0 x__TEXT__text__TEXT lJM l__stubs__TEXTjzj__stub_helper__TEXT`__cstring__TEXTDzD__const__TEXT__gcc_except_tab__TEXTȻȻ__unwind_info__TEXTdd__DATA_CONST@@__got__DATA_CONST(__const__DATA_CONST(8(8__DATA__la_symbol_ptr__DATA__data__DATAG__bss__DATAN@H__LINKEDITh /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonTransformsPython310D-8.1.1.dylib"0x%0ts P$pSE;=ˢ  2}2   a* /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonMathPython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonTransforms-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonCorePython310D-8.1.1.dylib /Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkWrappingPython310Core-8.1.1.dylib x/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonMath-8.1.1.dylib x/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtkCommonCore-8.1.1.dylib p/Volumes/Data/workspace/med-macos-free/build/ExtProjs/VTK/lib/libvtksys-8.1.1.dylib 0/usr/lib/libc++.1.dylib 8< /usr/lib/libSystem.B.dylib&)0UHH=H5~H Y1MruMHH=WMH]fDUHH=uH5HGH 0MMu H=KMH?]f.Ht(UHSPHPH HSHHPH[]1UHH=H511Lu H=LH]UHH=UH511Lu H=5XLH)]UHSPHH=H5)HW1/LuKLHfH=_LH5WHLHKtH 9u H=0LH=H5H֞H Ku H=ڜKH57WHǜH?KtH u H=KH=H5X11KQu H=BKH5VHHJtH yu H=pOKH=H5M11&Kvu H=ġJH5VHHJt H tH[]H=H[]JUHAVSH0HuHXWHEЋFEHEHEH}ȃu\HunKt^H]H=UHoNAtH=MvHVNt HJLcIHuLIJ1H0[A^]ÐUHAWAVSH(HuHWHED~D}HG]ԉ]؅yJHHLw(HEMA)AuQHuH}Jt|}L}tYH=TLMAtOH=`uLiMtCH}Hu)CH}HuCHEHMHUHC@HKHHSPXHuHUHE]UĉUȅy BHHttH_(HtkHuH}BtU(EHEC@HCPHCHLs@HLL3AHuLBH5yTB1H GH H;MuHP[A^]1H.EfUHAVSHHcGHHE^HG)ЃOHpHUHx]UUyAHHH_(HHpHu{AHpHu^AtHpHuкAAWEXE`EhHuHUHMH0BEf.Xu$z"Ef.`uzEf.hu{$?HuHpHUо@p?HHEHHpHJTHx]UUy Q@HHtyH_(HtpHuHp=@tWHuHp$@t>HUHuLs@HL;A>HuL?H5S?1H =EH H;MuHĠ[A^]1H)Bf.@UHAWAVSHhHDHHEHuHvUHEDvDuHG]]yB?HHL(MA)AuoHuH} ?tlHuH} ?tVHUHuMw@LL!@=Hu5L>H 5DH H;Mt*AH}>1H DH H;MuHh[A^A_]f.DUHAWAVSHHHCHHEHuHUHEDvDuHG]]y">HHL(MA)AuoHuH}>tlHuH}=tVHUHuMw0LL?<Hu5L=H CH H;Mt*@H}l=1H BH H;MuHH[A^A_]f.DUHAVSHHBHHE^HG)ЃOHpH'VHx]UUy<HHH_(HHpHu<HpHu<tHpHuк<WEXE`EhHuHUHMH=Ef.Xu$z"Ef.`uzEf.hu{$:HuHpHUо<:HH6AHHpHTHx]UUy ;HHtyH_(HtpHuHp;tWHuHpt;t>HUHuLs@HL<":HuL;H5NT;1H @H H;MuHĠ[A^]1H)>f.@UHAWAVSHhHD@HHEHuH VHEDvDuHG]]y:HHL(MA)AuoHuH}p:tlHuH}Z:tVHUHuMw@LL};9Hu5L9H ?H H;Mt*+=H}91H [?H H;MuHh[A^A_]f.DUHAWAVSHHH$?HHEHuHVHEDvDuHG]]yr9HHL(MA)AuoHuH}V9tlHuH}@9tVHUHuMw0LLc:7Hu5L8H e>H H;Mt* <H}81H ;>H H;MuHH[A^A_]f.DUHAWAVSH(HuHVHEDvDuHG]ԉ]؅y `8HHt|L(MtsA)AuWH5|cH}HU,8}tPIH5_cH}HU8}t3}t:LLH996HuH}HUl3}t4LH4<2HuH8HH}&31H([A^A_]fUHAVSH HuH?WHEDvDuHG]]y 2HHtH(HtD9u)41Ht1H}1112 H8HHH [A^]UHAWAVSHH7HHEH`HxWHhD~DpHGtxy02HH Lw(M H`AHu2H`Hu1HEHE(E)EIHuHULEf.EuzEf.EuzEf.Eu{$X0HuH`HU140HuCH6HH 6H H;Mt;Z411 E1M1H y6H H;MuHĈ[A^A_]f.UHAWAVSH(HA6HHEHHVHD~DHGy0HHLw(MHIA_HuR0HHu50H HH080qHEHE(E)Eh]~HHH02IHuHUH0LEf.EuzEf.EuzEf.Eu{$P.HuHHU/Նʆ1fD0f.uczaHH9u.1H w4H H;M.1H M4H H;Mt]E1MV8-Hu$L0HH0.h-Ht 1H 3H H;Mu(H([A^A_]H3HH 3H H;Mtn1fUHAVSH HuHsVHEDvDuHGEEy .HHtDH(Ht;xEtH}111-#H}-HH,Ht1HH [A^]H-HtHH,tH,HH1Q@H߾,UHAWAVSH(HuH'VHED~D}HG]ԉ]؅y -HHt^Lw(MtUA)Au9H57H}HU,}t2}t9LH.+Hu;H},1H([A^A_]ILHw+HuHc|+fDUHAVSH HuHWHEDvDuHG]]y B,HHt%H(HtD9uEt'-H*Ht+1>H}111+-HH*HuHHx**HHH [A^]DUHSPHHHt.HH[]*f.UH]*fDUHSPHHt%H@*HtH0H8H5@W7*G{t#u/].H=5HH[]^*1HH[]"H55*1H[]f.UHSH(HuH5HE؋FEHEHEuQH5o5H}HU*HtKHÿ-H HSHHPH=;5H)HH}Hu (H}оI*1H}Ht Hu)HH([]f.UHAVSH HuH/VHEDvDuHG]]y )HHt%HGHtD9uofpN(Ht1H}111) H/HHH [A^]UH](fDUH](fDUHH.H8H5:V>(1]fUHHHzu H=ǀ])H5+V)1]ÐUHAWAVSH(HuHpWHEDvDuHG]ԉ]؅y (HHtSLMtJA)Au.HuH}(t0EAG'HuH.HH}s(1H([A^A_]fDUHAVSH HuH5WHEDvDuHG]]y 2(HHtHGHtD9uHcX&Ht1H}111' H&HHH [A^]UHAWAVSH8HuHWHED~D}HG]܉]y'HHLwMtxA)H}Au\Hu't^H}Hu'tMH}Huw't<EMUL)&HuH,H'1H8[A^A_]E1MofDUHAWAVSHHHuHVHED~D}HG]܉]y&HHLwMA)H}AurHu&ttH}Hu&tcH}Hu&tRH}Hur&tAEMU]L( %HuH+H%1HH[A^A_]E1MYf.fUHAWAVSH8HuH)VHED~D}HG]܉]y%HHLwMtxA)H}Au\Hu%t^H}Hu%tMH}Huw%t<EMUL'$HuH*H%1H8[A^A_]E1MofDUHAVSH HuH8HHEDvDuHG]]y $HHtHHtD9u%'r#Ht1H}111h$ H)HHH [A^]UHAVSH HuH`UHEDvDuHG]]y "$HHtHGHtD9uHc"Ht1H}111# H"HHH [A^]ÐUHAVSH HuH*UHEDvDuHG]]y #HHtHHtD9u &R"Ht1H}111H# H(HHH [A^]UHAVSH HuHTHEDvDuHG]]y #HHtHGHtD9uHcX(!Ht1H}111" H!HHH [A^]UHAVSH HuHTHEDvDuHG]]y r"HHtHGHtD9uHcX,3!Ht1H}111)" H#!HHH [A^]UHAVSH HuHNUHEDvDuHG]]y !HHt HGHtD9uHcX(Lcp, Ht1H}111!L)H HHH [A^]fUHAWAVSH(HuHHUHED~D}HG]ԉ]؅y @!HHtXLwMtOA)Au3HuH}I!t5uL#HHuH=!H} 1H([A^A_]ÐUHAVSH HuHUHEDvDuHG]]y HHt HHtD9u"HOHt1(H}111E HHx:9HHH [A^]UHAWAVSH(HuHMHED~D}HG]ԉ]؅y HHt`LwMtWA)Au;H5q*H}HU}t4LH"HuH%HH}v1H([A^A_]fUHAWAVSHH$HHEH@HELHHD~DPHGTXy HHt|LwMtsA)AuTH`H@tNH`L;!Hu5H $HH &$H H;Mt-!H@z1H #H H;MuHĨ[A^A_]f.UH]bfDUH]XfDUHH#H8H5 K1]ÐUHH=vH5wHhSH 0vuHvH=uHu]ÐUH]fDUHSPHH=uH59wHSH (vuHqvH=juH5RHWuH/t H DutH[]H=4uH[]fUHAVSH0HuH(HEЋFEHEHEH}ȃHu H]H=8RH AtDH= VHt1H=O'HtH=GHt HVLc^HuLcN1H0[A^]UHAWAVSH(HuH )HED~D}HG]ԉ]؅yHHLw(HEMA)Au{HuH}}L}tH=QLAtuH=TLtbH=6&LtOH=FLt HHuHtH}1H([A^A_]Ã?tH) fUHAWAVSH(HuHTHED~D}HG]ԉ]؅y HHt`Lw(MtWA)Au;H51H}HU|}t4LHLHuH HH}61H([A^A_]fUHAVSH HuH&UHEDvDuHG]]y HHtHG(HtD9uHHt1H}111 HHHH [A^]f.UHAVSH HuH7HEDvDuHG]]y RHHt"HG(HtD9uHHc Ht1H}111 HHHH [A^]f.UHAWAVSH(HuHWHEDvDuHG]܉]y HHt[L(MtRD9uQMMuIHmMILQIL2Ht1H}111( H HHH([A^A_]HL3Hk fUHAWAVSH(HuHrVHEDvDuHG]܉]y HHtH}111p-HHOHuHHxONHHH [A^]DUHAWAVSH(HuH)*HEDvDuHG]ԉ]؅y HHthL(Mt_A)AuCH5SH}HU}t\HQ12[uH{[H=tZHhZ]fDUHSPHH=PZH5[HGQ1_Zu譫H&[H=Z2H5QH ZHt H YtH[]H=YH[]2f.@UHAVSH0HuHHEЋFEHEHEH}ȃuoHutqH]H=PHAt1H= HtH=z$Ht HLcHuL 1H0[A^]f.@UHAWAVSH(HuHHED~D}HG]ԉ]؅yHHLw(HEMA)AuhHuH}}L}tlH=sOLAtbH=LtOH=i#LrtGHPE1LEhHucH}111`RE1HHuCLHt6HHst)HmHH1Q@H߾V1HH [A^]UHAWAVSH(HuHhHEDvDuHG]ԉ]؅y HHt|L(MtsA)AuWH5H}HU}tPIH5H}HU}t3}t:LLHFHu1@uH6AH=/@H5>H@HDt H @tH[]H=?H[]f.@UHAVSH0HuHHEЋFEHEHEH}ȃHuH]H==HAtDH=/Ht1H=_HtH=Ht HfLcnHuLs^1H0[A^]UHAWAVSH(HuH0HED~D}HG]ԉ]؅y HHLw(HEMA)Au{HuH}}L}tH=<LAtuH=.LtbH=FLtOH=Lt;HE]UĉUȅyHHH_(HH}HuH}HuyH}HudHEHMHUHC@HKHHSPXHuH:HE]UĉUȅy HHttH_(HtkHuH}tU(EHEC@HCPH HLs@HLLHuLgH5 :i1H H H;MuHP[A^]1H~fUHAVSHHHHE^HG)ЃFLHuH3;HE]UUyHHKH_(H H}Hu H}HuH}HpHEHMHpHC@HKHHSPfHuH:HE]UUyKHHH_(HHuH}2mf(EHEfC@HCPH`HLs@HLL H/LHuH9HE]UUyHHH_(HHuH}H}HutExEEEEHHHuHUH Ef.xuzEf.EuzEf.Eu{!HuH}HUHuH$HH581H H H;MuHĀ[A^]1HfUHAVSH@HHHE^HG)ЃHuHF:HE]UĉUȅyHHH_(HH}HuH}HuH}HuE܋MԋU؉C0K4S8VHuH9HE]UĉUȅy HHtrH_(HtiHuH}xtSHE܋MHC0K8HHLs0HLL HuLH5091H vH H;MuH@[A^]1Hf.UHAVSHPH6HHE^HG)Ѓ"HuH):HE]UĉUȅypHHH_(HH}HunH}HuYH}HuDHEHMHUHC@HKHHSPXHuH9HE]UĉUȅy HHttH_(HtkHuH}tU(EHEC@HCPHHLs@HLL cHuLGH5 9I1H H H;MuHP[A^]1H^fUHAWAVSH(HuHHEDvDuHG]ԉ]؅y HHt|L(MtsA)AuWH5 H}HU}tPIH5H}HU}t3}t:LLHWfHu0H跽AtDH=sH螽t1H=H苽tH=oHxt HLcHuL1H0[A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅yHHLw(HEMA)Au{HuH}觹}L}tH=%/L螼AtuH=ZL腼tbH=LrtOH=VL_tH}111@-HHHuHHxHHH [A^]DUHAVSH HuHCHEDvDuHG]]yҳHHH(HD9uEt%褶H育Hul'H}111z[HHYHuCH贳Ht6HH脲t)H~HH1Q@H߾g1HH [A^]ÐUHH= H5^"H .H 0M!uH!H= H ]ÐUH]nfDUHSPHH=` H5!H-H 躱 uhH1!H=* 荱H5p-H H/t H  tH[]H=H[]鍱fUHSH(HuHHE؋FEHEHEH}Ѓu1Hut3H}辰HuHcðH([]þ話1H([]UHAWAVSH(HuHHED~D}HG]ԉ]؅y pHHtdLw(HEMt8A)Au3HuH}_t}Hut;H Ht<1@H}1)HE1ILPȯHuHcͯH([A^A_]f.@UHAVSH0HuHHEЋFEHEuGH5H}HU{}t@HHtCHH5i+HPE1LE5Hu+H}Ⱦ)1H0[A^]E1HuLcUHAVSH HuHaHEDvDuHG]]yүHHH(HD9u3HPxHt9HHH5*HPE1LEhHucH}111`RE1HHuCL裯Ht6HHst)HmHH1Q@H߾V1HH [A^]UHAWAVSH(HuH'HED~D}HG]ԉ]؅y ЮHHt\Lw(MtSA)Au7H5H}HU蜮}t0}t7LHCfHu9H}Z1H([A^A_]ILH(+HuHHUHAVSH HuH&HEDvDuHG]]y HHt$H(HtD9uEt&H諬Ht+12H}111衭!H0H耬HuHۭHHH [A^]fUHAVSH HuHHEDvDuHG]]y BHHt"H(HtD9uEt$ίHt(1.H}111HիHuHOHHH [A^]UHAVSH HuH`HEDvDuHG]]y 蒬HHt%H(HtD9uEt'$HJHt+1>H}111@-HHHuHHxHHH [A^]DUHAVSH HuHCHEDvDuHG]]yҫHHH(HD9uEt%JH肪Hul'H}111z[HHYHuCH贫Ht6HH脪t)H~HH1Q@H߾g1HH [A^]ÐUHSPHH=&H@tZH= H-tGH=Ht4H={Ht!H=HtHH[]|H[]ÐUHH=H5H)H 0菩u譯HH=bH]ÐUH]xfDUHSPHH=H5IHl)H *8uHHH=zH58)HgH蟨t H TtH[]H=DH[]fUHAVSH0HuHhHEЋFEHEHEH}ȃHuzH]H=(HwAtDH=3H^t1H=HKtH=/H8t HƨLcΧHuLӧ辨1H0[A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅y耨HHLw(HEMA)Au{HuH}g}L}tH='L^AtuH=LEtbH=L2tOH=Lt葕HuH HH5z1H H H;MuHh[]1H葙DUHAWAVSH(HuHHEDvDuHG]ԉ]؅y HHtkL(MtbA)AuFHuH}tHEI WW^豔HuH+HH}蛕1H([A^A_]f.@UHAWAVSH(HuH*HEDvDuHG]ԉ]؅y PHHtkL(MtbA)AuFHuH}MtHEI/WW莗HuH[HH}˔1H([A^A_]f.@UHAWAVSH(HuHSHEDvDuHG]ԉ]؅y 耔HHtkL(MtbA)AuFHuH}}tHEI_WW辖HuHHH}1H([A^A_]f.@UHSHXHXHHE^HG)ЃHuHHE]UĉUȅy蒓HHH_(HH}Hu萓H}Hu{H}HufEMUWHuH}HE]UĉUȅy HHt^H_(HtUHuH}t?EMUHH衑HuHHH5芒1H H H;MuHX[]1H衕DUHHHHGzu H=] H5m("1]@UHHHHGzu H=]̒H51]@UHAVSH HuHHEDvDuHG]]y 貑HHt%H(HtD9uHxtjHt/15H}111`$@H;HuHHHH [A^]f.@UHAVSH HuH$HEDvDuHG]]y HHt5H(Ht,D9u+Hxt@H蚏Ht1H}111萐 HHHH [A^]UHAVSH HuHHEDvDuHG]]y BHHt*HG(Ht!D9u LHHcX(Ht1$H}111IHHݎHHH [A^]f.UHAWAVSH(HuHHEDvDuHG]ԉ]؅y 萏HHtqL(MthA)AuLHuH}虏tNuIIHt 9w,}>轑HHuHtH}1H([A^A_]Ã?tH)fUHAWAVSH(HuHHED~D}HG]ԉ]؅y 谎HHt`Lw(MtWA)Au;H5H}HU|}t4LHՐLHuHƓHH}61H([A^A_]fUHAVSH HuH&HEDvDuHG]]y HHtHG(HtD9uH谌Ht1H}111覍 HHHH [A^]f.UHAVSH HuHHEDvDuHG]]y RHHt"HG(HtD9uHHc Ht1H}111 HHHH [A^]f.UHAWAVSH(HuHHEDvDuHG]܉]y 谌HHt[L(MtRD9uQMMu訏IHmMILQIL2Ht1H}111( HHHH([A^A_]HL3Hk fUHAWAVSH(HuHrHEDvDuHG]܉]y HHtH}111-HH过HuHHx过辇HHH [A^]DUHAWAVSH(HuHHEDvDuHG]ԉ]؅ypHHL(MtzA)Au^H5AH}HU8}tWII0I蹊ILILzHuH_HH}χ1H([A^A_]fUHAWAVSHH1HHEH@HHHDvDPHGTXypHHL(MA)AusH`H@HtmL`I賉ILILt߅Hu5HYHH _H H;Mt-H@賆1H 2H H;MuHĨ[A^A_]UHAWAVSH(HuHHEDvDuHG]ԉ]؅y `HHthL(Mt_A)AuCH55H}HU,}t1H0[A^]UHAWAVSH(HuHHED~D}HG]ԉ]؅yHHLw(HEMA)Au{HuH}}L}tH=n!LބAtuH=LńtbH=&L貄tOH=L蟄tyH뮐UHAWAVSH(HuH#HED~D}HG]ԉ]؅y sHHt`Lw(MtWA)Au;H5H}HU\s}t4LHv,rHuHxHH}s1H([A^A_]fUHAVSH HuH.$HEDvDuHG]]y rHHt$H(HtD9uEt&HqHt+12H}111r!HxH`qHuHrHHH [A^]fUHAWAVSH(HuH|$HED~D}HG]ԉ]؅y rHHt`Lw(MtWA)Au;H5<H}HUq}t4LHtpHuH6wHH}q1H([A^A_]fUHAVSH HuH$HEDvDuHG]]y bqHHt$H(HtD9uEt&HpHt+12H}111q!HHoHuHKqHHH [A^]fUHAVSH HuHHEDvDuHG]]y pHHt%H(HtD9uEt'nsHjoHt+1>H}111`p-HH?oHuHHx?o>oHHH [A^]DUHAVSH HuHcHEDvDuHG]]yoHHH(HD9uEt%rHnHul'H}111o[HHynHuCHoHt6HHnt)HnHH1Q@H߾n1HH [A^]ÐUHH=H5~H#H 0?nmu[nHH=nH]ÐUH]`ofDUHSPHH=H5HA#H mumHQH=JmH5 #H7HOmt H $tH[]H=H[]mfUHAVSH0HuHzHEЋFEHEHEH}ȃu\Hu.nt^H]H=~"H/qAtH= Hqt HmLclHuLlm1H0[A^]ÐUHAWAVSH(HuHpzHED~D}HG]ԉ]؅y`mHHLw(HEMA)AuQHuH}Gmt|}L}tYH=!LBpAtOH= L)ptH}111@`-HH_HuHHx__HHH [A^]DUHAWAVAUATSH^HG)ЃbHuH9~HE]UUy_HHHG(HEH]H1u_AHcHh_HhHEH߾K_AC6HcH0__L01EIcM|LDH}E+EH}HuD#_H}LD _H}Hu_DEArIDI9II91)HHHHtItI4HHuHYILI ILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uHhH|Hpx|Uy]HHH_(Ht{H5 #HhH0]0tXIH5"HhH0]0t2HLH]e\HuHbHaH5{N]1OH}=]1H0H8H9t HtH`HhHpH9t Ht+`HHĨ[A\A]A^A_]1R؃HpHHH‰уH s1sHH)1ADALAALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt-HHfADALfADA H HuH9yMH}HuLz\E~;1ADfA.u z HH9uZHuH}LD \ZHwH%aHH0H8H9kpHH0H8H9tHt ^HHhHpH9t Htt^HZ UHAWAVAUATSH^HG)ЃbHuHHE]UUyZHHHG(HEH]H1ZAHcHhZHhHEH߾ZAC6HcH0ZL01EIcM|LDH}E+EH}HuDcZH}LDLZH}HuUZDEArIDI9II91)HHHHtItI4HHuHYILI ILILILILILILIL IL IL(IL(IL0IL0IL8IL8HH9uHhHcHpx|Uy6YHHH_(Ht{H5JHhH0Y0tXIH5$HhH0X0t2HLH6YWHuH^HaH5X1OH}}X1H0H8H9t Ht[HhHpH9t Htk[HHĨ[A\A]A^A_]1R؃HpHHH‰уH s1sHH)1ADALAALAD AL0AD AL0AD@ALPAD@ALPfAD`ALpfAD`ALpHHuHt-HHfADALfADA H HuH9yMH}HuLWE~;1ADfA.u z HH9u VHuH}LDJWUHwHe\HH0H8H9kpHH0H8H9tHt YHHhHpH9t HtYHU UHAWAVSHH[HHEH`H6HhD~DpHGtxy0VHHLw(MA)H`AHuVH`HuUHEHE(E)EILHx0HuHUUEf.EuzEf.EuzEf.Eu{$TTHuH`HUU0THuHZHU1H ZH H;MuHĈ[A^A_]E1M'Xf.UHAWAVSH(HuHHED~D}HG]ԉ]؅y THHtdLw(Mt[A)Au?H5H}HU|T}t8H0LHUHSHuHYHH}2T1H([A^A_]DUHAWAVSHxHYHHEHpH7HxD~D}HG]]y SHHtvLw(MtmA)AuNHuHp StKHuLETxRHu5HXHH XH H;Mt-VHpLS1H XH H;MuHx[A^A_]ÐUHH=UH5HUH 0/RuERH&H=RH]ÐUH]TfDUHSPHH=H5HH QxuQHH=QH5HH?Qt H tH[]H=H[]QfUHAVSH0HuH^HEЋFEHEHEH}ȃuoHuRtqH]H=-HUAt1H=HUtH=|HTt HQLcPHuLPyQ1H0[A^]f.@UHAWAVSH(HuH@^HED~D}HG]ԉ]؅y0QHHLw(HEMA)AuhHuH}Q}L}tlH=LTAtbH=LStOH={LStm"@1]@UHAVSH HuHHEDvDuHG]]y ?HHt%H(HtD9uHxt>Ht/15H}111?$@H{>HuHDHHH [A^]f.@UHAVSH HuHdHEDvDuHG]]y 2?HHt5H(Ht,D9u+Hxt@H=Ht1H}111> H?DHHH [A^]UHAVSH HuHHEDvDuHG]]y >HHt*HG(Ht!D9u LHHcX(5=Ht1$H}111+>IHH=HHH [A^]f.UHAWAVSH(HuH\HEDvDuHG]ԉ]؅y =HHtqL(MthA)AuLHuH}=tNuIIHt 9w,}>?HY<HuH=H}E=1H([A^A_]Ã?tHi>fUHAVSH`HBHHEFB'HuHHEEHGEEy<HHLw(MH}Huк<EEEEEEHuL;HuHHEEHGEEy*<HHWH(HJ`HH;:H%H߾;HHKAHH;E9HuHyHEHEEH}Huк;H5zH}HUq;}EEEEEEH}H:Ef.EuzEf.EuzEf.Eu{9HuH}HU11;9Hu*HP@HHV@HH;Et"KH5:1H4@HH;Eu+HH`[A^]H}111:H @HH;Et=d:fUHAVSHH`DvHGD)>H4$HHD$Dt$\$\$y:HHH_(H HHt$ 9(D$ )D$P(D$0)D$@Ht$ Hb9f(L$@fL$0f(D$PfD$ fkPtx8HuHHT$ 19Z8HH>HwH4$HHD$Dt$\$\$y ?9HHtGH(Ht>D9uGHH87Hu H߾8HH5V81HHe[A^]H1118UHAVSH`H6>HHEDvHGD)kHuHgHEDu]ĉ]ȅyp8HHKH_(H>H}HuкW8$EEEEEEHuH7Ef.EuzEf.EuzEf.Eu{6HuH}HU186HH=HH"=HH;EHuHoHEDu]ĉ]ȅy x7HHtWH(HtND9ugHH6.6Hu0H߾7HH<HH;Et"KH571H<HH;Eu+HH`[A^]H}1116H[<HH;Et:DUHAVSH`H6<HHEDvHGD)kHuHdHEDu]ĉ]ȅyp6HHKH_(H>H}HuкW6$EEEEEEHuH5Ef.EuzEf.EuzEf.Eu{4HuH}HU164HH;HH";HH;EHuHlHEDu]ĉ]ȅy x5HHtWH(HtND9ugHH 5.4Hu0H߾5HH:HH;Et"KH551H:HH;Eu+HH`[A^]H}1114H[:HH;Et8DUHAVSH0DvHGD)HuHiUHEDu؉]܉]y~4HHH_(HH5TH}HUK4}HH33HuqH9HgHuHTHEDu؉]܉]y 4HHt;H(Ht2D9u;5H2HuH4HH5T31HH0[A^]H}1113UHAWAVSH(HuHHED~D}HG]ԉ]؅y `3HHt`Lw(MtWA)Au;H55H}HU,3}t4LH21HuHv8HH}21H([A^A_]fUHAWAVSH(HuH~HED~D}HG]ԉ]؅y 2HHt`Lw(MtWA)Au;H5H}HUl2}t4LH%2<1HuH7HH}&21H([A^A_]fUHAVSH HuHHEDvDuHG]]y 1HHtHG(HtD9uH0Ht1H}1111 H1HHH [A^]f.UHAVSH HuHbHEDvDuHG]]y B1HHt"HG(HtD9uHHc/Ht1H}1110 H/HHH [A^]f.UHAWAVSH(HuHHEDvDuHG]܉]y 0HHt[L(MtRD9uQMMu3IH]3MILA3IL"/Ht1H}1110 H5HHH([A^A_]HL#3H[/ fUHAWAVSH(HuHbHEDvDuHG]܉]y /HHtH}111,-HH+HuHHx++HHH [A^]DUHAWAVSHH2HHEH`HFHhD~DpHGtxy@,HH%Lw(MA)H`AHu,H`Hu+(E(M)M)EL*-IH0HuHU+Ef.Eu,z*Ef.EuzEf.EuzEf.Eu{$S*HuH`HU+/*HuH0H+1H 0H H;MuHĈ[A^A_]E1M&.f.UHSPHH=-H.tZH=ݏH-tGH=H-t4H=K5H-t!H=UH-tHH[]L*H[]f.@UHAWAVSH(HuHxHED~D}HG]ԉ]؅y *HHtwLw(MtnA)AuRH5H}HU)}tKHH0Im,IH:,(HuH/HH})1H([A^A_]fUHAWAVSHH.HHEH@HHHD~DPHGTXy0)HHLw(MA)AugH`H@)taH`Is+IH@+'Hu5H%.HH +.H H;Mt-+H@(1H -H H;MuHĨ[A^A_]f.DUHAWAVSH(HuHIUHEDvDuHG]ԉ]؅y (HHthL(Mt_A)AuCH5~H}HU'}t#)$1H0[A^]f.