u, v and w respectively. V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) Calculate a user defined scalar using one or all of uvw, Pt, Duvw. This is a pure virtual function that must be instantiated in a derived class. * uvw are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v, and w. * Pt, Duvw are obtained from Evaluate(). SetMinimumUV.SetMinimumU(float) C++: virtual void SetMinimumU(double _arg) Set/Get the minimum u-value. GetMinimumUV.GetMinimumU() -> float C++: virtual double GetMinimumU() Set/Get the minimum u-value. SetMaximumUV.SetMaximumU(float) C++: virtual void SetMaximumU(double _arg) Set/Get the maximum u-value. GetMaximumUV.GetMaximumU() -> float C++: virtual double GetMaximumU() Set/Get the maximum u-value. SetMinimumVV.SetMinimumV(float) C++: virtual void SetMinimumV(double _arg) Set/Get the minimum v-value. GetMinimumVV.GetMinimumV() -> float C++: virtual double GetMinimumV() Set/Get the minimum v-value. SetMaximumVV.SetMaximumV(float) C++: virtual void SetMaximumV(double _arg) Set/Get the maximum v-value. GetMaximumVV.GetMaximumV() -> float C++: virtual double GetMaximumV() Set/Get the maximum v-value. SetMinimumWV.SetMinimumW(float) C++: virtual void SetMinimumW(double _arg) Set/Get the minimum w-value. GetMinimumWV.GetMinimumW() -> float C++: virtual double GetMinimumW() Set/Get the minimum w-value. SetMaximumWV.SetMaximumW(float) C++: virtual void SetMaximumW(double _arg) Set/Get the maximum w-value. GetMaximumWV.GetMaximumW() -> float C++: virtual double GetMaximumW() Set/Get the maximum w-value. SetJoinUV.SetJoinU(int) C++: virtual void SetJoinU(int _arg) Set/Get the flag which joins the first triangle strip to the last one. GetJoinUMinValueV.GetJoinUMinValue() -> int C++: virtual int GetJoinUMinValue() Set/Get the flag which joins the first triangle strip to the last one. GetJoinUMaxValueV.GetJoinUMaxValue() -> int C++: virtual int GetJoinUMaxValue() Set/Get the flag which joins the first triangle strip to the last one. GetJoinUV.GetJoinU() -> int C++: virtual int GetJoinU() Set/Get the flag which joins the first triangle strip to the last one. JoinUOnV.JoinUOn() C++: virtual void JoinUOn() Set/Get the flag which joins the first triangle strip to the last one. JoinUOffV.JoinUOff() C++: virtual void JoinUOff() Set/Get the flag which joins the first triangle strip to the last one. SetJoinVV.SetJoinV(int) C++: virtual void SetJoinV(int _arg) Set/Get the flag which joins the the ends of the triangle strips. GetJoinVMinValueV.GetJoinVMinValue() -> int C++: virtual int GetJoinVMinValue() Set/Get the flag which joins the the ends of the triangle strips. GetJoinVMaxValueV.GetJoinVMaxValue() -> int C++: virtual int GetJoinVMaxValue() Set/Get the flag which joins the the ends of the triangle strips. GetJoinVV.GetJoinV() -> int C++: virtual int GetJoinV() Set/Get the flag which joins the the ends of the triangle strips. JoinVOnV.JoinVOn() C++: virtual void JoinVOn() Set/Get the flag which joins the the ends of the triangle strips. JoinVOffV.JoinVOff() C++: virtual void JoinVOff() Set/Get the flag which joins the the ends of the triangle strips. SetJoinWV.SetJoinW(int) C++: virtual void SetJoinW(int _arg) Set/Get the flag which joins the the ends of the triangle strips. GetJoinWMinValueV.GetJoinWMinValue() -> int C++: virtual int GetJoinWMinValue() Set/Get the flag which joins the the ends of the triangle strips. GetJoinWMaxValueV.GetJoinWMaxValue() -> int C++: virtual int GetJoinWMaxValue() Set/Get the flag which joins the the ends of the triangle strips. GetJoinWV.GetJoinW() -> int C++: virtual int GetJoinW() Set/Get the flag which joins the the ends of the triangle strips. JoinWOnV.JoinWOn() C++: virtual void JoinWOn() Set/Get the flag which joins the the ends of the triangle strips. JoinWOffV.JoinWOff() C++: virtual void JoinWOff() Set/Get the flag which joins the the ends of the triangle strips. SetTwistUV.SetTwistU(int) C++: virtual void SetTwistU(int _arg) Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. GetTwistUMinValueV.GetTwistUMinValue() -> int C++: virtual int GetTwistUMinValue() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. GetTwistUMaxValueV.GetTwistUMaxValue() -> int C++: virtual int GetTwistUMaxValue() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. GetTwistUV.GetTwistU() -> int C++: virtual int GetTwistU() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. TwistUOnV.TwistUOn() C++: virtual void TwistUOn() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. TwistUOffV.TwistUOff() C++: virtual void TwistUOff() Set/Get the flag which joins the first triangle strip to the last one with a twist. JoinU must also be set if this is set. Used when building some non-orientable surfaces. SetTwistVV.SetTwistV(int) C++: virtual void SetTwistV(int _arg) Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. GetTwistVMinValueV.GetTwistVMinValue() -> int C++: virtual int GetTwistVMinValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. GetTwistVMaxValueV.GetTwistVMaxValue() -> int C++: virtual int GetTwistVMaxValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. GetTwistVV.GetTwistV() -> int C++: virtual int GetTwistV() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. TwistVOnV.TwistVOn() C++: virtual void TwistVOn() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. TwistVOffV.TwistVOff() C++: virtual void TwistVOff() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinV must also be set if this is set. Used when building some non-orientable surfaces. SetTwistWV.SetTwistW(int) C++: virtual void SetTwistW(int _arg) Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. GetTwistWMinValueV.GetTwistWMinValue() -> int C++: virtual int GetTwistWMinValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. GetTwistWMaxValueV.GetTwistWMaxValue() -> int C++: virtual int GetTwistWMaxValue() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. GetTwistWV.GetTwistW() -> int C++: virtual int GetTwistW() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. TwistWOnV.TwistWOn() C++: virtual void TwistWOn() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. TwistWOffV.TwistWOff() C++: virtual void TwistWOff() Set/Get the flag which joins the ends of the triangle strips with a twist. JoinW must also be set if this is set. Used when building some non-orientable surfaces. SetClockwiseOrderingV.SetClockwiseOrdering(int) C++: virtual void SetClockwiseOrdering(int _arg) Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). GetClockwiseOrderingMinValueV.GetClockwiseOrderingMinValue() -> int C++: virtual int GetClockwiseOrderingMinValue() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). GetClockwiseOrderingMaxValueV.GetClockwiseOrderingMaxValue() -> int C++: virtual int GetClockwiseOrderingMaxValue() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). GetClockwiseOrderingV.GetClockwiseOrdering() -> int C++: virtual int GetClockwiseOrdering() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). ClockwiseOrderingOnV.ClockwiseOrderingOn() C++: virtual void ClockwiseOrderingOn() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). ClockwiseOrderingOffV.ClockwiseOrderingOff() C++: virtual void ClockwiseOrderingOff() Set/Get the flag which determines the ordering of the the vertices forming the triangle strips. The ordering of the points being inserted into the triangle strip is important because it determines the direction of the normals for the lighting. If set, the ordering is clockwise, otherwise the ordering is anti-clockwise. Default is true (i.e. clockwise ordering). SetDerivativesAvailableV.SetDerivativesAvailable(int) C++: virtual void SetDerivativesAvailable(int _arg) Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). GetDerivativesAvailableMinValueV.GetDerivativesAvailableMinValue() -> int C++: virtual int GetDerivativesAvailableMinValue() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). GetDerivativesAvailableMaxValueV.GetDerivativesAvailableMaxValue() -> int C++: virtual int GetDerivativesAvailableMaxValue() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). GetDerivativesAvailableV.GetDerivativesAvailable() -> int C++: virtual int GetDerivativesAvailable() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). DerivativesAvailableOnV.DerivativesAvailableOn() C++: virtual void DerivativesAvailableOn() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). DerivativesAvailableOffV.DerivativesAvailableOff() C++: virtual void DerivativesAvailableOff() Set/Get the flag which determines whether derivatives are available from the parametric function (i.e., whether the Evaluate() method returns valid derivatives). vtkParametricKleinvtkCommonComputationalGeometryPython.vtkParametricKleinvtkParametricKlein - Generates a "classical" representation of a Klein bottle. Superclass: vtkParametricFunction vtkParametricKlein generates a "classical" representation of a Klein bottle. A Klein bottle is a closed surface with no interior and only one surface. It is unrealisable in 3 dimensions without intersecting surfaces. It can be realised in 4 dimensions by considering the map $F:R^2 \rightarrow R^4 $ given by: - $f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)* sin(u/2)) $ The classical representation of the immersion in $R^3 $ is returned by this function. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricKlein C++: static vtkParametricKlein *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricKlein C++: vtkParametricKlein *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A Klein bottle. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricMobiusvtkCommonComputationalGeometryPython.vtkParametricMobiusvtkParametricMobius - Generate a Mobius strip. Superclass: vtkParametricFunction vtkParametricMobius generates a Mobius strip. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricMobius C++: static vtkParametricMobius *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricMobius C++: vtkParametricMobius *NewInstance() V.SetRadius(float) C++: virtual void SetRadius(double _arg) Set/Get the radius of the Mobius strip. Default is 1. V.GetRadius() -> float C++: virtual double GetRadius() Set/Get the radius of the Mobius strip. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; The Mobius strip. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Du, Dv are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricRandomHillsvtkCommonComputationalGeometryPython.vtkParametricRandomHillsvtkParametricRandomHills - Generate a surface covered with randomly placed hills. Superclass: vtkParametricFunction vtkParametricRandomHills generates a surface covered with randomly placed hills. Hills will vary in shape and height since the presence of nearby hills will contribute to the shape and height of a given hill. An option is provided for placing hills on a regular grid on the surface. In this case the hills will all have the same shape and height. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricRandomHills C++: static vtkParametricRandomHills *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricRandomHills C++: vtkParametricRandomHills *NewInstance() SetNumberOfHillsV.SetNumberOfHills(int) C++: virtual void SetNumberOfHills(int _arg) Set/Get the number of hills. Default is 30. GetNumberOfHillsV.GetNumberOfHills() -> int C++: virtual int GetNumberOfHills() Set/Get the number of hills. Default is 30. SetHillXVarianceV.SetHillXVariance(float) C++: virtual void SetHillXVariance(double _arg) Set/Get the hill variance in the x-direction. Default is 2.5. GetHillXVarianceV.GetHillXVariance() -> float C++: virtual double GetHillXVariance() Set/Get the hill variance in the x-direction. Default is 2.5. SetHillYVarianceV.SetHillYVariance(float) C++: virtual void SetHillYVariance(double _arg) Set/Get the hill variance in the y-direction. Default is 2.5. GetHillYVarianceV.GetHillYVariance() -> float C++: virtual double GetHillYVariance() Set/Get the hill variance in the y-direction. Default is 2.5. SetHillAmplitudeV.SetHillAmplitude(float) C++: virtual void SetHillAmplitude(double _arg) Set/Get the hill amplitude (height). Default is 2. GetHillAmplitudeV.GetHillAmplitude() -> float C++: virtual double GetHillAmplitude() Set/Get the hill amplitude (height). Default is 2. SetRandomSeedV.SetRandomSeed(int) C++: virtual void SetRandomSeed(int _arg) Set/Get the Seed for the random number generator, a value of 1 will initialize the random number generator, a negative value will initialize it with the system time. Default is 1. GetRandomSeedV.GetRandomSeed() -> int C++: virtual int GetRandomSeed() Set/Get the Seed for the random number generator, a value of 1 will initialize the random number generator, a negative value will initialize it with the system time. Default is 1. SetAllowRandomGenerationV.SetAllowRandomGeneration(int) C++: virtual void SetAllowRandomGeneration(int _arg) Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. GetAllowRandomGenerationMinValueV.GetAllowRandomGenerationMinValue() -> int C++: virtual int GetAllowRandomGenerationMinValue() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. GetAllowRandomGenerationMaxValueV.GetAllowRandomGenerationMaxValue() -> int C++: virtual int GetAllowRandomGenerationMaxValue() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. GetAllowRandomGenerationV.GetAllowRandomGeneration() -> int C++: virtual int GetAllowRandomGeneration() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. AllowRandomGenerationOnV.AllowRandomGenerationOn() C++: virtual void AllowRandomGenerationOn() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. AllowRandomGenerationOffV.AllowRandomGenerationOff() C++: virtual void AllowRandomGenerationOff() Set/Get the random generation flag. A value of 0 will disable the generation of random hills on the surface allowing a reproducible number of identically shaped hills to be generated. If zero, then the number of hills used will be the nearest perfect square less than or equal to the number of hills. For example, selecting 30 hills will result in a 5 X 5 array of hills being generated. Thus a square array of hills will be generated. * Any other value means that the hills will be placed randomly on the * surface. * Default is 1. SetXVarianceScaleFactorV.SetXVarianceScaleFactor(float) C++: virtual void SetXVarianceScaleFactor(double _arg) Set/Get the scaling factor for the variance in the x-direction. Default is 1/3. GetXVarianceScaleFactorV.GetXVarianceScaleFactor() -> float C++: virtual double GetXVarianceScaleFactor() Set/Get the scaling factor for the variance in the x-direction. Default is 1/3. SetYVarianceScaleFactorV.SetYVarianceScaleFactor(float) C++: virtual void SetYVarianceScaleFactor(double _arg) Set/Get the scaling factor for the variance in the y-direction. Default is 1/3. GetYVarianceScaleFactorV.GetYVarianceScaleFactor() -> float C++: virtual double GetYVarianceScaleFactor() Set/Get the scaling factor for the variance in the y-direction. Default is 1/3. SetAmplitudeScaleFactorV.SetAmplitudeScaleFactor(float) C++: virtual void SetAmplitudeScaleFactor(double _arg) Set/Get the scaling factor for the amplitude. Default is 1/3. GetAmplitudeScaleFactorV.GetAmplitudeScaleFactor() -> float C++: virtual double GetAmplitudeScaleFactor() Set/Get the scaling factor for the amplitude. Default is 1/3. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Construct a terrain consisting of hills on a surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the the Cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. vtkParametricRomanvtkCommonComputationalGeometryPython.vtkParametricRomanvtkParametricRoman - Generate Steiner's Roman Surface. Superclass: vtkParametricFunction vtkParametricRoman generates Steiner's Roman Surface. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricRoman C++: static vtkParametricRoman *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricRoman C++: vtkParametricRoman *NewInstance() V.SetRadius(float) C++: virtual void SetRadius(double _arg) Set/Get the radius. Default is 1. V.GetRadius() -> float C++: virtual double GetRadius() Set/Get the radius. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Steiner's Roman Surface * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricSplinevtkCommonComputationalGeometryPython.vtkParametricSplinevtkParametricSpline - parametric function for 1D interpolating splines Superclass: vtkParametricFunction vtkParametricSpline is a parametric function for 1D interpolating splines. vtkParametricSpline maps the single parameter u into a 3D point (x,y,z) using three instances of interpolating splines. This family of 1D splines is guaranteed to be parameterized in the interval [0,1]. Attempting to evaluate outside this interval will cause the parameter u to be clamped in the range [0,1]. When constructed, this class creates instances of vtkCardinalSpline for each of the x-y-z coordinates. The user may choose to replace these with their own instances of subclasses of vtkSpline. @warning If you wish to tessellate the spline, use the class vtkParametricFunctionSource. @sa vtkSpline vtkKochanekSpline vtkCardinalSpline V.SafeDownCast(vtkObjectBase) -> vtkParametricSpline C++: static vtkParametricSpline *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricSpline C++: vtkParametricSpline *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double u[3], double Pt[3], double Du[9]) override; Evaluate the spline at parametric coordinate u[0] returning the point coordinate Pt[3]. V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double u[3], double Pt[3], double Du[9]) override; Evaluate a scalar value at parametric coordinate u[0] and Pt[3]. The scalar value is just the parameter u[0]. SetXSplineV.SetXSpline(vtkSpline) C++: void SetXSpline(vtkSpline *) By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. SetYSplineV.SetYSpline(vtkSpline) C++: void SetYSpline(vtkSpline *) By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. SetZSplineV.SetZSpline(vtkSpline) C++: void SetZSpline(vtkSpline *) By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. GetXSplineV.GetXSpline() -> vtkSpline C++: virtual vtkSpline *GetXSpline() By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. GetYSplineV.GetYSpline() -> vtkSpline C++: virtual vtkSpline *GetYSpline() By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. GetZSplineV.GetZSpline() -> vtkSpline C++: virtual vtkSpline *GetZSpline() By default, this class is constructed with three instances of vtkCardinalSpline (for each of the x-y-z coordinate axes). The user may choose to create and assign their own instances of vtkSpline. SetPointsV.SetPoints(vtkPoints) C++: void SetPoints(vtkPoints *) Specify the list of points defining the spline. Do this by specifying a vtkPoints array containing the points. Note that the order of the points in vtkPoints is the order that the splines will be fit. GetPointsV.GetPoints() -> vtkPoints C++: virtual vtkPoints *GetPoints() Specify the list of points defining the spline. Do this by specifying a vtkPoints array containing the points. Note that the order of the points in vtkPoints is the order that the splines will be fit. SetNumberOfPointsV.SetNumberOfPoints(int) C++: void SetNumberOfPoints(vtkIdType numPts) Another API to set the points. Set the number of points and then set the individual point coordinates. SetPointV.SetPoint(int, float, float, float) C++: void SetPoint(vtkIdType index, double x, double y, double z) Another API to set the points. Set the number of points and then set the individual point coordinates. SetClosedV.SetClosed(int) C++: virtual void SetClosed(int _arg) Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. GetClosedV.GetClosed() -> int C++: virtual int GetClosed() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. ClosedOnV.ClosedOn() C++: virtual void ClosedOn() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. ClosedOffV.ClosedOff() C++: virtual void ClosedOff() Control whether the spline is open or closed. A closed spline forms a continuous loop: the first and last points are the same, and derivatives are continuous. SetParameterizeByLengthV.SetParameterizeByLength(int) C++: virtual void SetParameterizeByLength(int _arg) Control whether the spline is parameterized by length or by point index. Default is by length. GetParameterizeByLengthV.GetParameterizeByLength() -> int C++: virtual int GetParameterizeByLength() Control whether the spline is parameterized by length or by point index. Default is by length. ParameterizeByLengthOnV.ParameterizeByLengthOn() C++: virtual void ParameterizeByLengthOn() Control whether the spline is parameterized by length or by point index. Default is by length. ParameterizeByLengthOffV.ParameterizeByLengthOff() C++: virtual void ParameterizeByLengthOff() Control whether the spline is parameterized by length or by point index. Default is by length. SetLeftConstraintV.SetLeftConstraint(int) C++: virtual void SetLeftConstraint(int _arg) Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. GetLeftConstraintMinValueV.GetLeftConstraintMinValue() -> int C++: virtual int GetLeftConstraintMinValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. GetLeftConstraintMaxValueV.GetLeftConstraintMaxValue() -> int C++: virtual int GetLeftConstraintMaxValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. GetLeftConstraintV.GetLeftConstraint() -> int C++: virtual int GetLeftConstraint() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. SetRightConstraintV.SetRightConstraint(int) C++: virtual void SetRightConstraint(int _arg) Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. GetRightConstraintMinValueV.GetRightConstraintMinValue() -> int C++: virtual int GetRightConstraintMinValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. GetRightConstraintMaxValueV.GetRightConstraintMaxValue() -> int C++: virtual int GetRightConstraintMaxValue() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. GetRightConstraintV.GetRightConstraint() -> int C++: virtual int GetRightConstraint() Set the type of constraint of the left(right) end points. Four constraints are available: * 0: the first derivative at left(right) most point is determined * from the line defined from the first(last) two points. * 1: the first derivative at left(right) most point is set to * Left(Right)Value. * 2: the second derivative at left(right) most point is set to * Left(Right)Value. * 3: the second derivative at left(right)most points is Left(Right)Value * times second derivative at first interior point. SetLeftValueV.SetLeftValue(float) C++: virtual void SetLeftValue(double _arg) The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. GetLeftValueV.GetLeftValue() -> float C++: virtual double GetLeftValue() The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. SetRightValueV.SetRightValue(float) C++: virtual void SetRightValue(double _arg) The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. GetRightValueV.GetRightValue() -> float C++: virtual double GetRightValue() The values of the derivative on the left and right sides. The value is used only if the left(right) constraint is type 1-3. vtkPointsvtkParametricSuperEllipsoidvtkCommonComputationalGeometryPython.vtkParametricSuperEllipsoidvtkParametricSuperEllipsoid - Generate a superellipsoid. Superclass: vtkParametricFunction vtkParametricSuperEllipsoid generates a superellipsoid. A superellipsoid is a versatile primitive that is controlled by two parameters n1 and n2. As special cases it can represent a sphere, square box, and closed cylindrical can. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. Also see: http://paulbourke.net/geometry/superellipse/ @warning Care needs to be taken specifying the bounds correctly. You may need to carefully adjust MinimumU, MinimumV, MaximumU, MaximumV. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricSuperEllipsoid C++: static vtkParametricSuperEllipsoid *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricSuperEllipsoid C++: vtkParametricSuperEllipsoid *NewInstance() SetN1V.SetN1(float) C++: virtual void SetN1(double _arg) Set/Get the "squareness" parameter in the z axis. Default is 1. GetN1V.GetN1() -> float C++: virtual double GetN1() Set/Get the "squareness" parameter in the z axis. Default is 1. SetN2V.SetN2(float) C++: virtual void SetN2(double _arg) Set/Get the "squareness" parameter in the x-y plane. Default is 1. GetN2V.GetN2() -> float C++: virtual double GetN2() Set/Get the "squareness" parameter in the x-y plane. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A superellipsoid. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricSuperToroidvtkCommonComputationalGeometryPython.vtkParametricSuperToroidvtkParametricSuperToroid - Generate a supertoroid. Superclass: vtkParametricFunction vtkParametricSuperToroid generates a supertoroid. Essentially a supertoroid is a torus with the sine and cosine terms raised to a power. A supertoroid is a versatile primitive that is controlled by four parameters r0, r1, n1 and n2. r0, r1 determine the type of torus whilst the value of n1 determines the shape of the torus ring and n2 determines the shape of the cross section of the ring. It is the different values of these powers which give rise to a family of 3D shapes that are all basically toroidal in shape. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. Also see: http://paulbourke.net/geometry/torus/#super. @warning Care needs to be taken specifying the bounds correctly. You may need to carefully adjust MinimumU, MinimumV, MaximumU, MaximumV. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricSuperToroid C++: static vtkParametricSuperToroid *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricSuperToroid C++: vtkParametricSuperToroid *NewInstance() SetRingRadiusV.SetRingRadius(float) C++: virtual void SetRingRadius(double _arg) Set/Get the radius from the center to the middle of the ring of the supertoroid. Default is 1. GetRingRadiusV.GetRingRadius() -> float C++: virtual double GetRingRadius() Set/Get the radius from the center to the middle of the ring of the supertoroid. Default is 1. SetCrossSectionRadiusV.SetCrossSectionRadius(float) C++: virtual void SetCrossSectionRadius(double _arg) Set/Get the radius of the cross section of ring of the supertoroid. Default = 0.5. GetCrossSectionRadiusV.GetCrossSectionRadius() -> float C++: virtual double GetCrossSectionRadius() Set/Get the radius of the cross section of ring of the supertoroid. Default = 0.5. V.SetN1(float) C++: virtual void SetN1(double _arg) Set/Get the shape of the torus ring. Default is 1. V.GetN1() -> float C++: virtual double GetN1() Set/Get the shape of the torus ring. Default is 1. V.SetN2(float) C++: virtual void SetN2(double _arg) Set/Get the shape of the cross section of the ring. Default is 1. V.GetN2() -> float C++: virtual double GetN2() Set/Get the shape of the cross section of the ring. Default is 1. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A supertoroid. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = Du X Dv $ . vtkParametricTorusvtkCommonComputationalGeometryPython.vtkParametricTorusvtkParametricTorus - Generate a torus. Superclass: vtkParametricFunction vtkParametricTorus generates a torus. For further information about this surface, please consult the technical description "Parametric surfaces" in http://www.vtk.org/publications in the "VTK Technical Documents" section in the VTk.org web pages. @par Thanks: Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the class. V.SafeDownCast(vtkObjectBase) -> vtkParametricTorus C++: static vtkParametricTorus *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricTorus C++: vtkParametricTorus *NewInstance() V.SetRingRadius(float) C++: virtual void SetRingRadius(double _arg) Set/Get the radius from the center to the middle of the ring of the torus. Default is 1.0. V.GetRingRadius() -> float C++: virtual double GetRingRadius() Set/Get the radius from the center to the middle of the ring of the torus. Default is 1.0. V.SetCrossSectionRadius(float) C++: virtual void SetCrossSectionRadius(double _arg) Set/Get the radius of the cross section of ring of the torus. Default is 0.5. V.GetCrossSectionRadius() -> float C++: virtual double GetCrossSectionRadius() Set/Get the radius of the cross section of ring of the torus. Default is 0.5. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; A torus. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) $. * Then the normal is $N = Du X Dv $. vtkParametricKuenvtkCommonComputationalGeometryPython.vtkParametricKuenvtkParametricKuen - Generate Kuens' surface. Superclass: vtkParametricFunction vtkParametricKuen generates Kuens' surface. This surface has a constant negative gaussian curvature. For more information about this surface, see Dr. O'Niell's page at the UCLA Mathematics Department.@par Thanks: Tim Meehan V.SafeDownCast(vtkObjectBase) -> vtkParametricKuen C++: static vtkParametricKuen *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricKuen C++: vtkParametricKuen *NewInstance() SetDeltaV0V.SetDeltaV0(float) C++: virtual void SetDeltaV0(double _arg) Set/Get the value to use when V == 0. Default is 0.05, giving the best appearance with the default settings. Setting it to a value less than 0.05 extrapolates the surface towards a pole in the -z direction. Setting it to 0 retains the pole whose z-value is -inf. GetDeltaV0V.GetDeltaV0() -> float C++: virtual double GetDeltaV0() Set/Get the value to use when V == 0. Default is 0.05, giving the best appearance with the default settings. Setting it to a value less than 0.05 extrapolates the surface towards a pole in the -z direction. Setting it to 0 retains the pole whose z-value is -inf. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Kuen's surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . V.EvaluateScalar([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) -> float C++: double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; Calculate a user defined scalar using one or all of uvw, Pt, Duvw. This method simply returns 0. vtkParametricPseudospherevtkCommonComputationalGeometryPython.vtkParametricPseudospherevtkParametricPseudosphere - Generate a pseudosphere. Superclass: vtkParametricFunction vtkParametricPseudosphere generates a parametric pseudosphere. The pseudosphere is generated as a surface of revolution of the tractrix about it's asymptote, and is a surface of constant negative Gaussian curvature. You can find out more about this interesting surface at Math World.@par Thanks: Tim Meehan V.SafeDownCast(vtkObjectBase) -> vtkParametricPseudosphere C++: static vtkParametricPseudosphere *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricPseudosphere C++: vtkParametricPseudosphere *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Pseudosphere surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricBohemianDomevtkCommonComputationalGeometryPython.vtkParametricBohemianDomevtkParametricBohemianDome - Generate a Bohemian dome. Superclass: vtkParametricFunction vtkParametricBohemianDome generates a parametric Bohemian dome. The Bohemian dome is a quartic surface, and is described in much better detail at HMC page. @warning I haven't set any restrictions on the A, B, or C values.@par Thanks: Tim Meehan V.SafeDownCast(vtkObjectBase) -> vtkParametricBohemianDome C++: static vtkParametricBohemianDome *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricBohemianDome C++: vtkParametricBohemianDome *NewInstance() V.GetA() -> float C++: virtual double GetA() Construct a Bohemian dome surface with the following parameters: V.SetA(float) C++: virtual void SetA(double _arg) Construct a Bohemian dome surface with the following parameters: V.GetB() -> float C++: virtual double GetB() V.SetB(float) C++: virtual void SetB(double _arg) V.GetC() -> float C++: virtual double GetC() V.SetC(float) C++: virtual void SetC(double _arg) V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; BohemianDome surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricHennebergvtkCommonComputationalGeometryPython.vtkParametricHennebergvtkParametricHenneberg - Generate Henneberg's minimal surface. Superclass: vtkParametricFunction vtkParametricHenneberg generates Henneberg's minimal surface parametrically. Henneberg's minimal surface is discussed further at Math World.@par Thanks: Tim Meehan V.SafeDownCast(vtkObjectBase) -> vtkParametricHenneberg C++: static vtkParametricHenneberg *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricHenneberg C++: vtkParametricHenneberg *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Henneberg's minimal surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricCatalanMinimalvtkCommonComputationalGeometryPython.vtkParametricCatalanMinimalvtkParametricCatalanMinimal - Generate Catalan's minimal surface. Superclass: vtkParametricFunction vtkParametricCatalanMinimal generates Catalan's minimal surface parametrically. This minimal surface contains the cycloid as a geodesic. More information about it can be found at Wikip edia.@par Thanks: Tim Meehan V.SafeDownCast(vtkObjectBase) -> vtkParametricCatalanMinimal C++: static vtkParametricCatalanMinimal *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricCatalanMinimal C++: vtkParametricCatalanMinimal *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Catalan's minimal surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricBourvtkCommonComputationalGeometryPython.vtkParametricBourvtkParametricBour - Generate Bour's minimal surface. Superclass: vtkParametricFunction vtkParametricBour generates Bour's minimal surface parametrically. More information can be found at Wikipedia .@par Thanks: Tim Meehan V.SafeDownCast(vtkObjectBase) -> vtkParametricBour C++: static vtkParametricBour *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkParametricBour C++: vtkParametricBour *NewInstance() V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Bour's minimal surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . vtkParametricPluckerConoidvtkCommonComputationalGeometryPython.vtkParametricPluckerConoidvtkParametricPluckerConoid - Generate Plucker's conoid surface. Superclass: vtkParametricFunction vtkParametricPluckerConoid generates Plucker's conoid surface parametrically. Plucker's conoid is a ruled surface, named after Julius Plucker. It is possible to set the number of folds in this class via the parameter 'N'. For more information, see the Wikipedia page on Plucker's Conoid. @warning I haven't done any special checking on the number of folds parameter, N.@par Thanks: Tim Meehan V.SafeDownCast(vtkObjectBase) -> vtkParametricPluckerConoid C++: static vtkParametricPluckerConoid *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkParametricPluckerConoid C++: vtkParametricPluckerConoid *NewInstance() V.GetN() -> int C++: virtual int GetN() This is the number of folds in the conoid. V.SetN(int) C++: virtual void SetN(int _arg) This is the number of folds in the conoid. V.Evaluate([float, float, float], [float, float, float], [float, float, float, float, float, float, float, float, float]) C++: void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; Plucker's conoid surface. * This function performs the mapping $f(u,v) \rightarrow (x,y,x) $, returning it * as Pt. It also returns the partial derivatives Du and Dv. * $Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv) $ . * Then the normal is $N = D_u\vec{f} \times D_v\vec{f} $ . real_initvtkCommonComputationalGeometryPythoncan't get dictionary for module vtkCommonComputationalGeometryPythonvtkCommonComputationalGeometryPython,,!aDDED +`Pp ` 0P0  @!!p"@#p$ &'()@*0++,-4@55679AApB@CpD FGHI@JQQpR@SpT VWXY@Z0[[0cc dd fgo0ppqrpt`u v ~p~ P@`Pp0p0p0p0pйpP@`@P@@ p0p`0` `p Pp !!"##p$@%p& ()*+@,0--./0P1889P:;0=>?