@UHAWAVSH(HuH0HED~D}HG]ԉ]؅y#HHLw(HEMA)AuhHuH}#}L}tlH=\L&AtbH=.L&tOH=NL&tH^HY HH _ H H;MVDUHAWAVSH(H1 HHEHH@HD~DHGypHH Lw(MA)HAHuGHHu*H HH0-HEHE(E)EŨ~HHH0tpHuHUH0LIEf.EjV1H H H;MH([A^A_]E1MIHuHUH0LEf.EuzEf.EuzEf.Eu{$HuHHU~X1fD0f.u z HH9u.mHu$LoHH0?HHHH H H;M]UHSH(HHHE^HG)Ѓ+H`HHhptxyHHH_(HHuH`vH`HuYEEEHHuHUH(Ef.u(z&Ef.uzEf.u>H0H`HU HHHyHHH_(HqHHuкTHHue7H :HH`hEEE~HHH`HHuHUH`H8Ef.u$z"Ef.uzEf.u{$`HuHHUUJ1fD`f.uCzAHH9ueH51H H H;MuiH([]1HhHu$LУHH`HuHHH H H;MtfUHSH(HHHE^HG)Ѓ+H`HHhptxy HHH_(HHuH`vH`HuYEEEHHuHUHHEf.u(z&Ef.uzEf.u>6H0H`HUiHHHyHHH_(HqHHuкTHHu7H HH`EEEYN~HHH`cHHuHUH`HXEf.u$z"Ef.uzEf.u{$HuHHU1fD`f.uCzAHH9ueH5\1H H H;MuiH([]1Hh&Hu$L8HH`_HuHrHH xH H;MtUHH=H5HH 0}u6HƠH=H]ÐUH]ZfDUHAVSIH=H5(H`H u76H`H=Y\H5,HFLt H 3t3 Ht?HH5 LHH u%HDH=6HuHtHH5LHH t5 Ht=HH5LHVH u#H[A^]H WHu[A^]fUHSH(HuHHE؋FEHEHEH}Ѓu1Hu0t3H}s HuHc H([]þ1H([]UHAWAVSH(HuHHED~D}HG]ԉ]؅y HHtdLw(HEMt8A)Au3HuH}t}Hut;H $ Ht<1@H}1)HE1ILP HuHc H([A^A_]f.@UHAVSH0HuHHEЋFEHEuGH58H}HU }t@HHtCHH5vHPE1LEU Hu+H}ȾI 1H0[A^]E1( HuL UHAVSH HuHHEDvDuHG]]y HHH(HD9u3HPxHt9HHH5HPE1LE HucH}111 RE1h HuCL Ht6HH t)H HH1Q@H߾v 1HH [A^]UHAWAVSH(HuHMHED~D}HG]ԉ]؅y HHt`Lw(MtWA)Au;H5 7H}HU }t4LHg HuHHH}v 1H([A^A_]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y 0 HHt`Lw(MtWA)Au;H5L6H}HU }t4LH HuHFHH} 1H([A^A_]fUHAVSH HuHλHEDvDuHG]]y r HHt$H(HtD9uEt&H+ Ht+12H}111! !H(H HuH[ HHH [A^]fUHAVSH HuHHEDvDuHG]]y HHt$H(HtD9uEt&H{Ht+12H}111q !H0HPHuH HHH [A^]fUHAWAVSH(HuHHED~D}HG]ԉ]؅y  HHtgLw(Mt^A)AuBHuH} tD}utHA9tAILHu6H}1H([A^A_]IL8cHuH HUHAVSH HuHHEDvDuHG]]y 2HHt&H(HtD9uH8Ht1H}111 HN HHH [A^]UHAVSH HuHHEDvDuHG]]y HHt&H(HtD9uH8IHt1H}111? H HHH [A^]UHAVSH HuHHEDvDuHG]]y HHt&H(HtD9uH 8Ht1H}111 H HHH [A^]UHAVSH HuHHEDvDuHG]]y RHHt#H(HtD9uEt% Ht*11H}111 H@HuHcHHH [A^]@UHAWAVSH(HuHKHEDvDuHG]܉]y HHt3HG(Ht*D9u)w8HH L4JHt21H}111@HH([A^A_]L5HuLgILH9HHuLLHf.@UHAVSH HuH8(HEDvDuHG]]y HHt"H(HtD9uEt$ZmHt(1.H}111cHEHuH HHH [A^]UHAVSH HuH.HEDvDuHG]]y HHt%H(HtD9uEt'HHt+1>H}111-HHHuHHxHHH [A^]DUHAVSH HuH+HEDvDuHG]]yBHHH(HD9uEt%HHul'H}111[HHHuCH$Ht6HHt)HHH1Q@H߾1HH [A^]ÐUHSPHH=oHtZH=}gHtGH=_YHt4H= Hwt!H=[-HdtHH[]H[]ÐUHAVSH=IHHHH虴HHHQHH'H)FHNHYWH}HyH葒H虮H衴HHL[A^]H=H5%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%F%G%G%G%G%G% G% G%G%G%G%G%G%G%G%G%G% G%"G%$G%&G%(G%*G%,G%.G%0G%2G%4G%6G%8G%:G%G%@G%BG%DG%FG%HG%JG%LG%NG%PG%RG%TG%VG%XG%ZG%\G%^G%`G%bG%dG%fG%hG%jG%lG%nG%pG%rG%tG%vG%xG%zG%|G%~G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%G%H%H%H%H%H% H% Hhh!h=hPhczhyphfh\hRhHh>h4h%*hH h\hc hwLiGAS%h hChhhh"hMhzhhhh+xhPnhvdhZh Ph Fh h4hV*h hh0 hchhhh;hhhhhh%hPhhh%hvhlhbhSXhNhDh:hO0h&hhh hOh~hhh+hwhhhhMhhhh |hQ rh hh ^h Th%!Jh_!@h!6h!,h.""h]"h"h"h#hb#h#h#h$h:$hr$h%hFhhhhhxhnh+dhWZhPhFh int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. IsAV.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. SafeDownCastV.SafeDownCast(vtkObjectBase) -> vtkAbstractTransform C++: static vtkAbstractTransform *SafeDownCast(vtkObjectBase *o) NewInstanceV.NewInstance() -> vtkAbstractTransform C++: vtkAbstractTransform *NewInstance() TransformPointV.TransformPoint((float, float, float), [float, float, float]) C++: void TransformPoint(const double in[3], double out[3]) V.TransformPoint(float, float, float) -> (float, float, float) C++: double *TransformPoint(double x, double y, double z) V.TransformPoint((float, float, float)) -> (float, float, float) C++: double *TransformPoint(const double point[3]) Apply the transformation to a double-precision coordinate. You can use the same array to store both the input and output point. TransformFloatPointV.TransformFloatPoint(float, float, float) -> (float, float, float) C++: float *TransformFloatPoint(float x, float y, float z) V.TransformFloatPoint((float, float, float)) -> (float, float, float) C++: float *TransformFloatPoint(const float point[3]) Apply the transformation to an (x,y,z) coordinate. Use this if you are programming in Python, tcl or Java. TransformDoublePointV.TransformDoublePoint(float, float, float) -> (float, float, float) C++: double *TransformDoublePoint(double x, double y, double z) V.TransformDoublePoint((float, float, float)) -> (float, float, float) C++: double *TransformDoublePoint(const double point[3]) Apply the transformation to a double-precision (x,y,z) coordinate. Use this if you are programming in Python, tcl or Java. TransformNormalAtPointV.TransformNormalAtPoint((float, float, float), (float, float, float), [float, float, float]) C++: void TransformNormalAtPoint(const double point[3], const double in[3], double out[3]) V.TransformNormalAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformNormalAtPoint(const double point[3], const double normal[3]) Apply the transformation to a normal at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformNormal() instead. TransformDoubleNormalAtPointV.TransformDoubleNormalAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformDoubleNormalAtPoint(const double point[3], const double normal[3]) Apply the transformation to a double-precision normal at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformDoubleNormal() instead. TransformFloatNormalAtPointV.TransformFloatNormalAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: float *TransformFloatNormalAtPoint(const float point[3], const float normal[3]) Apply the transformation to a single-precision normal at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformFloatNormal() instead. TransformVectorAtPointV.TransformVectorAtPoint((float, float, float), (float, float, float), [float, float, float]) C++: void TransformVectorAtPoint(const double point[3], const double in[3], double out[3]) V.TransformVectorAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformVectorAtPoint(const double point[3], const double vector[3]) Apply the transformation to a vector at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformVector() instead. TransformDoubleVectorAtPointV.TransformDoubleVectorAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: double *TransformDoubleVectorAtPoint(const double point[3], const double vector[3]) Apply the transformation to a double-precision vector at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformDoubleVector() instead. TransformFloatVectorAtPointV.TransformFloatVectorAtPoint((float, float, float), (float, float, float)) -> (float, float, float) C++: float *TransformFloatVectorAtPoint(const float point[3], const float vector[3]) Apply the transformation to a single-precision vector at the specified vertex. If the transformation is a vtkLinearTransform, you can use TransformFloatVector() instead. TransformPointsV.TransformPoints(vtkPoints, vtkPoints) C++: virtual void TransformPoints(vtkPoints *inPts, vtkPoints *outPts) Apply the transformation to a series of points, and append the results to outPts. TransformPointsNormalsVectorsV.TransformPointsNormalsVectors(vtkPoints, vtkPoints, vtkDataArray, vtkDataArray, vtkDataArray, vtkDataArray) C++: virtual void TransformPointsNormalsVectors(vtkPoints *inPts, vtkPoints *outPts, vtkDataArray *inNms, vtkDataArray *outNms, vtkDataArray *inVrs, vtkDataArray *outVrs) Apply the transformation to a combination of points, normals and vectors. GetInverseV.GetInverse() -> vtkAbstractTransform C++: vtkAbstractTransform *GetInverse() Get the inverse of this transform. If you modify this transform, the returned inverse transform will automatically update. If you want the inverse of a vtkTransform, you might want to use GetLinearInverse() instead which will type cast the result from vtkAbstractTransform to vtkLinearTransform. SetInverseV.SetInverse(vtkAbstractTransform) C++: void SetInverse(vtkAbstractTransform *transform) Set a transformation that this transform will be the inverse of. This transform will automatically update to agree with the inverse transform that you set. InverseV.Inverse() C++: virtual void Inverse() Invert the transformation. DeepCopyV.DeepCopy(vtkAbstractTransform) C++: void DeepCopy(vtkAbstractTransform *) Copy this transform from another of the same type. UpdateV.Update() C++: void Update() Update the transform to account for any changes which have been made. You do not have to call this method yourself, it is called automatically whenever the transform needs an update. InternalTransformPointV.InternalTransformPoint((float, float, float), [float, float, float]) C++: virtual void InternalTransformPoint(const double in[3], double out[3]) This will calculate the transformation without calling Update. Meant for use only within other VTK classes. InternalTransformDerivativeV.InternalTransformDerivative((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: virtual void InternalTransformDerivative(const double in[3], double out[3], double derivative[3][3]) This will transform a point and, at the same time, calculate a 3x3 Jacobian matrix that provides the partial derivatives of the transformation at that point. This method does not call Update. Meant for use only within other VTK classes. MakeTransformV.MakeTransform() -> vtkAbstractTransform C++: virtual vtkAbstractTransform *MakeTransform() Make another transform of the same type. CircuitCheckV.CircuitCheck(vtkAbstractTransform) -> int C++: virtual int CircuitCheck(vtkAbstractTransform *transform) Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental. GetMTimeV.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Override GetMTime necessary because of inverse transforms. vtkObjectvtkObjectBasevtkPointsvtkDataArrayvtkCommonTransformsPython.vtkTransformPairvtkTransformPair - no description provided. vtkTransformPair() vtkTransformPair(const &vtkTransformPair) this function takes no keyword argumentsSwapForwardInverseV.SwapForwardInverse() C++: void SwapForwardInverse() @W vtkTransformPairvtkCommonTransformsPython.vtkTransformConcatenationvtkTransformConcatenation - no description provided. this class cannot be instantiatedConcatenateV.Concatenate(vtkAbstractTransform) C++: void Concatenate(vtkAbstractTransform *transform) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) add a transform to the list according to Pre/PostMultiply semantics SetPreMultiplyFlagV.SetPreMultiplyFlag(int) C++: void SetPreMultiplyFlag(int flag) set/get the PreMultiply flag GetPreMultiplyFlagV.GetPreMultiplyFlag() -> int C++: int GetPreMultiplyFlag() set/get the PreMultiply flag TranslateV.Translate(float, float, float) C++: void Translate(double x, double y, double z) the three basic linear transformations RotateV.Rotate(float, float, float, float) C++: void Rotate(double angle, double x, double y, double z) the three basic linear transformations ScaleV.Scale(float, float, float) C++: void Scale(double x, double y, double z) the three basic linear transformations V.Inverse() C++: void Inverse() invert the concatenation GetInverseFlagV.GetInverseFlag() -> int C++: int GetInverseFlag() get the inverse flag IdentityV.Identity() C++: void Identity() identity simply clears the transform list GetNumberOfTransformsV.GetNumberOfTransforms() -> int C++: int GetNumberOfTransforms() the number of stored transforms GetNumberOfPreTransformsV.GetNumberOfPreTransforms() -> int C++: int GetNumberOfPreTransforms() the number of transforms that were pre-concatenated (note that whenever Iverse() is called, the pre-concatenated and post-concatenated transforms are switched) GetNumberOfPostTransformsV.GetNumberOfPostTransforms() -> int C++: int GetNumberOfPostTransforms() the number of transforms that were post-concatenated. GetTransformV.GetTransform(int) -> vtkAbstractTransform C++: vtkAbstractTransform *GetTransform(int i) get one of the transforms GetMaxMTimeV.GetMaxMTime() -> int C++: vtkMTimeType GetMaxMTime() get maximum MTime of all transforms @V *vtkAbstractTransform@P *dvtkCommonTransformsPython.vtkTransformConcatenationStackvtkTransformConcatenationStack - no description provided. vtkCylindricalTransformvtkCommonTransformsPython.vtkCylindricalTransformvtkCylindricalTransform - cylindrical to rectangular coords and back Superclass: vtkWarpTransform vtkCylindricalTransform will convert (r,theta,z) coordinates to (x,y,z) coordinates and back again. The angles are given in radians. By default, it converts cylindrical coordinates to rectangular, but GetInverse() returns a transform that will do the opposite. The equation that is used is x = r*cos(theta), y = r*sin(theta), z = z. @warning This transform is not well behaved along the line x=y=0 (i.e. along the z-axis) @sa vtkSphericalTransform vtkGeneralTransform V.SafeDownCast(vtkObjectBase) -> vtkCylindricalTransform C++: static vtkCylindricalTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkCylindricalTransform C++: vtkCylindricalTransform *NewInstance() V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make another transform of the same type. vtkWarpTransformvtkGeneralTransformvtkCommonTransformsPython.vtkGeneralTransformvtkGeneralTransform - allows operations on any transforms Superclass: vtkAbstractTransform vtkGeneralTransform is like vtkTransform and vtkPerspectiveTransform, but it will work with any vtkAbstractTransform as input. It is not as efficient as the other two, however, because arbitrary transformations cannot be concatenated by matrix multiplication. Transform concatenation is simulated by passing each input point through each transform in turn. @sa vtkTransform vtkPerspectiveTransform V.SafeDownCast(vtkObjectBase) -> vtkGeneralTransform C++: static vtkGeneralTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGeneralTransform C++: vtkGeneralTransform *NewInstance() V.Identity() C++: void Identity() Set this transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input. V.Inverse() C++: void Inverse() override; Invert the transformation. This will also set a flag so that the transformation will use the inverse of