@PA@BCCDE`FPGHIIQ`QQRSUVPW@XYa`aabcePghPoo@pq@rs{P||}~P@`@@00@ЧЩp@pиPHZHdHnHxHHHKKLLKHHHLL"L,L6L@LJLTL^LhLrL|LHHHHHHI II I*I4I>IHIRI\IfIpIzIIIIIIIIIIIIIIJJJ$J.J8JBJLJVJ`JjJtJ~JJJJJJJJJJJJJK KKK(K2K`!b0beHDXeMpMN@NOpgNP h^ ^nhshhЪh+i0iiivj@{j k0%kkkmlrlQm!b@0boHDMoMиMNNOкqNPq^^Q@Rr!b0bEtHD|tMpMN@NOp}vNP v^ ^nh=whw+ijxiyQ@y!b0b{HD{MpMN@NOp~NP  ^ ^cnfqi@t0Ql!b0bcHDM MNNO ņNP>^^Q!b0xLHDMMNNOZNPp?pI`^ ^Q*!b0bHDRMMNNONPp^pqQ !b  | MYP@*Uḁ&`2P~)p4 <)2@0QիޫRZƬ`Ϭ= F!ЭT!ep"f #nگ#Q$[@%RB0&TD&N.'7`()ٶ*ҷ*˸p+ո ,,_-iE.W>0/P7/A0!`123~3ap4v, 5@5670889'`:)(HD`M<MN<NO>NP>o^?^Qp@!bD0bHDMHMNpINOJNPPK?PLl@M^N^QNO!b`R5 HDIMVMNWNOXNNPY^Z^/`[@@\2\C]c^t_P`$@a5bbc6dW@ehffapgz hi[isj5kplQ0m5!bp? HDEM`uMN0vNO`w NPx^y^?yz.Q{!b ? HD MMNNO NP`x ^`^Q  !b>`II TT__jqP|p xЕQ[3=p0Npe 0$   $#>#%%'P (J*]*,,/,/~1p13 344h5Фv586F6)7HDj7MpMN@NOp:NP 1;^ ^cnЬfqi@t0;;<<<<= =QP=!b0b?HD?MMNPNODNP0D^0^DEEETFjFG)GcPn@fqit;`G<P7H<H=IQI!b`0b}KHDKMMNNOZMNPMDNENTFP[OG@O^^QP!b`?RHDRMMNNO'TNPT^^T`T9VPDVQW!bYZHD0[M@MNNO@\NP]^^Q]!bPY`HDB`MMNNOaNPzbhbnhPGci@c+ic kdvjNd^^Q` d!b YfHDfMMN`NO1hNP@h^@^Qi!bY5kHDvkM0MNNO0 lNP m^!^Q"m!b@&Y pHD@pM*MN+NO,bqNP-q^.^Q@/"r!b2YLtHDtMp7MN@8NOp9vNP :Gwml ;wk;w^<^Qp=Ux!bAYzP"`mFppRASASASASASASAp8ppRASASASASASASASASASASASASAp8ppRASASASASASASASASAp8ppRASASASASASASASASASASASASASASAp8ppRASASASASASASAp8ppRASASASASASASASASASASAp8ppRASASASASASASASASASASASASAp8ppRASASASASASASAp8ppRASASASASASASASASAp8ppRASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp8ppRASASASASASASAp8ppRASASASASASASASASAp8ppRASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp8ppRASASASASASASASASAp8ppRASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp8ppRASASASASASASASASASASASASASASASASAp8ppRASASASASASASASASASASASASASASASASASASASASAp8ppRASASASASASASASASASASAp8ppRASASASASASASASASAp8ppRASASASASASASAp8ppRASASASASASASASASASASASASAp8ppRASASASASASASAp8ppRASASASASASASAp8ppRASASASASASASAp8ppRASASASASASASASASApHpQ>@_PyObject_GC_DelQr   @_PyObject_GenericGetAttr  @_PyObject_GenericSetAttr  @_PyType_Type  @__Py_NoneStructq@_PyVTKObject_AsBufferr  @_PyVTKObject_Delete  @_PyVTKObject_GetSet  @_PyVTKObject_New  @_PyVTKObject_Repr  @_PyVTKObject_String  @_PyVTKObject_Traverse   @___stack_chk_guardq@dyld_stub_binderr>@_PyDict_SetItemStringr>@_PyErr_Occurredr>@_PyFloat_FromDoubler>@_PyLong_FromLongr >@_PyModule_Create2r(>@_PyModule_GetDictr0>@_PyType_Readyr8@_PyVTKClass_Addr@@_PyVTKObject_CheckrH@_PyVTKObject_GetObjectrP@_PyVTKObject_SetFlagrX@_PyvtkObject_ClassNewr`@_PyvtkSpline_ClassNewrh>@__Py_Deallocrp>@__Py_FatalErrorFuncrx@__ZN13vtkObjectBase8IsTypeOfEPKcr@__ZN13vtkPythonArgs13ArgCountErrorEiir@__ZN13vtkPythonArgs16PureVirtualErrorEvr@__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbr@__ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_r@__ZN13vtkPythonArgs8GetArrayEPdir@__ZN13vtkPythonArgs8GetValueERPcr@__ZN13vtkPythonArgs8GetValueERdr@__ZN13vtkPythonArgs8GetValueERir@__ZN13vtkPythonArgs8GetValueERxr@__ZN13vtkPythonArgs8SetArrayEiPKdir@__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBaser@__ZN16vtkParametricBoy14EvaluateScalarEPdS0_S0_r@__ZN16vtkParametricBoy3NewEvr@__ZN16vtkParametricBoy8EvaluateEPdS0_S0_r@__ZN17vtkCardinalSpline3NewEvr@__ZN17vtkCardinalSpline7ComputeEvr@__ZN17vtkCardinalSpline8DeepCopyEP9vtkSpliner@__ZN17vtkCardinalSpline8EvaluateEdr@__ZN17vtkKochanekSpline3NewEvr@__ZN17vtkKochanekSpline7ComputeEvr@__ZN17vtkKochanekSpline8DeepCopyEP9vtkSpliner@__ZN17vtkKochanekSpline8EvaluateEdr@__ZN17vtkParametricBour14EvaluateScalarEPdS0_S0_r@__ZN17vtkParametricBour3NewEvr@__ZN17vtkParametricBour8EvaluateEPdS0_S0_r@__ZN17vtkParametricDini14EvaluateScalarEPdS0_S0_r@__ZN17vtkParametricDini3NewEvr@__ZN17vtkParametricDini8EvaluateEPdS0_S0_r@__ZN17vtkParametricKuen14EvaluateScalarEPdS0_S0_r@__ZN17vtkParametricKuen3NewEvr@__ZN17vtkParametricKuen8EvaluateEPdS0_S0_r@__ZN18vtkParametricKlein14EvaluateScalarEPdS0_S0_r@__ZN18vtkParametricKlein3NewEvr@__ZN18vtkParametricKlein8EvaluateEPdS0_S0_r@__ZN18vtkParametricRoman14EvaluateScalarEPdS0_S0_r@__ZN18vtkParametricRoman3NewEvr@__ZN18vtkParametricRoman8EvaluateEPdS0_S0_r@__ZN18vtkParametricTorus14EvaluateScalarEPdS0_S0_r@__ZN18vtkParametricTorus3NewEvr@__ZN18vtkParametricTorus8EvaluateEPdS0_S0_r@__ZN19vtkParametricMobius14EvaluateScalarEPdS0_S0_r@__ZN19vtkParametricMobius3NewEvr@__ZN19vtkParametricMobius8EvaluateEPdS0_S0_r@__ZN19vtkParametricSpline10SetXSplineEP9vtkSpliner@__ZN19vtkParametricSpline10SetYSplineEP9vtkSpliner@__ZN19vtkParametricSpline10SetZSplineEP9vtkSpliner@__ZN19vtkParametricSpline14EvaluateScalarEPdS0_S0_r@__ZN19vtkParametricSpline17SetNumberOfPointsExr@__ZN19vtkParametricSpline3NewEvr@__ZN19vtkParametricSpline8EvaluateEPdS0_S0_r@__ZN19vtkParametricSpline8SetPointExdddr@__ZN19vtkParametricSpline9SetPointsEP9vtkPointsr@__ZN20vtkParametricEnneper14EvaluateScalarEPdS0_S0_r@__ZN20vtkParametricEnneper3NewEvr@__ZN20vtkParametricEnneper8EvaluateEPdS0_S0_r@__ZN21vtkParametricCrossCap14EvaluateScalarEPdS0_S0_r@__ZN21vtkParametricCrossCap3NewEvr@__ZN21vtkParametricCrossCap8EvaluateEPdS0_S0_r@__ZN22vtkParametricEllipsoid14EvaluateScalarEPdS0_S0_r@__ZN22vtkParametricEllipsoid3NewEvr@__ZN22vtkParametricEllipsoid8EvaluateEPdS0_S0_r@__ZN22vtkParametricHenneberg14EvaluateScalarEPdS0_S0_r@__ZN22vtkParametricHenneberg3NewEvr@__ZN22vtkParametricHenneberg8EvaluateEPdS0_S0_r@__ZN24vtkParametricConicSpiral14EvaluateScalarEPdS0_S0_r@__ZN24vtkParametricConicSpiral3NewEvr@__ZN24vtkParametricConicSpiral8EvaluateEPdS0_S0_r@__ZN24vtkParametricRandomHills14EvaluateScalarEPdS0_S0_r@__ZN24vtkParametricRandomHills3NewEvr@__ZN24vtkParametricRandomHills8EvaluateEPdS0_S0_r@__ZN24vtkParametricSuperToroid14EvaluateScalarEPdS0_S0_r@__ZN24vtkParametricSuperToroid3NewEvr@__ZN24vtkParametricSuperToroid8EvaluateEPdS0_S0_r@__ZN25vtkParametricBohemianDome14EvaluateScalarEPdS0_S0_r@__ZN25vtkParametricBohemianDome3NewEvr@__ZN25vtkParametricBohemianDome8EvaluateEPdS0_S0_r@__ZN25vtkParametricFigure8Klein14EvaluateScalarEPdS0_S0_r@__ZN25vtkParametricFigure8Klein3NewEvr@__ZN25vtkParametricFigure8Klein8EvaluateEPdS0_S0_r@__ZN25vtkParametricPseudosphere14EvaluateScalarEPdS0_S0_r@__ZN25vtkParametricPseudosphere3NewEvr@__ZN25vtkParametricPseudosphere8EvaluateEPdS0_S0_r@__ZN26vtkParametricPluckerConoid14EvaluateScalarEPdS0_S0_r@__ZN26vtkParametricPluckerConoid3NewEvr@__ZN26vtkParametricPluckerConoid8EvaluateEPdS0_S0_r@__ZN27vtkParametricCatalanMinimal14EvaluateScalarEPdS0_S0_r@__ZN27vtkParametricCatalanMinimal3NewEvr@__ZN27vtkParametricCatalanMinimal8EvaluateEPdS0_S0_r@__ZN27vtkParametricSuperEllipsoid14EvaluateScalarEPdS0_S0_r@__ZN27vtkParametricSuperEllipsoid3NewEvr@__ZN27vtkParametricSuperEllipsoid8EvaluateEPdS0_S0_r @___stack_chk_failr @_strcmp_Py;real_initvtkCommonComputationalGeometryPython vtkSVTKAddFile_vtkCardinalSpline_ClassNewKochanekSpline_ClassNewParametricCardinalSplineKochanekSplineParametric BoCDini_ClassNewEFKMobius_ClassNewRSTorus_ClassNewPHenneberg_ClassNew y_ClassNewhemianDome_ClassNew ur_ClassNew  BoCDiniEFKMobiusRSTorusP Henneberg yhemianDome ur onicSpiral_ClassNewrossCap_ClassNewatalanMinimal_ClassNew onicSpiralrossCapatalanMinimal llipsoid_ClassNewnneper_ClassNewllipsoidnneperigure8Klein_ClassNewunction_ClassNewigure8Kleinunctionlein_ClassNewuen_ClassNewleinuenandomHills_ClassNewoman_ClassNewandomHillsomanpline_ClassNewuperplineuperEllipsoid_ClassNewToroid_ClassNewEllipsoidToroidseudosphere_ClassNew luckerConoid_ClassNew seudosphere luckerConoid  PPPPPPPPPPPPPPPPPPPPPPPPPP7aP#0R`wЋ5c`@04lP5 c ЙК!P@Ф pC@tp  ! S Ъ   @!0M!!!!@#"0L"и""к"#Q#@###p$@;$pn$ $ $$)%T%%@%% &pA&@p&p& & 'M''''@%(0[(((( #)P) )))#*0[* ***,+pf+p+`+ ,H,,,,-pS-p- - - ,. b...P/@:/p///0`H0P~000'1pZ1 111-20h222`3 33!n3!3p"3 #4#A4$u4%40&4&!5'T5`(5)5*5*46p+h6 ,6,6-7.?70/{7/707`182U83838p4"9 5`959697+:08u:8:9:`::;`;`;<;<;>;>"<?V<p@<D<H<H=pI@=Ju=PK=PL=@M >NB>Ns>`R>PV>V ?W=?Xw?Y?Z?`[(@@\f@\@]@^ A_^AP`A@aAbBbPBcBdB@e2CfxCfCpgD hHDiDiDjEk\EplE0mEpFt9F`uiF0vF`wFxFy/Gy`GzG{G GHOH{HH`H`I JII`I IJMJPJJJpK QKЕKKKpL0ILLLpM0HMMMNP@N{NNOpp P`"pBPj@*@>c0pp;`8HZ6`Vt ?f`)0$@Lq0 =`;G6P V/ptNnD /CTfx#:N_q . T |    ! A a     , U s     % R u     = g    1\ )T7i?o&Hv4WLq0i RDwIq      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\^]_      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\^ _PyVTKAddFile_vtkCardinalSpline_PyVTKAddFile_vtkKochanekSpline_PyVTKAddFile_vtkParametricBohemianDome_PyVTKAddFile_vtkParametricBour_PyVTKAddFile_vtkParametricBoy_PyVTKAddFile_vtkParametricCatalanMinimal_PyVTKAddFile_vtkParametricConicSpiral_PyVTKAddFile_vtkParametricCrossCap_PyVTKAddFile_vtkParametricDini_PyVTKAddFile_vtkParametricEllipsoid_PyVTKAddFile_vtkParametricEnneper_PyVTKAddFile_vtkParametricFigure8Klein_PyVTKAddFile_vtkParametricFunction_PyVTKAddFile_vtkParametricHenneberg_PyVTKAddFile_vtkParametricKlein_PyVTKAddFile_vtkParametricKuen_PyVTKAddFile_vtkParametricMobius_PyVTKAddFile_vtkParametricPluckerConoid_PyVTKAddFile_vtkParametricPseudosphere_PyVTKAddFile_vtkParametricRandomHills_PyVTKAddFile_vtkParametricRoman_PyVTKAddFile_vtkParametricSpline_PyVTKAddFile_vtkParametricSuperEllipsoid_PyVTKAddFile_vtkParametricSuperToroid_PyVTKAddFile_vtkParametricTorus_PyvtkCardinalSpline_ClassNew_PyvtkKochanekSpline_ClassNew_PyvtkParametricBohemianDome_ClassNew_PyvtkParametricBour_ClassNew_PyvtkParametricBoy_ClassNew_PyvtkParametricCatalanMinimal_ClassNew_PyvtkParametricConicSpiral_ClassNew_PyvtkParametricCrossCap_ClassNew_PyvtkParametricDini_ClassNew_PyvtkParametricEllipsoid_ClassNew_PyvtkParametricEnneper_ClassNew_PyvtkParametricFigure8Klein_ClassNew_PyvtkParametricFunction_ClassNew_PyvtkParametricHenneberg_ClassNew_PyvtkParametricKlein_ClassNew_PyvtkParametricKuen_ClassNew_PyvtkParametricMobius_ClassNew_PyvtkParametricPluckerConoid_ClassNew_PyvtkParametricPseudosphere_ClassNew_PyvtkParametricRandomHills_ClassNew_PyvtkParametricRoman_ClassNew_PyvtkParametricSpline_ClassNew_PyvtkParametricSuperEllipsoid_ClassNew_PyvtkParametricSuperToroid_ClassNew_PyvtkParametricTorus_ClassNew_real_initvtkCommonComputationalGeometryPython_PyDict_SetItemString_PyErr_Occurred_PyFloat_FromDouble_PyLong_FromLong_PyModule_Create2_PyModule_GetDict_PyObject_GC_Del_PyObject_GenericGetAttr_PyObject_GenericSetAttr_PyType_Ready_PyType_Type_PyVTKClass_Add_PyVTKObject_AsBuffer_PyVTKObject_Check_PyVTKObject_Delete_PyVTKObject_GetObject_PyVTKObject_GetSet_PyVTKObject_New_PyVTKObject_Repr_PyVTKObject_SetFlag_PyVTKObject_String_PyVTKObject_Traverse_PyvtkObject_ClassNew_PyvtkSpline_ClassNew__Py_Dealloc__Py_FatalErrorFunc__Py_NoneStruct__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs16PureVirtualErrorEv__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonArgs8GetValueERd__ZN13vtkPythonArgs8GetValueERi__ZN13vtkPythonArgs8GetValueERx__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZN16vtkParametricBoy14EvaluateScalarEPdS0_S0___ZN16vtkParametricBoy3NewEv__ZN16vtkParametricBoy8EvaluateEPdS0_S0___ZN17vtkCardinalSpline3NewEv__ZN17vtkCardinalSpline7ComputeEv__ZN17vtkCardinalSpline8DeepCopyEP9vtkSpline__ZN17vtkCardinalSpline8EvaluateEd__ZN17vtkKochanekSpline3NewEv__ZN17vtkKochanekSpline7ComputeEv__ZN17vtkKochanekSpline8DeepCopyEP9vtkSpline__ZN17vtkKochanekSpline8EvaluateEd__ZN17vtkParametricBour14EvaluateScalarEPdS0_S0___ZN17vtkParametricBour3NewEv__ZN17vtkParametricBour8EvaluateEPdS0_S0___ZN17vtkParametricDini14EvaluateScalarEPdS0_S0___ZN17vtkParametricDini3NewEv__ZN17vtkParametricDini8EvaluateEPdS0_S0___ZN17vtkParametricKuen14EvaluateScalarEPdS0_S0___ZN17vtkParametricKuen3NewEv__ZN17vtkParametricKuen8EvaluateEPdS0_S0___ZN18vtkParametricKlein14EvaluateScalarEPdS0_S0___ZN18vtkParametricKlein3NewEv__ZN18vtkParametricKlein8EvaluateEPdS0_S0___ZN18vtkParametricRoman14EvaluateScalarEPdS0_S0___ZN18vtkParametricRoman3NewEv__ZN18vtkParametricRoman8EvaluateEPdS0_S0___ZN18vtkParametricTorus14EvaluateScalarEPdS0_S0___ZN18vtkParametricTorus3NewEv__ZN18vtkParametricTorus8EvaluateEPdS0_S0___ZN19vtkParametricMobius14EvaluateScalarEPdS0_S0___ZN19vtkParametricMobius3NewEv__ZN19vtkParametricMobius8EvaluateEPdS0_S0___ZN19vtkParametricSpline10SetXSplineEP9vtkSpline__ZN19vtkParametricSpline10SetYSplineEP9vtkSpline__ZN19vtkParametricSpline10SetZSplineEP9vtkSpline__ZN19vtkParametricSpline14EvaluateScalarEPdS0_S0___ZN19vtkParametricSpline17SetNumberOfPointsEx__ZN19vtkParametricSpline3NewEv__ZN19vtkParametricSpline8EvaluateEPdS0_S0___ZN19vtkParametricSpline8SetPointExddd__ZN19vtkParametricSpline9SetPointsEP9vtkPoints__ZN20vtkParametricEnneper14EvaluateScalarEPdS0_S0___ZN20vtkParametricEnneper3NewEv__ZN20vtkParametricEnneper8EvaluateEPdS0_S0___ZN21vtkParametricCrossCap14EvaluateScalarEPdS0_S0___ZN21vtkParametricCrossCap3NewEv__ZN21vtkParametricCrossCap8EvaluateEPdS0_S0___ZN22vtkParametricEllipsoid14EvaluateScalarEPdS0_S0___ZN22vtkParametricEllipsoid3NewEv__ZN22vtkParametricEllipsoid8EvaluateEPdS0_S0___ZN22vtkParametricHenneberg14EvaluateScalarEPdS0_S0___ZN22vtkParametricHenneberg3NewEv__ZN22vtkParametricHenneberg8EvaluateEPdS0_S0___ZN24vtkParametricConicSpiral14EvaluateScalarEPdS0_S0___ZN24vtkParametricConicSpiral3NewEv__ZN24vtkParametricConicSpiral8EvaluateEPdS0_S0___ZN24vtkParametricRandomHills14EvaluateScalarEPdS0_S0___ZN24vtkParametricRandomHills3NewEv__ZN24vtkParametricRandomHills8EvaluateEPdS0_S0___ZN24vtkParametricSuperToroid14EvaluateScalarEPdS0_S0___ZN24vtkParametricSuperToroid3NewEv__ZN24vtkParametricSuperToroid8EvaluateEPdS0_S0___ZN25vtkParametricBohemianDome14EvaluateScalarEPdS0_S0___ZN25vtkParametricBohemianDome3NewEv__ZN25vtkParametricBohemianDome8EvaluateEPdS0_S0___ZN25vtkParametricFigure8Klein14EvaluateScalarEPdS0_S0___ZN25vtkParametricFigure8Klein3NewEv__ZN25vtkParametricFigure8Klein8EvaluateEPdS0_S0___ZN25vtkParametricPseudosphere14EvaluateScalarEPdS0_S0___ZN25vtkParametricPseudosphere3NewEv__ZN25vtkParametricPseudosphere8EvaluateEPdS0_S0___ZN26vtkParametricPluckerConoid14EvaluateScalarEPdS0_S0___ZN26vtkParametricPluckerConoid3NewEv__ZN26vtkParametricPluckerConoid8EvaluateEPdS0_S0___ZN27vtkParametricCatalanMinimal14EvaluateScalarEPdS0_S0___ZN27vtkParametricCatalanMinimal3NewEv__ZN27vtkParametricCatalanMinimal8EvaluateEPdS0_S0___ZN27vtkParametricSuperEllipsoid14EvaluateScalarEPdS0_S0___ZN27vtkParametricSuperEllipsoid3NewEv__ZN27vtkParametricSuperEllipsoid8EvaluateEPdS0_S0____stack_chk_fail___stack_chk_guard_strcmpdyld_stub_binder__ZL29PyvtkCardinalSpline_StaticNewv__ZL28PyvtkCardinalSpline_IsTypeOfP7_objectS0___ZL23PyvtkCardinalSpline_IsAP7_objectS0___ZL32PyvtkCardinalSpline_SafeDownCastP7_objectS0___ZL31PyvtkCardinalSpline_NewInstanceP7_objectS0___ZL27PyvtkCardinalSpline_ComputeP7_objectS0___ZL28PyvtkCardinalSpline_EvaluateP7_objectS0___ZL28PyvtkCardinalSpline_DeepCopyP7_objectS0___ZL29PyvtkKochanekSpline_StaticNewv__ZL28PyvtkKochanekSpline_IsTypeOfP7_objectS0___ZL23PyvtkKochanekSpline_IsAP7_objectS0___ZL32PyvtkKochanekSpline_SafeDownCastP7_objectS0___ZL31PyvtkKochanekSpline_NewInstanceP7_objectS0___ZL27PyvtkKochanekSpline_ComputeP7_objectS0___ZL28PyvtkKochanekSpline_EvaluateP7_objectS0___ZL34PyvtkKochanekSpline_SetDefaultBiasP7_objectS0___ZL34PyvtkKochanekSpline_GetDefaultBiasP7_objectS0___ZL37PyvtkKochanekSpline_SetDefaultTensionP7_objectS0___ZL37PyvtkKochanekSpline_GetDefaultTensionP7_objectS0___ZL40PyvtkKochanekSpline_SetDefaultContinuityP7_objectS0___ZL40PyvtkKochanekSpline_GetDefaultContinuityP7_objectS0___ZL28PyvtkKochanekSpline_DeepCopyP7_objectS0___ZL28PyvtkParametricBoy_StaticNewv__ZL27PyvtkParametricBoy_IsTypeOfP7_objectS0___ZL22PyvtkParametricBoy_IsAP7_objectS0___ZL31PyvtkParametricBoy_SafeDownCastP7_objectS0___ZL30PyvtkParametricBoy_NewInstanceP7_objectS0___ZL31PyvtkParametricBoy_GetDimensionP7_objectS0___ZL28PyvtkParametricBoy_SetZScaleP7_objectS0___ZL28PyvtkParametricBoy_GetZScaleP7_objectS0___ZL27PyvtkParametricBoy_EvaluateP7_objectS0___ZL33PyvtkParametricBoy_EvaluateScalarP7_objectS0___ZL36PyvtkParametricConicSpiral_StaticNewv__ZL35PyvtkParametricConicSpiral_IsTypeOfP7_objectS0___ZL30PyvtkParametricConicSpiral_IsAP7_objectS0___ZL39PyvtkParametricConicSpiral_SafeDownCastP7_objectS0___ZL38PyvtkParametricConicSpiral_NewInstanceP7_objectS0___ZL39PyvtkParametricConicSpiral_GetDimensionP7_objectS0___ZL31PyvtkParametricConicSpiral_SetAP7_objectS0___ZL31PyvtkParametricConicSpiral_GetAP7_objectS0___ZL31PyvtkParametricConicSpiral_SetBP7_objectS0___ZL31PyvtkParametricConicSpiral_GetBP7_objectS0___ZL31PyvtkParametricConicSpiral_SetCP7_objectS0___ZL31PyvtkParametricConicSpiral_GetCP7_objectS0___ZL31PyvtkParametricConicSpiral_SetNP7_objectS0___ZL31PyvtkParametricConicSpiral_GetNP7_objectS0___ZL35PyvtkParametricConicSpiral_EvaluateP7_objectS0___ZL41PyvtkParametricConicSpiral_EvaluateScalarP7_objectS0___ZL33PyvtkParametricCrossCap_StaticNewv__ZL32PyvtkParametricCrossCap_IsTypeOfP7_objectS0___ZL27PyvtkParametricCrossCap_IsAP7_objectS0___ZL36PyvtkParametricCrossCap_SafeDownCastP7_objectS0___ZL35PyvtkParametricCrossCap_NewInstanceP7_objectS0___ZL36PyvtkParametricCrossCap_GetDimensionP7_objectS0___ZL32PyvtkParametricCrossCap_EvaluateP7_objectS0___ZL38PyvtkParametricCrossCap_EvaluateScalarP7_objectS0___ZL29PyvtkParametricDini_StaticNewv__ZL28PyvtkParametricDini_IsTypeOfP7_objectS0___ZL23PyvtkParametricDini_IsAP7_objectS0___ZL32PyvtkParametricDini_SafeDownCastP7_objectS0___ZL31PyvtkParametricDini_NewInstanceP7_objectS0___ZL32PyvtkParametricDini_GetDimensionP7_objectS0___ZL24PyvtkParametricDini_SetAP7_objectS0___ZL24PyvtkParametricDini_GetAP7_objectS0___ZL24PyvtkParametricDini_SetBP7_objectS0___ZL24PyvtkParametricDini_GetBP7_objectS0___ZL28PyvtkParametricDini_EvaluateP7_objectS0___ZL34PyvtkParametricDini_EvaluateScalarP7_objectS0___ZL34PyvtkParametricEllipsoid_StaticNewv__ZL33PyvtkParametricEllipsoid_IsTypeOfP7_objectS0___ZL28PyvtkParametricEllipsoid_IsAP7_objectS0___ZL37PyvtkParametricEllipsoid_SafeDownCastP7_objectS0___ZL36PyvtkParametricEllipsoid_NewInstanceP7_objectS0___ZL37PyvtkParametricEllipsoid_GetDimensionP7_objectS0___ZL35PyvtkParametricEllipsoid_SetXRadiusP7_objectS0___ZL35PyvtkParametricEllipsoid_GetXRadiusP7_objectS0___ZL35PyvtkParametricEllipsoid_SetYRadiusP7_objectS0___ZL35PyvtkParametricEllipsoid_GetYRadiusP7_objectS0___ZL35PyvtkParametricEllipsoid_SetZRadiusP7_objectS0___ZL35PyvtkParametricEllipsoid_GetZRadiusP7_objectS0___ZL33PyvtkParametricEllipsoid_EvaluateP7_objectS0___ZL39PyvtkParametricEllipsoid_EvaluateScalarP7_objectS0___ZL32PyvtkParametricEnneper_StaticNewv__ZL31PyvtkParametricEnneper_IsTypeOfP7_objectS0___ZL26PyvtkParametricEnneper_IsAP7_objectS0___ZL35PyvtkParametricEnneper_SafeDownCastP7_objectS0___ZL34PyvtkParametricEnneper_NewInstanceP7_objectS0___ZL35PyvtkParametricEnneper_GetDimensionP7_objectS0___ZL31PyvtkParametricEnneper_EvaluateP7_objectS0___ZL37PyvtkParametricEnneper_EvaluateScalarP7_objectS0___ZL37PyvtkParametricFigure8Klein_StaticNewv__ZL36PyvtkParametricFigure8Klein_IsTypeOfP7_objectS0___ZL31PyvtkParametricFigure8Klein_IsAP7_objectS0___ZL40PyvtkParametricFigure8Klein_SafeDownCastP7_objectS0___ZL39PyvtkParametricFigure8Klein_NewInstanceP7_objectS0___ZL37PyvtkParametricFigure8Klein_SetRadiusP7_objectS0___ZL37PyvtkParametricFigure8Klein_GetRadiusP7_objectS0___ZL40PyvtkParametricFigure8Klein_GetDimensionP7_objectS0___ZL36PyvtkParametricFigure8Klein_EvaluateP7_objectS0___ZL42PyvtkParametricFigure8Klein_EvaluateScalarP7_objectS0___ZL32PyvtkParametricFunction_IsTypeOfP7_objectS0___ZL27PyvtkParametricFunction_IsAP7_objectS0___ZL36PyvtkParametricFunction_SafeDownCastP7_objectS0___ZL35PyvtkParametricFunction_NewInstanceP7_objectS0___ZL36PyvtkParametricFunction_GetDimensionP7_objectS0___ZL32PyvtkParametricFunction_EvaluateP7_objectS0___ZL38PyvtkParametricFunction_EvaluateScalarP7_objectS0___ZL35PyvtkParametricFunction_SetMinimumUP7_objectS0___ZL35PyvtkParametricFunction_GetMinimumUP7_objectS0___ZL35PyvtkParametricFunction_SetMaximumUP7_objectS0___ZL35PyvtkParametricFunction_GetMaximumUP7_objectS0___ZL35PyvtkParametricFunction_SetMinimumVP7_objectS0___ZL35PyvtkParametricFunction_GetMinimumVP7_objectS0___ZL35PyvtkParametricFunction_SetMaximumVP7_objectS0___ZL35PyvtkParametricFunction_GetMaximumVP7_objectS0___ZL35PyvtkParametricFunction_SetMinimumWP7_objectS0___ZL35PyvtkParametricFunction_GetMinimumWP7_objectS0___ZL35PyvtkParametricFunction_SetMaximumWP7_objectS0___ZL35PyvtkParametricFunction_GetMaximumWP7_objectS0___ZL32PyvtkParametricFunction_SetJoinUP7_objectS0___ZL40PyvtkParametricFunction_GetJoinUMinValueP7_objectS0___ZL40PyvtkParametricFunction_GetJoinUMaxValueP7_objectS0___ZL32PyvtkParametricFunction_GetJoinUP7_objectS0___ZL31PyvtkParametricFunction_JoinUOnP7_objectS0___ZL32PyvtkParametricFunction_JoinUOffP7_objectS0___ZL32PyvtkParametricFunction_SetJoinVP7_objectS0___ZL40PyvtkParametricFunction_GetJoinVMinValueP7_objectS0___ZL40PyvtkParametricFunction_GetJoinVMaxValueP7_objectS0___ZL32PyvtkParametricFunction_GetJoinVP7_objectS0___ZL31PyvtkParametricFunction_JoinVOnP7_objectS0___ZL32PyvtkParametricFunction_JoinVOffP7_objectS0___ZL32PyvtkParametricFunction_SetJoinWP7_objectS0___ZL40PyvtkParametricFunction_GetJoinWMinValueP7_objectS0___ZL40PyvtkParametricFunction_GetJoinWMaxValueP7_objectS0___ZL32PyvtkParametricFunction_GetJoinWP7_objectS0___ZL31PyvtkParametricFunction_JoinWOnP7_objectS0___ZL32PyvtkParametricFunction_JoinWOffP7_objectS0___ZL33PyvtkParametricFunction_SetTwistUP7_objectS0___ZL41PyvtkParametricFunction_GetTwistUMinValueP7_objectS0___ZL41PyvtkParametricFunction_GetTwistUMaxValueP7_objectS0___ZL33PyvtkParametricFunction_GetTwistUP7_objectS0___ZL32PyvtkParametricFunction_TwistUOnP7_objectS0___ZL33PyvtkParametricFunction_TwistUOffP7_objectS0___ZL33PyvtkParametricFunction_SetTwistVP7_objectS0___ZL41PyvtkParametricFunction_GetTwistVMinValueP7_objectS0___ZL41PyvtkParametricFunction_GetTwistVMaxValueP7_objectS0___ZL33PyvtkParametricFunction_GetTwistVP7_objectS0___ZL32PyvtkParametricFunction_TwistVOnP7_objectS0___ZL33PyvtkParametricFunction_TwistVOffP7_objectS0___ZL33PyvtkParametricFunction_SetTwistWP7_objectS0___ZL41PyvtkParametricFunction_GetTwistWMinValueP7_objectS0___ZL41PyvtkParametricFunction_GetTwistWMaxValueP7_objectS0___ZL33PyvtkParametricFunction_GetTwistWP7_objectS0___ZL32PyvtkParametricFunction_TwistWOnP7_objectS0___ZL33PyvtkParametricFunction_TwistWOffP7_objectS0___ZL44PyvtkParametricFunction_SetClockwiseOrderingP7_objectS0___ZL52PyvtkParametricFunction_GetClockwiseOrderingMinValueP7_objectS0___ZL52PyvtkParametricFunction_GetClockwiseOrderingMaxValueP7_objectS0___ZL44PyvtkParametricFunction_GetClockwiseOrderingP7_objectS0___ZL43PyvtkParametricFunction_ClockwiseOrderingOnP7_objectS0___ZL44PyvtkParametricFunction_ClockwiseOrderingOffP7_objectS0___ZL47PyvtkParametricFunction_SetDerivativesAvailableP7_objectS0___ZL55PyvtkParametricFunction_GetDerivativesAvailableMinValueP7_objectS0___ZL55PyvtkParametricFunction_GetDerivativesAvailableMaxValueP7_objectS0___ZL47PyvtkParametricFunction_GetDerivativesAvailableP7_objectS0___ZL46PyvtkParametricFunction_DerivativesAvailableOnP7_objectS0___ZL47PyvtkParametricFunction_DerivativesAvailableOffP7_objectS0___ZL30PyvtkParametricKlein_StaticNewv__ZL29PyvtkParametricKlein_IsTypeOfP7_objectS0___ZL24PyvtkParametricKlein_IsAP7_objectS0___ZL33PyvtkParametricKlein_SafeDownCastP7_objectS0___ZL32PyvtkParametricKlein_NewInstanceP7_objectS0___ZL33PyvtkParametricKlein_GetDimensionP7_objectS0___ZL29PyvtkParametricKlein_EvaluateP7_objectS0___ZL35PyvtkParametricKlein_EvaluateScalarP7_objectS0___ZL31PyvtkParametricMobius_StaticNewv__ZL30PyvtkParametricMobius_IsTypeOfP7_objectS0___ZL25PyvtkParametricMobius_IsAP7_objectS0___ZL34PyvtkParametricMobius_SafeDownCastP7_objectS0___ZL33PyvtkParametricMobius_NewInstanceP7_objectS0___ZL31PyvtkParametricMobius_SetRadiusP7_objectS0___ZL31PyvtkParametricMobius_GetRadiusP7_objectS0___ZL34PyvtkParametricMobius_GetDimensionP7_objectS0___ZL30PyvtkParametricMobius_EvaluateP7_objectS0___ZL36PyvtkParametricMobius_EvaluateScalarP7_objectS0___ZL36PyvtkParametricRandomHills_StaticNewv__ZL35PyvtkParametricRandomHills_IsTypeOfP7_objectS0___ZL30PyvtkParametricRandomHills_IsAP7_objectS0___ZL39PyvtkParametricRandomHills_SafeDownCastP7_objectS0___ZL38PyvtkParametricRandomHills_NewInstanceP7_objectS0___ZL39PyvtkParametricRandomHills_GetDimensionP7_objectS0___ZL43PyvtkParametricRandomHills_SetNumberOfHillsP7_objectS0___ZL43PyvtkParametricRandomHills_GetNumberOfHillsP7_objectS0___ZL43PyvtkParametricRandomHills_SetHillXVarianceP7_objectS0___ZL43PyvtkParametricRandomHills_GetHillXVarianceP7_objectS0___ZL43PyvtkParametricRandomHills_SetHillYVarianceP7_objectS0___ZL43PyvtkParametricRandomHills_GetHillYVarianceP7_objectS0___ZL43PyvtkParametricRandomHills_SetHillAmplitudeP7_objectS0___ZL43PyvtkParametricRandomHills_GetHillAmplitudeP7_objectS0___ZL40PyvtkParametricRandomHills_SetRandomSeedP7_objectS0___ZL40PyvtkParametricRandomHills_GetRandomSeedP7_objectS0___ZL51PyvtkParametricRandomHills_SetAllowRandomGenerationP7_objectS0___ZL59PyvtkParametricRandomHills_GetAllowRandomGenerationMinValueP7_objectS0___ZL59PyvtkParametricRandomHills_GetAllowRandomGenerationMaxValueP7_objectS0___ZL51PyvtkParametricRandomHills_GetAllowRandomGenerationP7_objectS0___ZL50PyvtkParametricRandomHills_AllowRandomGenerationOnP7_objectS0___ZL51PyvtkParametricRandomHills_AllowRandomGenerationOffP7_objectS0___ZL50PyvtkParametricRandomHills_SetXVarianceScaleFactorP7_objectS0___ZL50PyvtkParametricRandomHills_GetXVarianceScaleFactorP7_objectS0___ZL50PyvtkParametricRandomHills_SetYVarianceScaleFactorP7_objectS0___ZL50PyvtkParametricRandomHills_GetYVarianceScaleFactorP7_objectS0___ZL50PyvtkParametricRandomHills_SetAmplitudeScaleFactorP7_objectS0___ZL50PyvtkParametricRandomHills_GetAmplitudeScaleFactorP7_objectS0___ZL35PyvtkParametricRandomHills_EvaluateP7_objectS0___ZL41PyvtkParametricRandomHills_EvaluateScalarP7_objectS0___ZL30PyvtkParametricRoman_StaticNewv__ZL29PyvtkParametricRoman_IsTypeOfP7_objectS0___ZL24PyvtkParametricRoman_IsAP7_objectS0___ZL33PyvtkParametricRoman_SafeDownCastP7_objectS0___ZL32PyvtkParametricRoman_NewInstanceP7_objectS0___ZL33PyvtkParametricRoman_GetDimensionP7_objectS0___ZL30PyvtkParametricRoman_SetRadiusP7_objectS0___ZL30PyvtkParametricRoman_GetRadiusP7_objectS0___ZL29PyvtkParametricRoman_EvaluateP7_objectS0___ZL35PyvtkParametricRoman_EvaluateScalarP7_objectS0___ZL31PyvtkParametricSpline_StaticNewv__ZL30PyvtkParametricSpline_IsTypeOfP7_objectS0___ZL25PyvtkParametricSpline_IsAP7_objectS0___ZL34PyvtkParametricSpline_SafeDownCastP7_objectS0___ZL33PyvtkParametricSpline_NewInstanceP7_objectS0___ZL34PyvtkParametricSpline_GetDimensionP7_objectS0___ZL30PyvtkParametricSpline_EvaluateP7_objectS0___ZL36PyvtkParametricSpline_EvaluateScalarP7_objectS0___ZL32PyvtkParametricSpline_SetXSplineP7_objectS0___ZL32PyvtkParametricSpline_SetYSplineP7_objectS0___ZL32PyvtkParametricSpline_SetZSplineP7_objectS0___ZL32PyvtkParametricSpline_GetXSplineP7_objectS0___ZL32PyvtkParametricSpline_GetYSplineP7_objectS0___ZL32PyvtkParametricSpline_GetZSplineP7_objectS0___ZL31PyvtkParametricSpline_SetPointsP7_objectS0___ZL31PyvtkParametricSpline_GetPointsP7_objectS0___ZL39PyvtkParametricSpline_SetNumberOfPointsP7_objectS0___ZL30PyvtkParametricSpline_SetPointP7_objectS0___ZL31PyvtkParametricSpline_SetClosedP7_objectS0___ZL31PyvtkParametricSpline_GetClosedP7_objectS0___ZL30PyvtkParametricSpline_ClosedOnP7_objectS0___ZL31PyvtkParametricSpline_ClosedOffP7_objectS0___ZL45PyvtkParametricSpline_SetParameterizeByLengthP7_objectS0___ZL45PyvtkParametricSpline_GetParameterizeByLengthP7_objectS0___ZL44PyvtkParametricSpline_ParameterizeByLengthOnP7_objectS0___ZL45PyvtkParametricSpline_ParameterizeByLengthOffP7_objectS0___ZL39PyvtkParametricSpline_SetLeftConstraintP7_objectS0___ZL47PyvtkParametricSpline_GetLeftConstraintMinValueP7_objectS0___ZL47PyvtkParametricSpline_GetLeftConstraintMaxValueP7_objectS0___ZL39PyvtkParametricSpline_GetLeftConstraintP7_objectS0___ZL40PyvtkParametricSpline_SetRightConstraintP7_objectS0___ZL48PyvtkParametricSpline_GetRightConstraintMinValueP7_objectS0___ZL48PyvtkParametricSpline_GetRightConstraintMaxValueP7_objectS0___ZL40PyvtkParametricSpline_GetRightConstraintP7_objectS0___ZL34PyvtkParametricSpline_SetLeftValueP7_objectS0___ZL34PyvtkParametricSpline_GetLeftValueP7_objectS0___ZL35PyvtkParametricSpline_SetRightValueP7_objectS0___ZL35PyvtkParametricSpline_GetRightValueP7_objectS0___ZL39PyvtkParametricSuperEllipsoid_StaticNewv__ZL38PyvtkParametricSuperEllipsoid_IsTypeOfP7_objectS0___ZL33PyvtkParametricSuperEllipsoid_IsAP7_objectS0___ZL42PyvtkParametricSuperEllipsoid_SafeDownCastP7_objectS0___ZL41PyvtkParametricSuperEllipsoid_NewInstanceP7_objectS0___ZL42PyvtkParametricSuperEllipsoid_GetDimensionP7_objectS0___ZL40PyvtkParametricSuperEllipsoid_SetXRadiusP7_objectS0___ZL40PyvtkParametricSuperEllipsoid_GetXRadiusP7_objectS0___ZL40PyvtkParametricSuperEllipsoid_SetYRadiusP7_objectS0___ZL40PyvtkParametricSuperEllipsoid_GetYRadiusP7_objectS0___ZL40PyvtkParametricSuperEllipsoid_SetZRadiusP7_objectS0___ZL40PyvtkParametricSuperEllipsoid_GetZRadiusP7_objectS0___ZL35PyvtkParametricSuperEllipsoid_SetN1P7_objectS0___ZL35PyvtkParametricSuperEllipsoid_GetN1P7_objectS0___ZL35PyvtkParametricSuperEllipsoid_SetN2P7_objectS0___ZL35PyvtkParametricSuperEllipsoid_GetN2P7_objectS0___ZL38PyvtkParametricSuperEllipsoid_EvaluateP7_objectS0___ZL44PyvtkParametricSuperEllipsoid_EvaluateScalarP7_objectS0___ZL36PyvtkParametricSuperToroid_StaticNewv__ZL35PyvtkParametricSuperToroid_IsTypeOfP7_objectS0___ZL30PyvtkParametricSuperToroid_IsAP7_objectS0___ZL39PyvtkParametricSuperToroid_SafeDownCastP7_objectS0___ZL38PyvtkParametricSuperToroid_NewInstanceP7_objectS0___ZL39PyvtkParametricSuperToroid_GetDimensionP7_objectS0___ZL40PyvtkParametricSuperToroid_SetRingRadiusP7_objectS0___ZL40PyvtkParametricSuperToroid_GetRingRadiusP7_objectS0___ZL48PyvtkParametricSuperToroid_SetCrossSectionRadiusP7_objectS0___ZL48PyvtkParametricSuperToroid_GetCrossSectionRadiusP7_objectS0___ZL37PyvtkParametricSuperToroid_SetXRadiusP7_objectS0___ZL37PyvtkParametricSuperToroid_GetXRadiusP7_objectS0___ZL37PyvtkParametricSuperToroid_SetYRadiusP7_objectS0___ZL37PyvtkParametricSuperToroid_GetYRadiusP7_objectS0___ZL37PyvtkParametricSuperToroid_SetZRadiusP7_objectS0___ZL37PyvtkParametricSuperToroid_GetZRadiusP7_objectS0___ZL32PyvtkParametricSuperToroid_SetN1P7_objectS0___ZL32PyvtkParametricSuperToroid_GetN1P7_objectS0___ZL32PyvtkParametricSuperToroid_SetN2P7_objectS0___ZL32PyvtkParametricSuperToroid_GetN2P7_objectS0___ZL35PyvtkParametricSuperToroid_EvaluateP7_objectS0___ZL41PyvtkParametricSuperToroid_EvaluateScalarP7_objectS0___ZL30PyvtkParametricTorus_StaticNewv__ZL29PyvtkParametricTorus_IsTypeOfP7_objectS0___ZL24PyvtkParametricTorus_IsAP7_objectS0___ZL33PyvtkParametricTorus_SafeDownCastP7_objectS0___ZL32PyvtkParametricTorus_NewInstanceP7_objectS0___ZL34PyvtkParametricTorus_SetRingRadiusP7_objectS0___ZL34PyvtkParametricTorus_GetRingRadiusP7_objectS0___ZL42PyvtkParametricTorus_SetCrossSectionRadiusP7_objectS0___ZL42PyvtkParametricTorus_GetCrossSectionRadiusP7_objectS0___ZL33PyvtkParametricTorus_GetDimensionP7_objectS0___ZL29PyvtkParametricTorus_EvaluateP7_objectS0___ZL35PyvtkParametricTorus_EvaluateScalarP7_objectS0___ZL29PyvtkParametricKuen_StaticNewv__ZL28PyvtkParametricKuen_IsTypeOfP7_objectS0___ZL23PyvtkParametricKuen_IsAP7_objectS0___ZL32PyvtkParametricKuen_SafeDownCastP7_objectS0___ZL31PyvtkParametricKuen_NewInstanceP7_objectS0___ZL32PyvtkParametricKuen_GetDimensionP7_objectS0___ZL30PyvtkParametricKuen_SetDeltaV0P7_objectS0___ZL30PyvtkParametricKuen_GetDeltaV0P7_objectS0___ZL28PyvtkParametricKuen_EvaluateP7_objectS0___ZL34PyvtkParametricKuen_EvaluateScalarP7_objectS0___ZL37PyvtkParametricPseudosphere_StaticNewv__ZL36PyvtkParametricPseudosphere_IsTypeOfP7_objectS0___ZL31PyvtkParametricPseudosphere_IsAP7_objectS0___ZL40PyvtkParametricPseudosphere_SafeDownCastP7_objectS0___ZL39PyvtkParametricPseudosphere_NewInstanceP7_objectS0___ZL40PyvtkParametricPseudosphere_GetDimensionP7_objectS0___ZL36PyvtkParametricPseudosphere_EvaluateP7_objectS0___ZL42PyvtkParametricPseudosphere_EvaluateScalarP7_objectS0___ZL37PyvtkParametricBohemianDome_StaticNewv__ZL36PyvtkParametricBohemianDome_IsTypeOfP7_objectS0___ZL31PyvtkParametricBohemianDome_IsAP7_objectS0___ZL40PyvtkParametricBohemianDome_SafeDownCastP7_objectS0___ZL39PyvtkParametricBohemianDome_NewInstanceP7_objectS0___ZL32PyvtkParametricBohemianDome_GetAP7_objectS0___ZL32PyvtkParametricBohemianDome_SetAP7_objectS0___ZL32PyvtkParametricBohemianDome_GetBP7_objectS0___ZL32PyvtkParametricBohemianDome_SetBP7_objectS0___ZL32PyvtkParametricBohemianDome_GetCP7_objectS0___ZL32PyvtkParametricBohemianDome_SetCP7_objectS0___ZL40PyvtkParametricBohemianDome_GetDimensionP7_objectS0___ZL36PyvtkParametricBohemianDome_EvaluateP7_objectS0___ZL42PyvtkParametricBohemianDome_EvaluateScalarP7_objectS0___ZL34PyvtkParametricHenneberg_StaticNewv__ZL33PyvtkParametricHenneberg_IsTypeOfP7_objectS0___ZL28PyvtkParametricHenneberg_IsAP7_objectS0___ZL37PyvtkParametricHenneberg_SafeDownCastP7_objectS0___ZL36PyvtkParametricHenneberg_NewInstanceP7_objectS0___ZL37PyvtkParametricHenneberg_GetDimensionP7_objectS0___ZL33PyvtkParametricHenneberg_EvaluateP7_objectS0___ZL39PyvtkParametricHenneberg_EvaluateScalarP7_objectS0___ZL39PyvtkParametricCatalanMinimal_StaticNewv__ZL38PyvtkParametricCatalanMinimal_IsTypeOfP7_objectS0___ZL33PyvtkParametricCatalanMinimal_IsAP7_objectS0___ZL42PyvtkParametricCatalanMinimal_SafeDownCastP7_objectS0___ZL41PyvtkParametricCatalanMinimal_NewInstanceP7_objectS0___ZL42PyvtkParametricCatalanMinimal_GetDimensionP7_objectS0___ZL38PyvtkParametricCatalanMinimal_EvaluateP7_objectS0___ZL44PyvtkParametricCatalanMinimal_EvaluateScalarP7_objectS0___ZL29PyvtkParametricBour_StaticNewv__ZL28PyvtkParametricBour_IsTypeOfP7_objectS0___ZL23PyvtkParametricBour_IsAP7_objectS0___ZL32PyvtkParametricBour_SafeDownCastP7_objectS0___ZL31PyvtkParametricBour_NewInstanceP7_objectS0___ZL32PyvtkParametricBour_GetDimensionP7_objectS0___ZL28PyvtkParametricBour_EvaluateP7_objectS0___ZL34PyvtkParametricBour_EvaluateScalarP7_objectS0___ZL38PyvtkParametricPluckerConoid_StaticNewv__ZL37PyvtkParametricPluckerConoid_IsTypeOfP7_objectS0___ZL32PyvtkParametricPluckerConoid_IsAP7_objectS0___ZL41PyvtkParametricPluckerConoid_SafeDownCastP7_objectS0___ZL40PyvtkParametricPluckerConoid_NewInstanceP7_objectS0___ZL33PyvtkParametricPluckerConoid_GetNP7_objectS0___ZL33PyvtkParametricPluckerConoid_SetNP7_objectS0___ZL41PyvtkParametricPluckerConoid_GetDimensionP7_objectS0___ZL37PyvtkParametricPluckerConoid_EvaluateP7_objectS0___ZL43PyvtkParametricPluckerConoid_EvaluateScalarP7_objectS0___dyld_private__ZL24PyvtkCardinalSpline_Type__ZL27PyvtkCardinalSpline_Methods__ZL24PyvtkKochanekSpline_Type__ZL27PyvtkKochanekSpline_Methods__ZL23PyvtkParametricBoy_Type__ZL26PyvtkParametricBoy_Methods__ZL31PyvtkParametricConicSpiral_Type__ZL34PyvtkParametricConicSpiral_Methods__ZL28PyvtkParametricCrossCap_Type__ZL31PyvtkParametricCrossCap_Methods__ZL24PyvtkParametricDini_Type__ZL27PyvtkParametricDini_Methods__ZL29PyvtkParametricEllipsoid_Type__ZL32PyvtkParametricEllipsoid_Methods__ZL27PyvtkParametricEnneper_Type__ZL30PyvtkParametricEnneper_Methods__ZL32PyvtkParametricFigure8Klein_Type__ZL35PyvtkParametricFigure8Klein_Methods__ZL28PyvtkParametricFunction_Type__ZL31PyvtkParametricFunction_Methods__ZL25PyvtkParametricKlein_Type__ZL28PyvtkParametricKlein_Methods__ZL26PyvtkParametricMobius_Type__ZL29PyvtkParametricMobius_Methods__ZL31PyvtkParametricRandomHills_Type__ZL34PyvtkParametricRandomHills_Methods__ZL25PyvtkParametricRoman_Type__ZL28PyvtkParametricRoman_Methods__ZL26PyvtkParametricSpline_Type__ZL29PyvtkParametricSpline_Methods__ZL34PyvtkParametricSuperEllipsoid_Type__ZL37PyvtkParametricSuperEllipsoid_Methods__ZL31PyvtkParametricSuperToroid_Type__ZL34PyvtkParametricSuperToroid_Methods__ZL25PyvtkParametricTorus_Type__ZL28PyvtkParametricTorus_Methods__ZL24PyvtkParametricKuen_Type__ZL27PyvtkParametricKuen_Methods__ZL32PyvtkParametricPseudosphere_Type__ZL35PyvtkParametricPseudosphere_Methods__ZL32PyvtkParametricBohemianDome_Type__ZL35PyvtkParametricBohemianDome_Methods__ZL29PyvtkParametricHenneberg_Type__ZL32PyvtkParametricHenneberg_Methods__ZL34PyvtkParametricCatalanMinimal_Type__ZL37PyvtkParametricCatalanMinimal_Methods__ZL24PyvtkParametricBour_Type__ZL27PyvtkParametricBour_Methods__ZL33PyvtkParametricPluckerConoid_Type__ZL36PyvtkParametricPluckerConoid_Methods__ZL45PyvtkCommonComputationalGeometryPython_Module__ZL46PyvtkCommonComputationalGeometryPython_Methods