its Input, if an Input has been set. V.Translate(float, float, float) C++: void Translate(double x, double y, double z) V.Translate((float, float, float)) C++: void Translate(const double x[3]) Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. RotateWXYZV.RotateWXYZ(float, float, float, float) C++: void RotateWXYZ(double angle, double x, double y, double z) V.RotateWXYZ(float, (float, float, float)) C++: void RotateWXYZ(double angle, const double axis[3]) Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around. RotateXV.RotateX(float) C++: void RotateX(double angle) Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees. RotateYV.RotateY(float) C++: void RotateY(double angle) Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees. RotateZV.RotateZ(float) C++: void RotateZ(double angle) Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees. V.Scale(float, float, float) C++: void Scale(double x, double y, double z) V.Scale((float, float, float)) C++: void Scale(const double s[3]) Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. V.Concatenate(vtkMatrix4x4) C++: void Concatenate(vtkMatrix4x4 *matrix) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) V.Concatenate(vtkAbstractTransform) C++: void Concatenate(vtkAbstractTransform *transform) Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics. PreMultiplyV.PreMultiply() C++: void PreMultiply() Sets the internal state of the transform to PreMultiply. All subsequent operations will occur before those already represented in the current transformation. In homogeneous matrix notation, M = M*A where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply. PostMultiplyV.PostMultiply() C++: void PostMultiply() Sets the internal state of the transform to PostMultiply. All subsequent operations will occur after those already represented in the current transformation. In homogeneous matrix notation, M = A*M where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply. GetNumberOfConcatenatedTransformsV.GetNumberOfConcatenatedTransforms() -> int C++: int GetNumberOfConcatenatedTransforms() Get the total number of transformations that are linked into this one via Concatenate() operations or via SetInput(). GetConcatenatedTransformV.GetConcatenatedTransform(int) -> vtkAbstractTransform C++: vtkAbstractTransform *GetConcatenatedTransform(int i) Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file. SetInputV.SetInput(vtkAbstractTransform) C++: void SetInput(vtkAbstractTransform *input) Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. GetInputV.GetInput() -> vtkAbstractTransform C++: vtkAbstractTransform *GetInput() Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.GetInverseFlag() -> int C++: int GetInverseFlag() Get the inverse flag of the transformation. This controls whether it is the Input or the inverse of the Input that is used as the base transformation. The InverseFlag is flipped every time Inverse() is called. The InverseFlag is off when a transform is first created. PushV.Push() C++: void Push() Pushes the current transformation onto the transformation stack. PopV.Pop() C++: void Pop() Deletes the transformation on the top of the stack and sets the top to the next transformation on the stack. V.InternalTransformPoint((float, float, float), [float, float, float]) C++: void InternalTransformPoint(const double in[3], double out[3]) override; This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.InternalTransformDerivative((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void InternalTransformDerivative(const double in[3], double out[3], double derivative[3][3]) override; This will calculate the transformation as well as its derivative without calling Update. Meant for use only within other VTK classes. V.CircuitCheck(vtkAbstractTransform) -> int C++: int CircuitCheck(vtkAbstractTransform *transform) override; Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Override GetMTime to account for input and concatenation. @V *vtkMatrix4x4vtkMatrix4x4vtkHomogeneousTransformvtkCommonTransformsPython.vtkHomogeneousTransformvtkHomogeneousTransform - superclass for homogeneous transformations Superclass: vtkAbstractTransform vtkHomogeneousTransform provides a generic interface for homogeneous transformations, i.e. transformations which can be represented by multiplying a 4x4 matrix with a homogeneous coordinate. @sa vtkPerspectiveTransform vtkLinearTransform vtkIdentityTransform V.SafeDownCast(vtkObjectBase) -> vtkHomogeneousTransform C++: static vtkHomogeneousTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *NewInstance() V.TransformPoints(vtkPoints, vtkPoints) C++: void TransformPoints(vtkPoints *inPts, vtkPoints *outPts) override; Apply the transformation to a series of points, and append the results to outPts. V.TransformPointsNormalsVectors(vtkPoints, vtkPoints, vtkDataArray, vtkDataArray, vtkDataArray, vtkDataArray) C++: void TransformPointsNormalsVectors(vtkPoints *inPts, vtkPoints *outPts, vtkDataArray *inNms, vtkDataArray *outNms, vtkDataArray *inVrs, vtkDataArray *outVrs) override; Apply the transformation to a combination of points, normals and vectors. GetMatrixV.GetMatrix(vtkMatrix4x4) C++: void GetMatrix(vtkMatrix4x4 *m) V.GetMatrix() -> vtkMatrix4x4 C++: vtkMatrix4x4 *GetMatrix() Get a copy of the internal transformation matrix. The transform is Updated first, to guarantee that the matrix is valid. GetHomogeneousInverseV.GetHomogeneousInverse() -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *GetHomogeneousInverse() Just like GetInverse(), but includes typecast to vtkHomogeneousTransform. vtkIdentityTransformvtkCommonTransformsPython.vtkIdentityTransformvtkIdentityTransform - a transform that doesn't do anything Superclass: vtkLinearTransform vtkIdentityTransform is a transformation which will simply pass coordinate data unchanged. All other transform types can also do this, however, the vtkIdentityTransform does so with much greater efficiency. @sa vtkLinearTransform V.SafeDownCast(vtkObjectBase) -> vtkIdentityTransform C++: static vtkIdentityTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkIdentityTransform C++: vtkIdentityTransform *NewInstance() TransformNormalsV.TransformNormals(vtkDataArray, vtkDataArray) C++: void TransformNormals(vtkDataArray *inNms, vtkDataArray *outNms) override; Apply the transformation to a series of normals, and append the results to outNms. TransformVectorsV.TransformVectors(vtkDataArray, vtkDataArray) C++: void TransformVectors(vtkDataArray *inVrs, vtkDataArray *outVrs) override; Apply the transformation to a series of vectors, and append the results to outVrs. V.Inverse() C++: void Inverse() override; Invert the transformation. InternalTransformNormalV.InternalTransformNormal((float, float, float), [float, float, float]) C++: void InternalTransformNormal(const double in[3], double out[3]) override; This will calculate the transformation without calling Update. Meant for use only within other VTK classes. InternalTransformVectorV.InternalTransformVector((float, float, float), [float, float, float]) C++: void InternalTransformVector(const double in[3], double out[3]) override; This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make a transform of the same type. This will actually return the same transform. vtkLinearTransformvtkCommonTransformsPython.vtkLinearTransformvtkLinearTransform - abstract superclass for linear transformations Superclass: vtkHomogeneousTransform vtkLinearTransform provides a generic interface for linear (affine or 12 degree-of-freedom) geometric transformations. @sa vtkTransform vtkIdentityTransform V.SafeDownCast(vtkObjectBase) -> vtkLinearTransform C++: static vtkLinearTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLinearTransform C++: vtkLinearTransform *NewInstance() TransformNormalV.TransformNormal((float, float, float), [float, float, float]) C++: void TransformNormal(const double in[3], double out[3]) V.TransformNormal(float, float, float) -> (float, float, float) C++: double *TransformNormal(double x, double y, double z) V.TransformNormal((float, float, float)) -> (float, float, float) C++: double *TransformNormal(const double normal[3]) Apply the transformation to a double-precision normal. You can use the same array to store both the input and output. TransformFloatNormalV.TransformFloatNormal(float, float, float) -> (float, float, float) C++: float *TransformFloatNormal(float x, float y, float z) V.TransformFloatNormal((float, float, float)) -> (float, float, float) C++: float *TransformFloatNormal(const float normal[3]) Apply the transformation to an (x,y,z) normal. Use this if you are programming in python, tcl or Java. TransformDoubleNormalV.TransformDoubleNormal(float, float, float) -> (float, float, float) C++: double *TransformDoubleNormal(double x, double y, double z) V.TransformDoubleNormal((float, float, float)) -> (float, float, float) C++: double *TransformDoubleNormal(const double normal[3]) Apply the transformation to a double-precision (x,y,z) normal. Use this if you are programming in python, tcl or Java. TransformVectorV.TransformVector(float, float, float) -> (float, float, float) C++: double *TransformVector(double x, double y, double z) V.TransformVector((float, float, float)) -> (float, float, float) C++: double *TransformVector(const double normal[3]) V.TransformVector((float, float, float), [float, float, float]) C++: void TransformVector(const double in[3], double out[3]) Synonymous with TransformDoubleVector(x,y,z). Use this if you are programming in python, tcl or Java. TransformFloatVectorV.TransformFloatVector(float, float, float) -> (float, float, float) C++: float *TransformFloatVector(float x, float y, float z) V.TransformFloatVector((float, float, float)) -> (float, float, float) C++: float *TransformFloatVector(const float vec[3]) Apply the transformation to an (x,y,z) vector. Use this if you are programming in python, tcl or Java. TransformDoubleVectorV.TransformDoubleVector(float, float, float) -> (float, float, float) C++: double *TransformDoubleVector(double x, double y, double z) V.TransformDoubleVector((float, float, float)) -> (float, float, float) C++: double *TransformDoubleVector(const double vec[3]) Apply the transformation to a double-precision (x,y,z) vector. Use this if you are programming in python, tcl or Java. V.TransformNormals(vtkDataArray, vtkDataArray) C++: virtual void TransformNormals(vtkDataArray *inNms, vtkDataArray *outNms) Apply the transformation to a series of normals, and append the results to outNms. V.TransformVectors(vtkDataArray, vtkDataArray) C++: virtual void TransformVectors(vtkDataArray *inVrs, vtkDataArray *outVrs) Apply the transformation to a series of vectors, and append the results to outVrs. GetLinearInverseV.GetLinearInverse() -> vtkLinearTransform C++: vtkLinearTransform *GetLinearInverse() Just like GetInverse, but it includes a typecast to vtkLinearTransform. V.InternalTransformNormal((float, float, float), [float, float, float]) C++: virtual void InternalTransformNormal(const double in[3], double out[3]) This will calculate the transformation without calling Update. Meant for use only within other VTK classes. V.InternalTransformVector((float, float, float), [float, float, float]) C++: virtual void InternalTransformVector(const double in[3], double out[3]) This will calculate the transformation without calling Update. Meant for use only within other VTK classes. vtkMatrixToHomogeneousTransformvtkCommonTransformsPython.vtkMatrixToHomogeneousTransformvtkMatrixToHomogeneousTransform - convert a matrix to a transform Superclass: vtkHomogeneousTransform This is a very simple class which allows a vtkMatrix4x4 to be used in place of a vtkHomogeneousTransform or vtkAbstractTransform. For example, if you use it as a proxy between a matrix and vtkTransformPolyDataFilter then any modifications to the matrix will automatically be reflected in the output of the filter. @sa vtkPerspectiveTransform vtkMatrix4x4 vtkMatrixToLinearTransform V.SafeDownCast(vtkObjectBase) -> vtkMatrixToHomogeneousTransform C++: static vtkMatrixToHomogeneousTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkMatrixToHomogeneousTransform C++: vtkMatrixToHomogeneousTransform *NewInstance() V.SetInput(vtkMatrix4x4) C++: virtual void SetInput(vtkMatrix4x4 *) V.GetInput() -> vtkMatrix4x4 C++: virtual vtkMatrix4x4 *GetInput() V.Inverse() C++: void Inverse() override; The input matrix is left as-is, but the transformation matrix is inverted. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Get the MTime: this is the bit of magic that makes everything work. V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make a new transform of the same type. vtkMatrixToLinearTransformvtkCommonTransformsPython.vtkMatrixToLinearTransformvtkMatrixToLinearTransform - convert a matrix to a transform Superclass: vtkLinearTransform This is a very simple class which allows a vtkMatrix4x4 to be used in place of a vtkLinearTransform or vtkAbstractTransform. For example, if you use it as a proxy between a matrix and vtkTransformPolyDataFilter then any modifications to the matrix will automatically be reflected in the output of the filter. @sa vtkTransform vtkMatrix4x4 vtkMatrixToHomogeneousTransform V.SafeDownCast(vtkObjectBase) -> vtkMatrixToLinearTransform C++: static vtkMatrixToLinearTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkMatrixToLinearTransform C++: vtkMatrixToLinearTransform *NewInstance() V.SetInput(vtkMatrix4x4) C++: virtual void SetInput(vtkMatrix4x4 *) Set the input matrix. Any modifications to the matrix will be reflected in the transformation. V.GetInput() -> vtkMatrix4x4 C++: virtual vtkMatrix4x4 *GetInput() Set the input matrix. Any modifications to the matrix will be reflected in the transformation. vtkPerspectiveTransformvtkCommonTransformsPython.vtkPerspectiveTransformvtkPerspectiveTransform - describes a 4x4 matrix transformation Superclass: vtkHomogeneousTransform A vtkPerspectiveTransform can be used to describe the full range of homogeneous transformations. It was designed in particular to describe a camera-view of a scene. The order in which you set up the display coordinates (via AdjustZBuffer() and AdjustViewport()), the projection (via Perspective(), Frustum(), or Ortho()) and the camera view (via SetupCamera()) are important. If the transform is in PreMultiply mode, which is the default, set the Viewport and ZBuffer first, then the projection, and finally the camera view. Once the view is set up, the Translate and Rotate methods can be used to move the camera around in world coordinates. If the Oblique() or Stereo() methods are used, they should be called just before SetupCamera(). In PostMultiply mode, you must perform all transformations in the opposite order. This is necessary, for example, if you already have a perspective transformation set up but must adjust the viewport. Another example is if you have a view transformation, and wish to perform translations and rotations in the camera's coordinate system rather than in world coordinates. The SetInput and Concatenate methods can be used to create a transformation pipeline with vtkPerspectiveTransform. See vtkTransform for more information on the transformation pipeline. @sa vtkGeneralTransform vtkTransform vtkMatrix4x4 vtkCamera V.SafeDownCast(vtkObjectBase) -> vtkPerspectiveTransform C++: static vtkPerspectiveTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkPerspectiveTransform C++: vtkPerspectiveTransform *NewInstance() AdjustViewportV.AdjustViewport(float, float, float, float, float, float, float, float) C++: void AdjustViewport(double oldXMin, double oldXMax, double oldYMin, double oldYMax, double newXMin, double newXMax, double newYMin, double newYMax) Perform an adjustment to the viewport coordinates. By default Ortho, Frustum, and Perspective provide a window of ([-1,+1],[-1,+1]). In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after. Note that if you must apply both AdjustZBuffer and AdjustViewport, it makes no difference which order you apply them in. AdjustZBufferV.AdjustZBuffer(float, float, float, float) C++: void AdjustZBuffer(double oldNearZ, double oldFarZ, double newNearZ, double newFarZ) Perform an adjustment to the Z-Buffer range that the near and far clipping planes map to. By default Ortho, Frustum, and Perspective map the near clipping plane to -1 and the far clipping plane to +1. In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after. OrthoV.Ortho(float, float, float, float, float, float) C++: void Ortho(double xmin, double xmax, double ymin, double ymax, double znear, double zfar) Create an orthogonal projection matrix and concatenate it by the current transformation. The matrix maps [xmin,xmax], [ymin,ymax], [-znear,-zfar] to [-1,+1], [-1,+1], [+1,-1]. FrustumV.Frustum(float, float, float, float, float, float) C++: void Frustum(double xmin, double xmax, double ymin, double ymax, double znear, double zfar) Create an perspective projection matrix and concatenate it by the current transformation. The matrix maps a frustum with a back plane at -zfar and a front plane at -znear with extent [xmin,xmax],[ymin,ymax] to [-1,+1], [-1,+1], [+1,-1]. PerspectiveV.Perspective(float, float, float, float) C++: void Perspective(double angle, double aspect, double znear, double zfar) Create a perspective projection matrix by specifying the view angle (this angle is in the y direction), the aspect ratio, and the near and far clipping range. The projection matrix is concatenated with the current transformation. This method works via Frustum. ShearV.Shear(float, float, float) C++: void Shear(double dxdz, double dydz, double zplane) Create a shear transformation about a plane at distance z from the camera. The values dxdz (i.e. dx/dz) and dydz specify the amount of shear in the x and y directions. The 'zplane' specifies the distance from the camera to the plane at which the shear causes zero displacement. Generally you want this plane to be the focal plane. This transformation can be used in combination with Ortho to create an oblique projection. It can also be used in combination with Perspective to provide correct stereo views when the eye is at arbitrary but known positions relative to the center of a flat viewing screen. StereoV.Stereo(float, float) C++: void Stereo(double angle, double focaldistance) Create a stereo shear matrix and concatenate it with the current transformation. This can be applied in conjunction with either a perspective transformation (via Frustum or Projection) or an orthographic projection. You must specify the distance from the camera plane to the focal plane, and the angle between the distance vector and the eye. The angle should be negative for the left eye, and positive for the right. This method works via Oblique. SetupCameraV.SetupCamera((float, float, float), (float, float, float), ( float, float, float)) C++: void SetupCamera(const double position[3], const double focalpoint[3], const double viewup[3]) V.SetupCamera(float, float, float, float, float, float, float, float, float) C++: void SetupCamera(double p0, double p1, double p2, double fp0, double fp1, double fp2, double vup0, double vup1, double vup2) Set a view transformation matrix for the camera (this matrix does not contain any perspective) and concatenate it with the current transformation. SetMatrixV.SetMatrix(vtkMatrix4x4) C++: void SetMatrix(vtkMatrix4x4 *matrix) V.SetMatrix((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void SetMatrix(const double elements[16]) Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix). V.Concatenate(vtkMatrix4x4) C++: void Concatenate(vtkMatrix4x4 *matrix) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) V.Concatenate(vtkHomogeneousTransform) C++: void Concatenate(vtkHomogeneousTransform *transform) Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics. V.GetConcatenatedTransform(int) -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *GetConcatenatedTransform(int i) Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file. V.SetInput(vtkHomogeneousTransform) C++: void SetInput(vtkHomogeneousTransform *input) Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.GetInput() -> vtkHomogeneousTransform C++: vtkHomogeneousTransform *GetInput() Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.MakeTransform() -> vtkAbstractTransform C++: vtkAbstractTransform *MakeTransform() override; Make a new transform of the same type -- you are responsible for deleting the transform when you are done with it. @V *vtkHomogeneousTransformvtkSphericalTransformvtkCommonTransformsPython.vtkSphericalTransformvtkSphericalTransform - spherical to rectangular coords and back Superclass: vtkWarpTransform vtkSphericalTransform will convert (r,phi,theta) coordinates to (x,y,z) coordinates and back again. The angles are given in radians. By default, it converts spherical coordinates to rectangular, but GetInverse() returns a transform that will do the opposite. The equation that is used is x = r*sin(phi)*cos(theta), y = r*sin(phi)*sin(theta), z = r*cos(phi). @warning This transform is not well behaved along the line x=y=0 (i.e. along the z-axis) @sa vtkCylindricalTransform vtkGeneralTransform V.SafeDownCast(vtkObjectBase) -> vtkSphericalTransform C++: static vtkSphericalTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkSphericalTransform C++: vtkSphericalTransform *NewInstance() vtkThinPlateSplineTransformVTK_RBF_CUSTOMVTK_RBF_RVTK_RBF_R2LOGRvtkCommonTransformsPython.vtkThinPlateSplineTransformvtkThinPlateSplineTransform - a nonlinear warp transformation Superclass: vtkWarpTransform vtkThinPlateSplineTransform describes a nonlinear warp transform defined by a set of source and target landmarks. Any point on the mesh close to a source landmark will be moved to a place close to the corresponding target landmark. The points in between are interpolated smoothly using Bookstein's Thin Plate Spline algorithm. To obtain a correct TPS warp, use the R2LogR kernel if your data is 2D, and the R kernel if your data is 3D. Or you can specify your own RBF. (Hence this class is more general than a pure TPS transform.) @warning 1) The inverse transform is calculated using an iterative method, and is several times more expensive than the forward transform. 2) Whenever you add, subtract, or set points you must call Modified() on the vtkPoints object, or the transformation might not update. 3) Collinear point configurations (except those that lie in the XY plane) result in an unstable transformation. @sa vtkGridTransform vtkGeneralTransform V.SafeDownCast(vtkObjectBase) -> vtkThinPlateSplineTransform C++: static vtkThinPlateSplineTransform *SafeDownCast( vtkObjectBase *o) V.NewInstance() -> vtkThinPlateSplineTransform C++: vtkThinPlateSplineTransform *NewInstance() GetSigmaV.GetSigma() -> float C++: virtual double GetSigma() Specify the 'stiffness' of the spline. The default is 1.0. SetSigmaV.SetSigma(float) C++: virtual void SetSigma(double _arg) Specify the 'stiffness' of the spline. The default is 1.0. SetBasisV.SetBasis(int) C++: void SetBasis(int basis) Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. GetBasisV.GetBasis() -> int C++: virtual int GetBasis() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. SetBasisToRV.SetBasisToR() C++: void SetBasisToR() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. SetBasisToR2LogRV.SetBasisToR2LogR() C++: void SetBasisToR2LogR() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. GetBasisAsStringV.GetBasisAsString() -> string C++: const char *GetBasisAsString() Specify the radial basis function to use. The default is R2LogR which is appropriate for 2D. Use |R| (SetBasisToR) if your data is 3D. Alternatively specify your own basis function, however this will mean that the transform will no longer be a true thin-plate spline. SetSourceLandmarksV.SetSourceLandmarks(vtkPoints) C++: void SetSourceLandmarks(vtkPoints *source) Set the source landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. GetSourceLandmarksV.GetSourceLandmarks() -> vtkPoints C++: virtual vtkPoints *GetSourceLandmarks() Set the source landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. SetTargetLandmarksV.SetTargetLandmarks(vtkPoints) C++: void SetTargetLandmarks(vtkPoints *target) Set the target landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. GetTargetLandmarksV.GetTargetLandmarks() -> vtkPoints C++: virtual vtkPoints *GetTargetLandmarks() Set the target landmarks for the warp. If you add or change the vtkPoints object, you must call Modified() on it or the transformation might not update. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; Get the MTime. vtkTransform2DvtkCommonTransformsPython.vtkTransform2DvtkTransform2D - describes linear transformations via a 3x3 matrix Superclass: vtkObject A vtkTransform2D can be used to describe the full range of linear (also known as affine) coordinate transformations in two dimensions, which are internally represented as a 3x3 homogeneous transformation matrix. When you create a new vtkTransform2D, it is always initialized to the identity transformation. All multiplicitive operations (Translate, Rotate, Scale, etc) are post-multiplied in this class (i.e. add them in the reverse of the order that they should be applied). This class performs all of its operations in a right handed coordinate system with right handed rotations. Some other graphics libraries use left handed coordinate systems and rotations. V.SafeDownCast(vtkObjectBase) -> vtkTransform2D C++: static vtkTransform2D *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTransform2D C++: vtkTransform2D *NewInstance() V.Identity() C++: void Identity() Set the transformation to the identity transformation. V.Inverse() C++: void Inverse() Invert the transformation. V.Translate(float, float) C++: void Translate(double x, double y) V.Translate((float, float)) C++: void Translate(const double x[2]) Create a translation matrix and concatenate it with the current transformation. V.Rotate(float) C++: void Rotate(double angle) Create a rotation matrix and concatenate it with the current transformation. The angle is in degrees. V.Scale(float, float) C++: void Scale(double x, double y) V.Scale((float, float)) C++: void Scale(const double s[2]) Create a scale matrix (i.e. set the diagonal elements to x, y) and concatenate it with the current transformation. V.SetMatrix(vtkMatrix3x3) C++: void SetMatrix(vtkMatrix3x3 *matrix) V.SetMatrix((float, float, float, float, float, float, float, float, float)) C++: void SetMatrix(const double elements[9]) Set the current matrix directly. V.GetMatrix() -> vtkMatrix3x3 C++: virtual vtkMatrix3x3 *GetMatrix() V.GetMatrix(vtkMatrix3x3) C++: void GetMatrix(vtkMatrix3x3 *matrix) Get the underlying 3x3 matrix. GetPositionV.GetPosition([float, float]) C++: void GetPosition(double pos[2]) Return the position from the current transformation matrix as an array of two floating point numbers. This is simply returning the translation component of the 3x3 matrix. GetScaleV.GetScale([float, float]) C++: void GetScale(double pos[2]) Return the x and y scale from the current transformation matrix as an array of two floating point numbers. This is simply returning the scale component of the 3x3 matrix. V.GetInverse(vtkMatrix3x3) C++: void GetInverse(vtkMatrix3x3 *inverse) Return a matrix which is the inverse of the current transformation matrix. GetTransposeV.GetTranspose(vtkMatrix3x3) C++: void GetTranspose(vtkMatrix3x3 *transpose) Return a matrix which is the transpose of the current transformation matrix. This is equivalent to the inverse if and only if the transformation is a pure rotation with no translation or scale. V.TransformPoints((float, ...), [float, ...], int) C++: void TransformPoints(const double *inPts, double *outPts, int n) V.TransformPoints(vtkPoints2D, vtkPoints2D) C++: void TransformPoints(vtkPoints2D *inPts, vtkPoints2D *outPts) Apply the transformation to a series of points, and append the results to outPts. Where n is the number of points, and the float pointers are of length 2*n. InverseTransformPointsV.InverseTransformPoints((float, ...), [float, ...], int) C++: void InverseTransformPoints(const double *inPts, double *outPts, int n) V.InverseTransformPoints(vtkPoints2D, vtkPoints2D) C++: void InverseTransformPoints(vtkPoints2D *inPts, vtkPoints2D *outPts) Apply the transformation to a series of points, and append the results to outPts. Where n is the number of points, and the float pointers are of length 2*n. MultiplyPointV.MultiplyPoint((float, float, float), [float, float, float]) C++: void MultiplyPoint(const double in[3], double out[3]) Use this method only if you wish to compute the transformation in homogeneous (x,y,w) coordinates, otherwise use TransformPoint(). This method calls this->GetMatrix()->MultiplyPoint(). @V *vtkMatrix3x3vtkMatrix3x3vtkPoints2DvtkTransformCollectionvtkCommonTransformsPython.vtkTransformCollectionvtkTransformCollection - maintain a list of transforms Superclass: vtkCollection vtkTransformCollection is an object that creates and manipulates lists of objects of type vtkTransform. @sa vtkCollection vtkTransform V.SafeDownCast(vtkObjectBase) -> vtkTransformCollection C++: static vtkTransformCollection *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTransformCollection C++: vtkTransformCollection *NewInstance() AddItemV.AddItem(vtkTransform) C++: void AddItem(vtkTransform *) Add a Transform to the list. GetNextItemV.GetNextItem() -> vtkTransform C++: vtkTransform *GetNextItem() Get the next Transform in the list. Return nullptr when the end of the list is reached. vtkCollectionvtkTransformvtkCommonTransformsPython.vtkTransformvtkTransform - describes linear transformations via a 4x4 matrix Superclass: vtkLinearTransform A vtkTransform can be used to describe the full range of linear (also known as affine) coordinate transformations in three dimensions, which are internally represented as a 4x4 homogeneous transformation matrix. When you create a new vtkTransform, it is always initialized to the identity transformation. The SetInput() method allows you to set another transform, instead of the identity transform, to be the base transformation. There is a pipeline mechanism to ensure that when the input is modified, the current transformation will be updated accordingly. This pipeline mechanism is also supported by the Concatenate() method. Most of the methods for manipulating this transformation, e.g. Translate, Rotate, and Concatenate, can operate in either PreMultiply (the default) or PostMultiply mode. In PreMultiply mode, the translation, concatenation, etc. will occur before any transformations which are represented by the current matrix. In PostMultiply mode, the additional transformation will occur after any transformations represented by the current matrix. This class performs all of its operations in a right handed coordinate system with right handed rotations. Some other graphics libraries use left handed coordinate systems and rotations. @sa vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4 vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter vtkImageReslice V.SafeDownCast(vtkObjectBase) -> vtkTransform C++: static vtkTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkTransform C++: vtkTransform *NewInstance() V.Identity() C++: void Identity() Set the transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input. V.SetMatrix(vtkMatrix4x4) C++: void SetMatrix(vtkMatrix4x4 *matrix) V.SetMatrix((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void SetMatrix(const double elements[16]) Set the current matrix directly. Note: First, the current matrix is set to the identity, then the input matrix is concatenated. V.Concatenate(vtkMatrix4x4) C++: void Concatenate(vtkMatrix4x4 *matrix) V.Concatenate((float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float) ) C++: void Concatenate(const double elements[16]) V.Concatenate(vtkLinearTransform) C++: void Concatenate(vtkLinearTransform *transform) Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics. V.GetConcatenatedTransform(int) -> vtkLinearTransform C++: vtkLinearTransform *GetConcatenatedTransform(int i) Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file. GetOrientationV.GetOrientation([float, float, float]) C++: void GetOrientation(double orient[3]) V.GetOrientation() -> (float, float, float) C++: double *GetOrientation() V.GetOrientation([float, float, float], vtkMatrix4x4) C++: static void GetOrientation(double orient[3], vtkMatrix4x4 *matrix) Get the x, y, z orientation angles from the transformation matrix as an array of three floating point values. GetOrientationWXYZV.GetOrientationWXYZ([float, float, float, float]) C++: void GetOrientationWXYZ(double wxyz[4]) V.GetOrientationWXYZ() -> (float, float, float, float) C++: double *GetOrientationWXYZ() Return the wxyz angle+axis representing the current orientation. The angle is in degrees and the axis is a unit vector. V.GetPosition([float, float, float]) C++: void GetPosition(double pos[3]) V.GetPosition() -> (float, float, float) C++: double *GetPosition() Return the position from the current transformation matrix as an array of three floating point numbers. This is simply returning the translation component of the 4x4 matrix. V.GetScale([float, float, float]) C++: void GetScale(double scale[3]) V.GetScale() -> (float, float, float) C++: double *GetScale() Return the scale factors of the current transformation matrix as an array of three float numbers. These scale factors are not necessarily about the x, y, and z axes unless unless the scale transformation was applied before any rotations. V.GetInverse(vtkMatrix4x4) C++: void GetInverse(vtkMatrix4x4 *inverse) V.GetInverse() -> vtkAbstractTransform C++: vtkAbstractTransform *GetInverse() Return a matrix which is the inverse of the current transformation matrix. V.GetTranspose(vtkMatrix4x4) C++: void GetTranspose(vtkMatrix4x4 *transpose) Return a matrix which is the transpose of the current transformation matrix. This is equivalent to the inverse if and only if the transformation is a pure rotation with no translation or scale. V.SetInput(vtkLinearTransform) C++: void SetInput(vtkLinearTransform *input) Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.GetInput() -> vtkLinearTransform C++: vtkLinearTransform *GetInput() Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input. V.MultiplyPoint((float, float, float, float), [float, float, float, float]) C++: void MultiplyPoint(const double in[4], double out[4]) Use this method only if you wish to compute the transformation in homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint(). This method calls this->GetMatrix()->MultiplyPoint(). @V *vtkLinearTransformvtkCommonTransformsPython.vtkWarpTransformvtkWarpTransform - superclass for nonlinear geometric transformations Superclass: vtkAbstractTransform vtkWarpTransform provides a generic interface for nonlinear warp transformations. @sa vtkThinPlateSplineTransform vtkGridTransform vtkGeneralTransform V.SafeDownCast(vtkObjectBase) -> vtkWarpTransform C++: static vtkWarpTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkWarpTransform C++: vtkWarpTransform *NewInstance() V.Inverse() C++: void Inverse() override; Invert the transformation. Warp transformations are usually inverted using an iterative technique such as Newton's method. The inverse transform is usually around five or six times as computationally expensive as the forward transform. V.GetInverseFlag() -> int C++: virtual int GetInverseFlag() Get the inverse flag of the transformation. This flag is set to zero when the transformation is first created, and is flipped each time Inverse() is called. SetInverseToleranceV.SetInverseTolerance(float) C++: virtual void SetInverseTolerance(double _arg) Set the tolerance for inverse transformation. The default is 0.001. GetInverseToleranceV.GetInverseTolerance() -> float C++: virtual double GetInverseTolerance() Set the tolerance for inverse transformation. The default is 0.001. SetInverseIterationsV.SetInverseIterations(int) C++: virtual void SetInverseIterations(int _arg) Set the maximum number of iterations for the inverse transformation. The default is 500, but usually only 2 to 5 iterations are used. The inversion method is fairly robust, and it should converge for nearly all smooth transformations that do not fold back on themselves. GetInverseIterationsV.GetInverseIterations() -> int C++: virtual int GetInverseIterations() Set the maximum number of iterations for the inverse transformation. The default is 500, but usually only 2 to 5 iterations are used. The inversion method is fairly robust, and it should converge for nearly all smooth transformations that do not fold back on themselves. V.InternalTransformDerivative((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void InternalTransformDerivative(const double in[3], double out[3], double derivative[3][3]) override; This will calculate the transformation, as well as its derivative without calling Update. Meant for use only within other VTK classes. TemplateTransformPointV.TemplateTransformPoint((float, float, float), [float, float, float]) C++: void TemplateTransformPoint(const double in[3], double out[3]) V.TemplateTransformPoint((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void TemplateTransformPoint(const double in[3], double out[3], double derivative[3][3]) Do not use these methods. They exists only as a work-around for internal templated functions (I really didn't want to make the Forward/Inverse methods public, is there a decent work around for this sort of thing?) TemplateTransformInverseV.TemplateTransformInverse((float, float, float), [float, float, float]) C++: void TemplateTransformInverse(const double in[3], double out[3]) V.TemplateTransformInverse((float, float, float), [float, float, float], [[float, float, float], [float, float, float], [float, float, float]]) C++: void TemplateTransformInverse(const double in[3], double out[3], double derivative[3][3]) Do not use these methods. They exists only as a work-around for internal templated functions (I really didn't want to make the Forward/Inverse methods public, is there a decent work around for this sort of thing?) vtkLandmarkTransformVTK_LANDMARK_RIGIDBODYVTK_LANDMARK_SIMILARITYVTK_LANDMARK_AFFINEvtkCommonTransformsPython.vtkLandmarkTransformvtkLandmarkTransform - a linear transform specified by two corresponding point sets Superclass: vtkLinearTransform A vtkLandmarkTransform is defined by two sets of landmarks, the transform computed gives the best fit mapping one onto the other, in a least squares sense. The indices are taken to correspond, so point 1 in the first set will get mapped close to point 1 in the second set, etc. Call SetSourceLandmarks and SetTargetLandmarks to specify the two sets of landmarks, ensure they have the same number of points. @warning Whenever you add, subtract, or set points you must call Modified() on the vtkPoints object, or the transformation might not update. @sa vtkLinearTransform V.SafeDownCast(vtkObjectBase) -> vtkLandmarkTransform C++: static vtkLandmarkTransform *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLandmarkTransform C++: vtkLandmarkTransform *NewInstance() V.SetSourceLandmarks(vtkPoints) C++: void SetSourceLandmarks(vtkPoints *points) Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. V.SetTargetLandmarks(vtkPoints) C++: void SetTargetLandmarks(vtkPoints *points) Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. V.GetSourceLandmarks() -> vtkPoints C++: virtual vtkPoints *GetSourceLandmarks() Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. V.GetTargetLandmarks() -> vtkPoints C++: virtual vtkPoints *GetTargetLandmarks() Specify the source and target landmark sets. The two sets must have the same number of points. If you add or change points in these objects, you must call Modified() on them or the transformation might not update. SetModeV.SetMode(int) C++: virtual void SetMode(int _arg) Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. SetModeToRigidBodyV.SetModeToRigidBody() C++: void SetModeToRigidBody() Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. SetModeToSimilarityV.SetModeToSimilarity() C++: void SetModeToSimilarity() Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. SetModeToAffineV.SetModeToAffine() C++: void SetModeToAffine() Set the number of degrees of freedom to constrain the solution to. Rigidbody (VTK_LANDMARK_RIGIDBODY): rotation and translation only. Similarity (VTK_LANDMARK_SIMILARITY): rotation, translation and isotropic scaling. Affine (VTK_LANDMARK_AFFINE): collinearity is preserved. Ratios of distances along a line are preserved. The default is similarity. GetModeV.GetMode() -> int C++: virtual int GetMode() Get the current transformation mode. GetModeAsStringV.GetModeAsString() -> string C++: const char *GetModeAsString() Get the current transformation mode. V.Inverse() C++: void Inverse() override; Invert the transformation. This is done by switching the source and target landmarks. RigidBodySimilarityAffineUnrecognizedreal_initvtkCommonTransformsPythoncan't get dictionary for module vtkCommonTransformsPythonvtkCommonTransformsPython? qqyn qqyn)  <})  <} qqyn8<!aXaQXQ l|Tk|Ȼ-ܻZP_ P P00`@ !"""#P$$`%&&)--P. 00P102p36p6779:0<`?APCCEPGHIO@QS TTUV`X`Y[P\\`aabcpeph jjrs`tt@u v`wPPpP`МpP`P P@0p`@ Pp @0Pp0P@@` P  PpP`0 !# $())`*+./P0011P6==0??@PBC0EFHIKL(::::3  *4>HR\fpzȾҾܾ",",6@JT^hr|6@JT^hr|¿ֿ̿&0:DNXblv  *4>HR\fpz$.8BLV`jt~ (2<FPZdnx&0:HD~oopqfru_`uswx{>0|ZP} vPKT`@F O(! p( H0P{0ov{@Жg`} Й(@P`pm0HDK~pP@ @dHDA~  /ХЦPxЩYaRPZK SDp|GSp 2бp   * . ` 0 кTdF` 0mHD~\9u0wp  YHD~pG9@l ` HD~`@ 0n!!0!##:%P%&P&(0(E*[*p9p+p,p- - A.`L/0 w0HD0~2.33p3 "4F455HD5~p 7 P8 8p U9 "4F 45:HDD:~ ?@@P@aCoCKEQEF F*H`6HIpIyL`LN0N!x"Y@$aR%ZK%S&DP0(Pp(9RG(Sp) *2* T+Up,W-  - * .. `/pYP0TF0112445DZvZHDZ~7`89\P:t]P;d ^HDC^~=>@gb@bTcA]ccpBcOd`CXdeDefDf h`E1hriFijFjkGkl@HlmImFInpJd.oHDWo~PLMNNrNrOsPP]sPso0RqtRuP0TuupTvwUwxWxvPXryzYzFYZ%{|P_|r~d~epfHD&~`h0i`jkׁl߁8lDHD!~pnnopiq rrxPtYvaRvZKwSpxDPyr0zGpzS0{{2|cp}r0wЁGxЃvЅzݕ    * . pTP5F@r~@@ћHD~``ѝƟڟpp*P Пp #HD~PЫȭpAjpl0km:PBԴ0|в'p7ƹι#3F`n d N!(W"`6A`CTFppRASASASASASASASASASASASASASASASASASASASASASASASASAp8pp@p0pp`RAp(pp8pp@p0pp`RASASASASASASASASASASASASASAp8pp@p0pphp8ppRASASASASAp8ppRASASASASASASASASASASASASASASASASASASASASASASASASASASAp(pHppRASASASASASASASASASApHppRASASASASASASASASASASASASASApHppRASASASASASASASASASASASASASASASASASASApHppRASASASASASASASASAp8ppRASASASASASASASASAp8ppRASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp(p(p8ppRASASASASAp8ppRASASASASASASASASASASASASASASASASAp8ppRASASASASASASASASASASASASASASASASASASAp(p8ppRASASASASASAp8ppRASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp(p(p8ppRASASASASASASASASASASASASASApXppRASASASASASASASASASASASASASASASASApHpQ>@_PyExc_TypeErrorQq@_PyObject_Freer@_PyObject_GC_Del   @_PyObject_GenericGetAttr    @_PyObject_GenericSetAttr   @_PyType_Type    @__Py_NoneStructq@_PyVTKObject_AsBufferr    @_PyVTKObject_Delete   @_PyVTKObject_GetSet   @_PyVTKObject_New   @_PyVTKObject_Repr   @_PyVTKObject_String   @_PyVTKObject_Traverse   @_PyVTKSpecialObject_Repr؁@__ZN13vtkPythonArgs5ArrayIdEC1El@__ZdaPv@__ZdlPv@__Znwm@___gxx_personality_v0q@___stack_chk_guard@dyld_stub_binder@__ZN13vtkPythonArgs5ArrayIdEC1ElQr@__ZdaPv@__ZdlPv@__Znwmr>@_PyBytes_FromStringAndSizer>@_PyDict_SetItemStringr>@_PyDict_Sizer>@_PyErr_Clearr >@_PyErr_Occurredr(>@_PyErr_SetStringr0>@_PyFloat_FromDoubler8>@_PyLong_FromLongr@>@_PyLong_FromUnsignedLongrH>@_PyModule_Create2rP>@_PyModule_GetDictrX>@_PyObject_Freer`>@_PyObject_HashNotImplementedrh>@_PyType_Readyrp>@_PyUnicode_FromStringAndSizerx@_PyVTKClass_Addr@_PyVTKObject_Checkr@_PyVTKObject_GetObjectr@_PyVTKObject_SetFlagr@_PyVTKSpecialObject_Newr@_PyVTKSpecialType_Addr@_PyvtkCollection_ClassNewr@_PyvtkObject_ClassNewr>@__Py_Deallocr>@__Py_FatalErrorFuncr@__Unwind_Resumer@__ZN12vtkMatrix3x313MultiplyPointEPKdS1_Pdr@__ZN12vtkMatrix4x413MultiplyPointEPKdS1_Pdr@__ZN12vtkTransform10GetInverseEP12vtkMatrix4x4r@__ZN12vtkTransform11ConcatenateEP18vtkLinearTransformr@__ZN12vtkTransform11GetPositionEPdr@__ZN12vtkTransform12CircuitCheckEP20vtkAbstractTransformr@__ZN12vtkTransform12GetTransposeEP12vtkMatrix4x4r@__ZN12vtkTransform13MakeTransformEvr@__ZN12vtkTransform14GetOrientationEPdr@__ZN12vtkTransform14GetOrientationEPdP12vtkMatrix4x4r@__ZN12vtkTransform18GetOrientationWXYZEPdr@__ZN12vtkTransform3NewEvr@__ZN12vtkTransform7InverseEvr@__ZN12vtkTransform8GetMTimeEvr@__ZN12vtkTransform8GetScaleEPdr@__ZN12vtkTransform8IdentityEvr@__ZN12vtkTransform8SetInputEP18vtkLinearTransformr@__ZN13vtkCollection7AddItemEP9vtkObjectr@__ZN13vtkObjectBase8IsTypeOfEPKcr@__ZN13vtkPythonArgs10BuildTupleEPKdir@__ZN13vtkPythonArgs10BuildTupleEPKfir@__ZN13vtkPythonArgs10GetArgSizeEir@__ZN13vtkPythonArgs13ArgCountErrorEiPKcr@__ZN13vtkPythonArgs13ArgCountErrorEiir@__ZN13vtkPythonArgs16PureVirtualErrorEvr@__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbr@__ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_r@__ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_objectr@__ZN13vtkPythonArgs8GetArrayEPdir@__ZN13vtkPythonArgs8GetArrayEPfir@__ZN13vtkPythonArgs8GetValueERPcr@__ZN13vtkPythonArgs8GetValueERdr@__ZN13vtkPythonArgs8GetValueERfr@__ZN13vtkPythonArgs8GetValueERir@__ZN13vtkPythonArgs8SetArrayEiPKdir@__ZN13vtkPythonArgs9GetNArrayEPdiPKir@__ZN13vtkPythonArgs9SetNArrayEiPKdiPKir@__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBaser@__ZN14vtkTransform2D10GetInverseEP12vtkMatrix3x3r@__ZN14vtkTransform2D11GetPositionEPdr@__ZN14vtkTransform2D12GetTransposeEP12vtkMatrix3x3r@__ZN14vtkTransform2D15TransformPointsEP11vtkPoints2DS1_r@__ZN14vtkTransform2D15TransformPointsEPKdPdir@__ZN14vtkTransform2D22InverseTransformPointsEP11vtkPoints2DS1_r@__ZN14vtkTransform2D22InverseTransformPointsEPKdPdir@__ZN14vtkTransform2D3NewEvr@__ZN14vtkTransform2D5ScaleEddr@__ZN14vtkTransform2D6RotateEdr@__ZN14vtkTransform2D7InverseEvr@__ZN14vtkTransform2D8GetMTimeEvr@__ZN14vtkTransform2D8GetScaleEPdr@__ZN14vtkTransform2D8IdentityEvr@__ZN14vtkTransform2D9GetMatrixEP12vtkMatrix3x3r@__ZN14vtkTransform2D9SetMatrixEPKdr@__ZN14vtkTransform2D9TranslateEddr@__ZN16vtkWarpTransform22InternalTransformPointEPKdPdr@__ZN16vtkWarpTransform27InternalTransformDerivativeEPKdPdPA3_dr@__ZN16vtkWarpTransform7InverseEvr@__ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3_r@__ZN18vtkLinearTransform15TransformPointsEP9vtkPointsS1_r@__ZN18vtkLinearTransform16TransformNormalsEP12vtkDataArrayS1_r@__ZN18vtkLinearTransform16TransformVectorsEP12vtkDataArrayS1_r@__ZN18vtkLinearTransform22InternalTransformPointEPKdPdr@__ZN18vtkLinearTransform23InternalTransformNormalEPKdPdr@__ZN18vtkLinearTransform23InternalTransformVectorEPKdPdr@__ZN18vtkLinearTransform27InternalTransformDerivativeEPKdPdPA3_dr@__ZN18vtkLinearTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3_r@__ZN19vtkGeneralTransform11ConcatenateEP20vtkAbstractTransformr@__ZN19vtkGeneralTransform12CircuitCheckEP20vtkAbstractTransformr@__ZN19vtkGeneralTransform13MakeTransformEvr@__ZN19vtkGeneralTransform22InternalTransformPointEPKdPdr@__ZN19vtkGeneralTransform27InternalTransformDerivativeEPKdPdPA3_dr@__ZN19vtkGeneralTransform3NewEvr@__ZN19vtkGeneralTransform8GetMTimeEvr@__ZN19vtkGeneralTransform8SetInputEP20vtkAbstractTransformr@__ZN20vtkAbstractTransform10GetInverseEvr@__ZN20vtkAbstractTransform10SetInverseEPS_r@__ZN20vtkAbstractTransform12CircuitCheckEPS_r@__ZN20vtkAbstractTransform15TransformPointsEP9vtkPointsS1_r@__ZN20vtkAbstractTransform22TransformNormalAtPointEPKdS1_Pdr@__ZN20vtkAbstractTransform22TransformNormalAtPointEPKfS1_Pfr@__ZN20vtkAbstractTransform22TransformVectorAtPointEPKdS1_Pdr@__ZN20vtkAbstractTransform22TransformVectorAtPointEPKfS1_Pfr@__ZN20vtkAbstractTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3_r@__ZN20vtkAbstractTransform6UpdateEvr@__ZN20vtkAbstractTransform8DeepCopyEPS_r@__ZN20vtkAbstractTransform8GetMTimeEvr@__ZN20vtkIdentityTransform13MakeTransformEvr@__ZN20vtkIdentityTransform15TransformPointsEP9vtkPointsS1_r@__ZN20vtkIdentityTransform16TransformNormalsEP12vtkDataArrayS1_r@__ZN20vtkIdentityTransform16TransformVectorsEP12vtkDataArrayS1_r@__ZN20vtkIdentityTransform22InternalTransformPointEPKdPdr@__ZN20vtkIdentityTransform23InternalTransformNormalEPKdPdr@__ZN20vtkIdentityTransform23InternalTransformVectorEPKdPdr@__ZN20vtkIdentityTransform27InternalTransformDerivativeEPKdPdPA3_dr@__ZN20vtkIdentityTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3_r@__ZN20vtkIdentityTransform3NewEvr@__ZN20vtkLandmarkTransform13MakeTransformEvr@__ZN20vtkLandmarkTransform18SetSourceLandmarksEP9vtkPointsr@__ZN20vtkLandmarkTransform18SetTargetLandmarksEP9vtkPointsr@__ZN20vtkLandmarkTransform3NewEvr@__ZN20vtkLandmarkTransform7InverseEvr@__ZN20vtkLandmarkTransform8GetMTimeEvr@__ZN21vtkSphericalTransform13MakeTransformEvr@__ZN21vtkSphericalTransform3NewEvr@__ZN22vtkTransformCollection3NewEvr@__ZN23vtkCylindricalTransform13MakeTransformEvr@__ZN23vtkCylindricalTransform3NewEvr@__ZN23vtkHomogeneousTransform15TransformPointsEP9vtkPointsS1_r@__ZN23vtkHomogeneousTransform22InternalTransformPointEPKdPdr@__ZN23vtkHomogeneousTransform27InternalTransformDerivativeEPKdPdPA3_dr@__ZN23vtkHomogeneousTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3_r@__ZN23vtkHomogeneousTransform9GetMatrixEP12vtkMatrix4x4r@__ZN23vtkPerspectiveTransform11ConcatenateEP23vtkHomogeneousTransformr@__ZN23vtkPerspectiveTransform11PerspectiveEddddr@__ZN23vtkPerspectiveTransform11SetupCameraEPKdS1_S1_r@__ZN23vtkPerspectiveTransform11SetupCameraEdddddddddr @__ZN23vtkPerspectiveTransform12CircuitCheckEP20vtkAbstractTransformr @__ZN23vtkPerspectiveTransform13AdjustZBufferEddddr @__ZN23vtkPerspectiveTransform13MakeTransformEvr @__ZN23vtkPerspectiveTransform14AdjustViewportEddddddddr @__ZN23vtkPerspectiveTransform3NewEvr @__ZN23vtkPerspectiveTransform5OrthoEddddddr @__ZN23vtkPerspectiveTransform5ShearEdddr @__ZN23vtkPerspectiveTransform6StereoEddr @__ZN23vtkPerspectiveTransform7FrustumEddddddr @__ZN23vtkPerspectiveTransform8GetMTimeEvr @__ZN23vtkPerspectiveTransform8SetInputEP23vtkHomogeneousTransformr @__ZN25vtkTransformConcatenation11ConcatenateEP20vtkAbstractTransformr @__ZN25vtkTransformConcatenation11ConcatenateEPKdr @__ZN25vtkTransformConcatenation11GetMaxMTimeEvr @__ZN25vtkTransformConcatenation12GetTransformEir @__ZN25vtkTransformConcatenation5ScaleEdddr @__ZN25vtkTransformConcatenation6RotateEddddr @__ZN25vtkTransformConcatenation7InverseEvr @__ZN25vtkTransformConcatenation8IdentityEvr @__ZN25vtkTransformConcatenation9TranslateEdddr @__ZN26vtkMatrixToLinearTransform13MakeTransformEvr @__ZN26vtkMatrixToLinearTransform3NewEvr @__ZN26vtkMatrixToLinearTransform7InverseEvr @__ZN26vtkMatrixToLinearTransform8GetMTimeEvr @__ZN26vtkMatrixToLinearTransform8SetInputEP12vtkMatrix4x4r @__ZN27vtkThinPlateSplineTransform13MakeTransformEvr @__ZN27vtkThinPlateSplineTransform16GetBasisAsStringEvr @__ZN27vtkThinPlateSplineTransform18SetSourceLandmarksEP9vtkPointsr @__ZN27vtkThinPlateSplineTransform18SetTargetLandmarksEP9vtkPointsr @__ZN27vtkThinPlateSplineTransform3NewEvr @__ZN27vtkThinPlateSplineTransform8GetMTimeEvr @__ZN27vtkThinPlateSplineTransform8SetBasisEir @__ZN30vtkTransformConcatenationStack3PopEPP25vtkTransformConcatenationr @__ZN30vtkTransformConcatenationStack4PushEPP25vtkTransformConcatenationr @__ZN30vtkTransformConcatenationStackC1Evr @__ZN31vtkMatrixToHomogeneousTransform13MakeTransformEvr @__ZN31vtkMatrixToHomogeneousTransform3NewEvr @__ZN31vtkMatrixToHomogeneousTransform7InverseEvr @__ZN31vtkMatrixToHomogeneousTransform8GetMTimeEvr @__ZN31vtkMatrixToHomogeneousTransform8SetInputEP12vtkMatrix4x4r @___stack_chk_failr @_memcpyr @_strcmpr @_strlen_Py0real_initvtkCommonTransformsPythonvtkHVTKAddFile_vtk AbstractTransform_ClassNewTCylindricalTransform_ClassNewGeneralTransform_ClassNewHomogeneousTransform_ClassNewIdentityTransform_ClassNewLMatrixToPerspectiveTransform_ClassNewSphericalTransform_ClassNewWarpTransform_ClassNewransformhinPlateSplineTransform_ClassNewPair_TypeNewCo2D_ClassNew_ClassNewncatenationllection_ClassNew_TypeNewStack_TypeNew AbstractTransformCylindricalTransformGeneralTransformHomogeneousTransformIdentityTransformLMatrixToPerspectiveTransformSphericalTransformTWarpTransforminearTransform_ClassNewandmarkTransform_ClassNewinearTransformandmarkTransformHomogeneousTransform_ClassNewLinearTransform_ClassNewHomogeneousTransformLinearTransformhinPlateSplineTransformransform2DCollectionЩPP0@@0 0 PP@PPPPPP@@PPP@ PP@@PPg&l&o&o&p'qS'r'`u'w(xF({(0|(P})W)))*P*P***+W++`+@ , ;,d,, ,,p3-e- -0-P.P.0...2/h/@/Ж/` 0g00 0Й$1pa101@1P 2`O2Мz2p2P23@P3@33 34 C4Хw4Ц44P 5Щ=5m5P5 55p/6c6p6 6б#7T7p7778`T808к8949`k9 909:>:w:::5;0k;p;;8<`<p<<<*=c===>@O>>>?`V???`?@@D@0w@0@@'AP^A0AApBpFBp~BpB B9CxC`C0C -DjDDD#E`EpE EFXFFpFF -G hG Gp G H GHHH`HIBI {IIIJPWJJJ J`/KpaK`K0K!L"9L@$mL%L%L&M0(=Mp(uM(Mp)M *4N*yN+Np,N-O-OO.O`/OP0O01'P1`P2P4P4Q5JQ6sQ7Q`8Q9 RP:ARP;yR<R=R>S@RS@SASpBT`C9TDrTDT`ETF0UFsUGU@HUIyq P?q @q 0Eq Er Fr G?r Ir Ir Is I:s PK_s Ms Ns Npm%Km@0(Qpw6<mKg" A lb0 +W~6@<`Kpg*0mTlyplmД  -:J[l =KXu%9Og 2] O s     . L k     ) N p     I      & F f    Af=q(Hw0QE|- 6n0Y(d=aV C4oCeU7}[Bj* o    )!U!!!! "1"\""""+#m###$1$x$$$ %L%|%%%%%&& +& >& F& N& V&       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklnpqrmos      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklnpqr _PyVTKAddFile_vtkAbstractTransform_PyVTKAddFile_vtkCylindricalTransform_PyVTKAddFile_vtkGeneralTransform_PyVTKAddFile_vtkHomogeneousTransform_PyVTKAddFile_vtkIdentityTransform_PyVTKAddFile_vtkLandmarkTransform_PyVTKAddFile_vtkLinearTransform_PyVTKAddFile_vtkMatrixToHomogeneousTransform_PyVTKAddFile_vtkMatrixToLinearTransform_PyVTKAddFile_vtkPerspectiveTransform_PyVTKAddFile_vtkSphericalTransform_PyVTKAddFile_vtkThinPlateSplineTransform_PyVTKAddFile_vtkTransform_PyVTKAddFile_vtkTransform2D_PyVTKAddFile_vtkTransformCollection_PyVTKAddFile_vtkWarpTransform_PyvtkAbstractTransform_ClassNew_PyvtkCylindricalTransform_ClassNew_PyvtkGeneralTransform_ClassNew_PyvtkHomogeneousTransform_ClassNew_PyvtkIdentityTransform_ClassNew_PyvtkLandmarkTransform_ClassNew_PyvtkLinearTransform_ClassNew_PyvtkMatrixToHomogeneousTransform_ClassNew_PyvtkMatrixToLinearTransform_ClassNew_PyvtkPerspectiveTransform_ClassNew_PyvtkSphericalTransform_ClassNew_PyvtkThinPlateSplineTransform_ClassNew_PyvtkTransform2D_ClassNew_PyvtkTransformCollection_ClassNew_PyvtkTransformConcatenationStack_TypeNew_PyvtkTransformConcatenation_TypeNew_PyvtkTransformPair_TypeNew_PyvtkTransform_ClassNew_PyvtkWarpTransform_ClassNew_real_initvtkCommonTransformsPython_PyBytes_FromStringAndSize_PyDict_SetItemString_PyDict_Size_PyErr_Clear_PyErr_Occurred_PyErr_SetString_PyExc_TypeError_PyFloat_FromDouble_PyLong_FromLong_PyLong_FromUnsignedLong_PyModule_Create2_PyModule_GetDict_PyObject_Free_PyObject_GC_Del_PyObject_GenericGetAttr_PyObject_GenericSetAttr_PyObject_HashNotImplemented_PyType_Ready_PyType_Type_PyUnicode_FromStringAndSize_PyVTKClass_Add_PyVTKObject_AsBuffer_PyVTKObject_Check_PyVTKObject_Delete_PyVTKObject_GetObject_PyVTKObject_GetSet_PyVTKObject_New_PyVTKObject_Repr_PyVTKObject_SetFlag_PyVTKObject_String_PyVTKObject_Traverse_PyVTKSpecialObject_New_PyVTKSpecialObject_Repr_PyVTKSpecialType_Add_PyvtkCollection_ClassNew_PyvtkObject_ClassNew__Py_Dealloc__Py_FatalErrorFunc__Py_NoneStruct__Unwind_Resume__ZN12vtkMatrix3x313MultiplyPointEPKdS1_Pd__ZN12vtkMatrix4x413MultiplyPointEPKdS1_Pd__ZN12vtkTransform10GetInverseEP12vtkMatrix4x4__ZN12vtkTransform11ConcatenateEP18vtkLinearTransform__ZN12vtkTransform11GetPositionEPd__ZN12vtkTransform12CircuitCheckEP20vtkAbstractTransform__ZN12vtkTransform12GetTransposeEP12vtkMatrix4x4__ZN12vtkTransform13MakeTransformEv__ZN12vtkTransform14GetOrientationEPd__ZN12vtkTransform14GetOrientationEPdP12vtkMatrix4x4__ZN12vtkTransform18GetOrientationWXYZEPd__ZN12vtkTransform3NewEv__ZN12vtkTransform7InverseEv__ZN12vtkTransform8GetMTimeEv__ZN12vtkTransform8GetScaleEPd__ZN12vtkTransform8IdentityEv__ZN12vtkTransform8SetInputEP18vtkLinearTransform__ZN13vtkCollection7AddItemEP9vtkObject__ZN13vtkObjectBase8IsTypeOfEPKc__ZN13vtkPythonArgs10BuildTupleEPKdi__ZN13vtkPythonArgs10BuildTupleEPKfi__ZN13vtkPythonArgs10GetArgSizeEi__ZN13vtkPythonArgs13ArgCountErrorEiPKc__ZN13vtkPythonArgs13ArgCountErrorEii__ZN13vtkPythonArgs16PureVirtualErrorEv__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb__ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1___ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_object__ZN13vtkPythonArgs5ArrayIdEC1El__ZN13vtkPythonArgs8GetArrayEPdi__ZN13vtkPythonArgs8GetArrayEPfi__ZN13vtkPythonArgs8GetValueERPc__ZN13vtkPythonArgs8GetValueERd__ZN13vtkPythonArgs8GetValueERf__ZN13vtkPythonArgs8GetValueERi__ZN13vtkPythonArgs8SetArrayEiPKdi__ZN13vtkPythonArgs9GetNArrayEPdiPKi__ZN13vtkPythonArgs9SetNArrayEiPKdiPKi__ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__ZN14vtkTransform2D10GetInverseEP12vtkMatrix3x3__ZN14vtkTransform2D11GetPositionEPd__ZN14vtkTransform2D12GetTransposeEP12vtkMatrix3x3__ZN14vtkTransform2D15TransformPointsEP11vtkPoints2DS1___ZN14vtkTransform2D15TransformPointsEPKdPdi__ZN14vtkTransform2D22InverseTransformPointsEP11vtkPoints2DS1___ZN14vtkTransform2D22InverseTransformPointsEPKdPdi__ZN14vtkTransform2D3NewEv__ZN14vtkTransform2D5ScaleEdd__ZN14vtkTransform2D6RotateEd__ZN14vtkTransform2D7InverseEv__ZN14vtkTransform2D8GetMTimeEv__ZN14vtkTransform2D8GetScaleEPd__ZN14vtkTransform2D8IdentityEv__ZN14vtkTransform2D9GetMatrixEP12vtkMatrix3x3__ZN14vtkTransform2D9SetMatrixEPKd__ZN14vtkTransform2D9TranslateEdd__ZN16vtkWarpTransform22InternalTransformPointEPKdPd__ZN16vtkWarpTransform27InternalTransformDerivativeEPKdPdPA3_d__ZN16vtkWarpTransform7InverseEv__ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3___ZN18vtkLinearTransform15TransformPointsEP9vtkPointsS1___ZN18vtkLinearTransform16TransformNormalsEP12vtkDataArrayS1___ZN18vtkLinearTransform16TransformVectorsEP12vtkDataArrayS1___ZN18vtkLinearTransform22InternalTransformPointEPKdPd__ZN18vtkLinearTransform23InternalTransformNormalEPKdPd__ZN18vtkLinearTransform23InternalTransformVectorEPKdPd__ZN18vtkLinearTransform27InternalTransformDerivativeEPKdPdPA3_d__ZN18vtkLinearTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3___ZN19vtkGeneralTransform11ConcatenateEP20vtkAbstractTransform__ZN19vtkGeneralTransform12CircuitCheckEP20vtkAbstractTransform__ZN19vtkGeneralTransform13MakeTransformEv__ZN19vtkGeneralTransform22InternalTransformPointEPKdPd__ZN19vtkGeneralTransform27InternalTransformDerivativeEPKdPdPA3_d__ZN19vtkGeneralTransform3NewEv__ZN19vtkGeneralTransform8GetMTimeEv__ZN19vtkGeneralTransform8SetInputEP20vtkAbstractTransform__ZN20vtkAbstractTransform10GetInverseEv__ZN20vtkAbstractTransform10SetInverseEPS___ZN20vtkAbstractTransform12CircuitCheckEPS___ZN20vtkAbstractTransform15TransformPointsEP9vtkPointsS1___ZN20vtkAbstractTransform22TransformNormalAtPointEPKdS1_Pd__ZN20vtkAbstractTransform22TransformNormalAtPointEPKfS1_Pf__ZN20vtkAbstractTransform22TransformVectorAtPointEPKdS1_Pd__ZN20vtkAbstractTransform22TransformVectorAtPointEPKfS1_Pf__ZN20vtkAbstractTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3___ZN20vtkAbstractTransform6UpdateEv__ZN20vtkAbstractTransform8DeepCopyEPS___ZN20vtkAbstractTransform8GetMTimeEv__ZN20vtkIdentityTransform13MakeTransformEv__ZN20vtkIdentityTransform15TransformPointsEP9vtkPointsS1___ZN20vtkIdentityTransform16TransformNormalsEP12vtkDataArrayS1___ZN20vtkIdentityTransform16TransformVectorsEP12vtkDataArrayS1___ZN20vtkIdentityTransform22InternalTransformPointEPKdPd__ZN20vtkIdentityTransform23InternalTransformNormalEPKdPd__ZN20vtkIdentityTransform23InternalTransformVectorEPKdPd__ZN20vtkIdentityTransform27InternalTransformDerivativeEPKdPdPA3_d__ZN20vtkIdentityTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3___ZN20vtkIdentityTransform3NewEv__ZN20vtkLandmarkTransform13MakeTransformEv__ZN20vtkLandmarkTransform18SetSourceLandmarksEP9vtkPoints__ZN20vtkLandmarkTransform18SetTargetLandmarksEP9vtkPoints__ZN20vtkLandmarkTransform3NewEv__ZN20vtkLandmarkTransform7InverseEv__ZN20vtkLandmarkTransform8GetMTimeEv__ZN21vtkSphericalTransform13MakeTransformEv__ZN21vtkSphericalTransform3NewEv__ZN22vtkTransformCollection3NewEv__ZN23vtkCylindricalTransform13MakeTransformEv__ZN23vtkCylindricalTransform3NewEv__ZN23vtkHomogeneousTransform15TransformPointsEP9vtkPointsS1___ZN23vtkHomogeneousTransform22InternalTransformPointEPKdPd__ZN23vtkHomogeneousTransform27InternalTransformDerivativeEPKdPdPA3_d__ZN23vtkHomogeneousTransform29TransformPointsNormalsVectorsEP9vtkPointsS1_P12vtkDataArrayS3_S3_S3___ZN23vtkHomogeneousTransform9GetMatrixEP12vtkMatrix4x4__ZN23vtkPerspectiveTransform11ConcatenateEP23vtkHomogeneousTransform__ZN23vtkPerspectiveTransform11PerspectiveEdddd__ZN23vtkPerspectiveTransform11SetupCameraEPKdS1_S1___ZN23vtkPerspectiveTransform11SetupCameraEddddddddd__ZN23vtkPerspectiveTransform12CircuitCheckEP20vtkAbstractTransform__ZN23vtkPerspectiveTransform13AdjustZBufferEdddd__ZN23vtkPerspectiveTransform13MakeTransformEv__ZN23vtkPerspectiveTransform14AdjustViewportEdddddddd__ZN23vtkPerspectiveTransform3NewEv__ZN23vtkPerspectiveTransform5OrthoEdddddd__ZN23vtkPerspectiveTransform5ShearEddd__ZN23vtkPerspectiveTransform6StereoEdd__ZN23vtkPerspectiveTransform7FrustumEdddddd__ZN23vtkPerspectiveTransform8GetMTimeEv__ZN23vtkPerspectiveTransform8SetInputEP23vtkHomogeneousTransform__ZN25vtkTransformConcatenation11ConcatenateEP20vtkAbstractTransform__ZN25vtkTransformConcatenation11ConcatenateEPKd__ZN25vtkTransformConcatenation11GetMaxMTimeEv__ZN25vtkTransformConcatenation12GetTransformEi__ZN25vtkTransformConcatenation5ScaleEddd__ZN25vtkTransformConcatenation6RotateEdddd__ZN25vtkTransformConcatenation7InverseEv__ZN25vtkTransformConcatenation8IdentityEv__ZN25vtkTransformConcatenation9TranslateEddd__ZN26vtkMatrixToLinearTransform13MakeTransformEv__ZN26vtkMatrixToLinearTransform3NewEv__ZN26vtkMatrixToLinearTransform7InverseEv__ZN26vtkMatrixToLinearTransform8GetMTimeEv__ZN26vtkMatrixToLinearTransform8SetInputEP12vtkMatrix4x4__ZN27vtkThinPlateSplineTransform13MakeTransformEv__ZN27vtkThinPlateSplineTransform16GetBasisAsStringEv__ZN27vtkThinPlateSplineTransform18SetSourceLandmarksEP9vtkPoints__ZN27vtkThinPlateSplineTransform18SetTargetLandmarksEP9vtkPoints__ZN27vtkThinPlateSplineTransform3NewEv__ZN27vtkThinPlateSplineTransform8GetMTimeEv__ZN27vtkThinPlateSplineTransform8SetBasisEi__ZN30vtkTransformConcatenationStack3PopEPP25vtkTransformConcatenation__ZN30vtkTransformConcatenationStack4PushEPP25vtkTransformConcatenation__ZN30vtkTransformConcatenationStackC1Ev__ZN31vtkMatrixToHomogeneousTransform13MakeTransformEv__ZN31vtkMatrixToHomogeneousTransform3NewEv__ZN31vtkMatrixToHomogeneousTransform7InverseEv__ZN31vtkMatrixToHomogeneousTransform8GetMTimeEv__ZN31vtkMatrixToHomogeneousTransform8SetInputEP12vtkMatrix4x4__ZdaPv__ZdlPv__Znwm___gxx_personality_v0___stack_chk_fail___stack_chk_guard_memcpy_strcmp_strlendyld_stub_binder__ZL24PyvtkTransformPair_CCopyPKv__ZL31PyvtkAbstractTransform_IsTypeOfP7_objectS0___ZL26PyvtkAbstractTransform_IsAP7_objectS0___ZL35PyvtkAbstractTransform_SafeDownCastP7_objectS0___ZL34PyvtkAbstractTransform_NewInstanceP7_objectS0___ZL37PyvtkAbstractTransform_TransformPointP7_objectS0___ZL42PyvtkAbstractTransform_TransformFloatPointP7_objectS0___ZL43PyvtkAbstractTransform_TransformDoublePointP7_objectS0___ZL45PyvtkAbstractTransform_TransformNormalAtPointP7_objectS0___ZL51PyvtkAbstractTransform_TransformDoubleNormalAtPointP7_objectS0___ZL50PyvtkAbstractTransform_TransformFloatNormalAtPointP7_objectS0___ZL45PyvtkAbstractTransform_TransformVectorAtPointP7_objectS0___ZL51PyvtkAbstractTransform_TransformDoubleVectorAtPointP7_objectS0___ZL50PyvtkAbstractTransform_TransformFloatVectorAtPointP7_objectS0___ZL38PyvtkAbstractTransform_TransformPointsP7_objectS0___ZL52PyvtkAbstractTransform_TransformPointsNormalsVectorsP7_objectS0___ZL33PyvtkAbstractTransform_GetInverseP7_objectS0___ZL33PyvtkAbstractTransform_SetInverseP7_objectS0___ZL30PyvtkAbstractTransform_InverseP7_objectS0___ZL31PyvtkAbstractTransform_DeepCopyP7_objectS0___ZL29PyvtkAbstractTransform_UpdateP7_objectS0___ZL45PyvtkAbstractTransform_InternalTransformPointP7_objectS0___ZL50PyvtkAbstractTransform_InternalTransformDerivativeP7_objectS0___ZL36PyvtkAbstractTransform_MakeTransformP7_objectS0___ZL35PyvtkAbstractTransform_CircuitCheckP7_objectS0___ZL31PyvtkAbstractTransform_GetMTimeP7_objectS0___ZL25PyvtkTransformPair_DeleteP7_object__ZL23PyvtkTransformPair_HashP7_object__ZL22PyvtkTransformPair_NewP11_typeobjectP7_objectS2___ZL38PyvtkTransformPair_vtkTransformPair_s2P7_objectS0___ZL37PyvtkTransformPair_SwapForwardInverseP7_objectS0___ZL34PyvtkTransformConcatenation_DeleteP7_object__ZL32PyvtkTransformConcatenation_HashP7_object__ZL31PyvtkTransformConcatenation_NewP11_typeobjectP7_objectS2___ZL39PyvtkTransformConcatenation_ConcatenateP7_objectS0___ZL46PyvtkTransformConcatenation_SetPreMultiplyFlagP7_objectS0___ZL46PyvtkTransformConcatenation_GetPreMultiplyFlagP7_objectS0___ZL37PyvtkTransformConcatenation_TranslateP7_objectS0___ZL34PyvtkTransformConcatenation_RotateP7_objectS0___ZL33PyvtkTransformConcatenation_ScaleP7_objectS0___ZL35PyvtkTransformConcatenation_InverseP7_objectS0___ZL42PyvtkTransformConcatenation_GetInverseFlagP7_objectS0___ZL36PyvtkTransformConcatenation_IdentityP7_objectS0___ZL49PyvtkTransformConcatenation_GetNumberOfTransformsP7_objectS0___ZL52PyvtkTransformConcatenation_GetNumberOfPreTransformsP7_objectS0___ZL53PyvtkTransformConcatenation_GetNumberOfPostTransformsP7_objectS0___ZL40PyvtkTransformConcatenation_GetTransformP7_objectS0___ZL39PyvtkTransformConcatenation_GetMaxMTimeP7_objectS0___ZL42PyvtkTransformConcatenation_Concatenate_s1P7_objectS0___ZL42PyvtkTransformConcatenation_Concatenate_s2P7_objectS0___ZL39PyvtkTransformConcatenationStack_DeleteP7_object__ZL37PyvtkTransformConcatenationStack_HashP7_object__ZL36PyvtkTransformConcatenationStack_NewP11_typeobjectP7_objectS2___ZL35PyvtkCylindricalTransform_StaticNewv__ZL34PyvtkCylindricalTransform_IsTypeOfP7_objectS0___ZL29PyvtkCylindricalTransform_IsAP7_objectS0___ZL38PyvtkCylindricalTransform_SafeDownCastP7_objectS0___ZL37PyvtkCylindricalTransform_NewInstanceP7_objectS0___ZL39PyvtkCylindricalTransform_MakeTransformP7_objectS0___ZL31PyvtkGeneralTransform_StaticNewv__ZL30PyvtkGeneralTransform_IsTypeOfP7_objectS0___ZL25PyvtkGeneralTransform_IsAP7_objectS0___ZL34PyvtkGeneralTransform_SafeDownCastP7_objectS0___ZL33PyvtkGeneralTransform_NewInstanceP7_objectS0___ZL30PyvtkGeneralTransform_IdentityP7_objectS0___ZL29PyvtkGeneralTransform_InverseP7_objectS0___ZL31PyvtkGeneralTransform_TranslateP7_objectS0___ZL32PyvtkGeneralTransform_RotateWXYZP7_objectS0___ZL29PyvtkGeneralTransform_RotateXP7_objectS0___ZL29PyvtkGeneralTransform_RotateYP7_objectS0___ZL29PyvtkGeneralTransform_RotateZP7_objectS0___ZL27PyvtkGeneralTransform_ScaleP7_objectS0___ZL33PyvtkGeneralTransform_ConcatenateP7_objectS0___ZL33PyvtkGeneralTransform_PreMultiplyP7_objectS0___ZL34PyvtkGeneralTransform_PostMultiplyP7_objectS0___ZL55PyvtkGeneralTransform_GetNumberOfConcatenatedTransformsP7_objectS0___ZL46PyvtkGeneralTransform_GetConcatenatedTransformP7_objectS0___ZL30PyvtkGeneralTransform_SetInputP7_objectS0___ZL30PyvtkGeneralTransform_GetInputP7_objectS0___ZL36PyvtkGeneralTransform_GetInverseFlagP7_objectS0___ZL26PyvtkGeneralTransform_PushP7_objectS0___ZL25PyvtkGeneralTransform_PopP7_objectS0___ZL44PyvtkGeneralTransform_InternalTransformPointP7_objectS0___ZL49PyvtkGeneralTransform_InternalTransformDerivativeP7_objectS0___ZL34PyvtkGeneralTransform_CircuitCheckP7_objectS0___ZL35PyvtkGeneralTransform_MakeTransformP7_objectS0___ZL30PyvtkGeneralTransform_GetMTimeP7_objectS0___ZL36PyvtkGeneralTransform_Concatenate_s1P7_objectS0___ZL36PyvtkGeneralTransform_Concatenate_s2P7_objectS0___ZL36PyvtkGeneralTransform_Concatenate_s3P7_objectS0___ZL34PyvtkHomogeneousTransform_IsTypeOfP7_objectS0___ZL29PyvtkHomogeneousTransform_IsAP7_objectS0___ZL38PyvtkHomogeneousTransform_SafeDownCastP7_objectS0___ZL37PyvtkHomogeneousTransform_NewInstanceP7_objectS0___ZL41PyvtkHomogeneousTransform_TransformPointsP7_objectS0___ZL55PyvtkHomogeneousTransform_TransformPointsNormalsVectorsP7_objectS0___ZL35PyvtkHomogeneousTransform_GetMatrixP7_objectS0___ZL47PyvtkHomogeneousTransform_GetHomogeneousInverseP7_objectS0___ZL48PyvtkHomogeneousTransform_InternalTransformPointP7_objectS0___ZL53PyvtkHomogeneousTransform_InternalTransformDerivativeP7_objectS0___ZL32PyvtkIdentityTransform_StaticNewv__ZL31PyvtkIdentityTransform_IsTypeOfP7_objectS0___ZL26PyvtkIdentityTransform_IsAP7_objectS0___ZL35PyvtkIdentityTransform_SafeDownCastP7_objectS0___ZL34PyvtkIdentityTransform_NewInstanceP7_objectS0___ZL38PyvtkIdentityTransform_TransformPointsP7_objectS0___ZL39PyvtkIdentityTransform_TransformNormalsP7_objectS0___ZL39PyvtkIdentityTransform_TransformVectorsP7_objectS0___ZL52PyvtkIdentityTransform_TransformPointsNormalsVectorsP7_objectS0___ZL30PyvtkIdentityTransform_InverseP7_objectS0___ZL45PyvtkIdentityTransform_InternalTransformPointP7_objectS0___ZL46PyvtkIdentityTransform_InternalTransformNormalP7_objectS0___ZL46PyvtkIdentityTransform_InternalTransformVectorP7_objectS0___ZL50PyvtkIdentityTransform_InternalTransformDerivativeP7_objectS0___ZL36PyvtkIdentityTransform_MakeTransformP7_objectS0___ZN20vtkIdentityTransform8IsTypeOfEPKc__ZL29PyvtkLinearTransform_IsTypeOfP7_objectS0___ZL24PyvtkLinearTransform_IsAP7_objectS0___ZL33PyvtkLinearTransform_SafeDownCastP7_objectS0___ZL32PyvtkLinearTransform_NewInstanceP7_objectS0___ZL36PyvtkLinearTransform_TransformNormalP7_objectS0___ZL41PyvtkLinearTransform_TransformFloatNormalP7_objectS0___ZL42PyvtkLinearTransform_TransformDoubleNormalP7_objectS0___ZL36PyvtkLinearTransform_TransformVectorP7_objectS0___ZL41PyvtkLinearTransform_TransformFloatVectorP7_objectS0___ZL42PyvtkLinearTransform_TransformDoubleVectorP7_objectS0___ZL36PyvtkLinearTransform_TransformPointsP7_objectS0___ZL37PyvtkLinearTransform_TransformNormalsP7_objectS0___ZL37PyvtkLinearTransform_TransformVectorsP7_objectS0___ZL50PyvtkLinearTransform_TransformPointsNormalsVectorsP7_objectS0___ZL37PyvtkLinearTransform_GetLinearInverseP7_objectS0___ZL43PyvtkLinearTransform_InternalTransformPointP7_objectS0___ZL44PyvtkLinearTransform_InternalTransformNormalP7_objectS0___ZL44PyvtkLinearTransform_InternalTransformVectorP7_objectS0___ZL48PyvtkLinearTransform_InternalTransformDerivativeP7_objectS0___ZL43PyvtkMatrixToHomogeneousTransform_StaticNewv__ZL42PyvtkMatrixToHomogeneousTransform_IsTypeOfP7_objectS0___ZL37PyvtkMatrixToHomogeneousTransform_IsAP7_objectS0___ZL46PyvtkMatrixToHomogeneousTransform_SafeDownCastP7_objectS0___ZL45PyvtkMatrixToHomogeneousTransform_NewInstanceP7_objectS0___ZL42PyvtkMatrixToHomogeneousTransform_SetInputP7_objectS0___ZL42PyvtkMatrixToHomogeneousTransform_GetInputP7_objectS0___ZL41PyvtkMatrixToHomogeneousTransform_InverseP7_objectS0___ZL42PyvtkMatrixToHomogeneousTransform_GetMTimeP7_objectS0___ZL47PyvtkMatrixToHomogeneousTransform_MakeTransformP7_objectS0___ZL38PyvtkMatrixToLinearTransform_StaticNewv__ZL37PyvtkMatrixToLinearTransform_IsTypeOfP7_objectS0___ZL32PyvtkMatrixToLinearTransform_IsAP7_objectS0___ZL41PyvtkMatrixToLinearTransform_SafeDownCastP7_objectS0___ZL40PyvtkMatrixToLinearTransform_NewInstanceP7_objectS0___ZL37PyvtkMatrixToLinearTransform_SetInputP7_objectS0___ZL37PyvtkMatrixToLinearTransform_GetInputP7_objectS0___ZL36PyvtkMatrixToLinearTransform_InverseP7_objectS0___ZL37PyvtkMatrixToLinearTransform_GetMTimeP7_objectS0___ZL42PyvtkMatrixToLinearTransform_MakeTransformP7_objectS0___ZN26vtkMatrixToLinearTransform8IsTypeOfEPKc__ZL35PyvtkPerspectiveTransform_StaticNewv__ZL34PyvtkPerspectiveTransform_IsTypeOfP7_objectS0___ZL29PyvtkPerspectiveTransform_IsAP7_objectS0___ZL38PyvtkPerspectiveTransform_SafeDownCastP7_objectS0___ZL37PyvtkPerspectiveTransform_NewInstanceP7_objectS0___ZL34PyvtkPerspectiveTransform_IdentityP7_objectS0___ZL33PyvtkPerspectiveTransform_InverseP7_objectS0___ZL40PyvtkPerspectiveTransform_AdjustViewportP7_objectS0___ZL39PyvtkPerspectiveTransform_AdjustZBufferP7_objectS0___ZL31PyvtkPerspectiveTransform_OrthoP7_objectS0___ZL33PyvtkPerspectiveTransform_FrustumP7_objectS0___ZL37PyvtkPerspectiveTransform_PerspectiveP7_objectS0___ZL31PyvtkPerspectiveTransform_ShearP7_objectS0___ZL32PyvtkPerspectiveTransform_StereoP7_objectS0___ZL37PyvtkPerspectiveTransform_SetupCameraP7_objectS0___ZL35PyvtkPerspectiveTransform_TranslateP7_objectS0___ZL36PyvtkPerspectiveTransform_RotateWXYZP7_objectS0___ZL33PyvtkPerspectiveTransform_RotateXP7_objectS0___ZL33PyvtkPerspectiveTransform_RotateYP7_objectS0___ZL33PyvtkPerspectiveTransform_RotateZP7_objectS0___ZL31PyvtkPerspectiveTransform_ScaleP7_objectS0___ZL35PyvtkPerspectiveTransform_SetMatrixP7_objectS0___ZL37PyvtkPerspectiveTransform_ConcatenateP7_objectS0___ZL37PyvtkPerspectiveTransform_PreMultiplyP7_objectS0___ZL38PyvtkPerspectiveTransform_PostMultiplyP7_objectS0___ZL59PyvtkPerspectiveTransform_GetNumberOfConcatenatedTransformsP7_objectS0___ZL50PyvtkPerspectiveTransform_GetConcatenatedTransformP7_objectS0___ZL34PyvtkPerspectiveTransform_SetInputP7_objectS0___ZL34PyvtkPerspectiveTransform_GetInputP7_objectS0___ZL40PyvtkPerspectiveTransform_GetInverseFlagP7_objectS0___ZL30PyvtkPerspectiveTransform_PushP7_objectS0___ZL29PyvtkPerspectiveTransform_PopP7_objectS0___ZL39PyvtkPerspectiveTransform_MakeTransformP7_objectS0___ZL38PyvtkPerspectiveTransform_CircuitCheckP7_objectS0___ZL34PyvtkPerspectiveTransform_GetMTimeP7_objectS0___ZL38PyvtkPerspectiveTransform_SetMatrix_s1P7_objectS0___ZL38PyvtkPerspectiveTransform_SetMatrix_s2P7_objectS0___ZL40PyvtkPerspectiveTransform_Concatenate_s1P7_objectS0___ZL40PyvtkPerspectiveTransform_Concatenate_s2P7_objectS0___ZL40PyvtkPerspectiveTransform_Concatenate_s3P7_objectS0___ZL33PyvtkSphericalTransform_StaticNewv__ZL32PyvtkSphericalTransform_IsTypeOfP7_objectS0___ZL27PyvtkSphericalTransform_IsAP7_objectS0___ZL36PyvtkSphericalTransform_SafeDownCastP7_objectS0___ZL35PyvtkSphericalTransform_NewInstanceP7_objectS0___ZL37PyvtkSphericalTransform_MakeTransformP7_objectS0___ZL39PyvtkThinPlateSplineTransform_StaticNewv__ZL38PyvtkThinPlateSplineTransform_IsTypeOfP7_objectS0___ZL33PyvtkThinPlateSplineTransform_IsAP7_objectS0___ZL42PyvtkThinPlateSplineTransform_SafeDownCastP7_objectS0___ZL41PyvtkThinPlateSplineTransform_NewInstanceP7_objectS0___ZL38PyvtkThinPlateSplineTransform_GetSigmaP7_objectS0___ZL38PyvtkThinPlateSplineTransform_SetSigmaP7_objectS0___ZL38PyvtkThinPlateSplineTransform_SetBasisP7_objectS0___ZL38PyvtkThinPlateSplineTransform_GetBasisP7_objectS0___ZL41PyvtkThinPlateSplineTransform_SetBasisToRP7_objectS0___ZL46PyvtkThinPlateSplineTransform_SetBasisToR2LogRP7_objectS0___ZL46PyvtkThinPlateSplineTransform_GetBasisAsStringP7_objectS0___ZL48PyvtkThinPlateSplineTransform_SetSourceLandmarksP7_objectS0___ZL48PyvtkThinPlateSplineTransform_GetSourceLandmarksP7_objectS0___ZL48PyvtkThinPlateSplineTransform_SetTargetLandmarksP7_objectS0___ZL48PyvtkThinPlateSplineTransform_GetTargetLandmarksP7_objectS0___ZL38PyvtkThinPlateSplineTransform_GetMTimeP7_objectS0___ZL43PyvtkThinPlateSplineTransform_MakeTransformP7_objectS0___ZL26PyvtkTransform2D_StaticNewv__ZL25PyvtkTransform2D_IsTypeOfP7_objectS0___ZL20PyvtkTransform2D_IsAP7_objectS0___ZL29PyvtkTransform2D_SafeDownCastP7_objectS0___ZL28PyvtkTransform2D_NewInstanceP7_objectS0___ZL25PyvtkTransform2D_IdentityP7_objectS0___ZL24PyvtkTransform2D_InverseP7_objectS0___ZL26PyvtkTransform2D_TranslateP7_objectS0___ZL23PyvtkTransform2D_RotateP7_objectS0___ZL22PyvtkTransform2D_ScaleP7_objectS0___ZL26PyvtkTransform2D_SetMatrixP7_objectS0___ZL26PyvtkTransform2D_GetMatrixP7_objectS0___ZL28PyvtkTransform2D_GetPositionP7_objectS0___ZL25PyvtkTransform2D_GetScaleP7_objectS0___ZL27PyvtkTransform2D_GetInverseP7_objectS0___ZL29PyvtkTransform2D_GetTransposeP7_objectS0___ZL25PyvtkTransform2D_GetMTimeP7_objectS0___ZL32PyvtkTransform2D_TransformPointsP7_objectS0___ZL39PyvtkTransform2D_InverseTransformPointsP7_objectS0___ZL30PyvtkTransform2D_MultiplyPointP7_objectS0___ZL29PyvtkTransform2D_SetMatrix_s1P7_objectS0___ZL29PyvtkTransform2D_SetMatrix_s2P7_objectS0___ZL34PyvtkTransformCollection_StaticNewv__ZL33PyvtkTransformCollection_IsTypeOfP7_objectS0___ZL28PyvtkTransformCollection_IsAP7_objectS0___ZL37PyvtkTransformCollection_SafeDownCastP7_objectS0___ZL36PyvtkTransformCollection_NewInstanceP7_objectS0___ZL32PyvtkTransformCollection_AddItemP7_objectS0___ZL36PyvtkTransformCollection_GetNextItemP7_objectS0___ZL24PyvtkTransform_StaticNewv__ZL23PyvtkTransform_IsTypeOfP7_objectS0___ZL18PyvtkTransform_IsAP7_objectS0___ZL27PyvtkTransform_SafeDownCastP7_objectS0___ZL26PyvtkTransform_NewInstanceP7_objectS0___ZL23PyvtkTransform_IdentityP7_objectS0___ZL22PyvtkTransform_InverseP7_objectS0___ZL24PyvtkTransform_TranslateP7_objectS0___ZL25PyvtkTransform_RotateWXYZP7_objectS0___ZL22PyvtkTransform_RotateXP7_objectS0___ZL22PyvtkTransform_RotateYP7_objectS0___ZL22PyvtkTransform_RotateZP7_objectS0___ZL20PyvtkTransform_ScaleP7_objectS0___ZL24PyvtkTransform_SetMatrixP7_objectS0___ZL26PyvtkTransform_ConcatenateP7_objectS0___ZL26PyvtkTransform_PreMultiplyP7_objectS0___ZL27PyvtkTransform_PostMultiplyP7_objectS0___ZL48PyvtkTransform_GetNumberOfConcatenatedTransformsP7_objectS0___ZL39PyvtkTransform_GetConcatenatedTransformP7_objectS0___ZL29PyvtkTransform_GetOrientationP7_objectS0___ZL33PyvtkTransform_GetOrientationWXYZP7_objectS0___ZL26PyvtkTransform_GetPositionP7_objectS0___ZL23PyvtkTransform_GetScaleP7_objectS0___ZL25PyvtkTransform_GetInverseP7_objectS0___ZL27PyvtkTransform_GetTransposeP7_objectS0___ZL23PyvtkTransform_SetInputP7_objectS0___ZL23PyvtkTransform_GetInputP7_objectS0___ZL29PyvtkTransform_GetInverseFlagP7_objectS0___ZL19PyvtkTransform_PushP7_objectS0___ZL18PyvtkTransform_PopP7_objectS0___ZL27PyvtkTransform_CircuitCheckP7_objectS0___ZL28PyvtkTransform_MakeTransformP7_objectS0___ZL23PyvtkTransform_GetMTimeP7_objectS0___ZL28PyvtkTransform_MultiplyPointP7_objectS0___ZN12vtkTransform8IsTypeOfEPKc__ZL27PyvtkTransform_SetMatrix_s1P7_objectS0___ZL27PyvtkTransform_SetMatrix_s2P7_objectS0___ZL29PyvtkTransform_Concatenate_s1P7_objectS0___ZL29PyvtkTransform_Concatenate_s2P7_objectS0___ZL29PyvtkTransform_Concatenate_s3P7_objectS0___ZL27PyvtkWarpTransform_IsTypeOfP7_objectS0___ZL22PyvtkWarpTransform_IsAP7_objectS0___ZL31PyvtkWarpTransform_SafeDownCastP7_objectS0___ZL30PyvtkWarpTransform_NewInstanceP7_objectS0___ZL26PyvtkWarpTransform_InverseP7_objectS0___ZL33PyvtkWarpTransform_GetInverseFlagP7_objectS0___ZL38PyvtkWarpTransform_SetInverseToleranceP7_objectS0___ZL38PyvtkWarpTransform_GetInverseToleranceP7_objectS0___ZL39PyvtkWarpTransform_SetInverseIterationsP7_objectS0___ZL39PyvtkWarpTransform_GetInverseIterationsP7_objectS0___ZL41PyvtkWarpTransform_InternalTransformPointP7_objectS0___ZL46PyvtkWarpTransform_InternalTransformDerivativeP7_objectS0___ZL41PyvtkWarpTransform_TemplateTransformPointP7_objectS0___ZL43PyvtkWarpTransform_TemplateTransformInverseP7_objectS0___ZL32PyvtkLandmarkTransform_StaticNewv__ZL31PyvtkLandmarkTransform_IsTypeOfP7_objectS0___ZL26PyvtkLandmarkTransform_IsAP7_objectS0___ZL35PyvtkLandmarkTransform_SafeDownCastP7_objectS0___ZL34PyvtkLandmarkTransform_NewInstanceP7_objectS0___ZL41PyvtkLandmarkTransform_SetSourceLandmarksP7_objectS0___ZL41PyvtkLandmarkTransform_SetTargetLandmarksP7_objectS0___ZL41PyvtkLandmarkTransform_GetSourceLandmarksP7_objectS0___ZL41PyvtkLandmarkTransform_GetTargetLandmarksP7_objectS0___ZL30PyvtkLandmarkTransform_SetModeP7_objectS0___ZL41PyvtkLandmarkTransform_SetModeToRigidBodyP7_objectS0___ZL42PyvtkLandmarkTransform_SetModeToSimilarityP7_objectS0___ZL38PyvtkLandmarkTransform_SetModeToAffineP7_objectS0___ZL30PyvtkLandmarkTransform_GetModeP7_objectS0___ZL38PyvtkLandmarkTransform_GetModeAsStringP7_objectS0___ZL30PyvtkLandmarkTransform_InverseP7_objectS0___ZL31PyvtkLandmarkTransform_GetMTimeP7_objectS0___ZL36PyvtkLandmarkTransform_MakeTransformP7_objectS0___ZN20vtkLandmarkTransform8IsTypeOfEPKcGCC_except_table23GCC_except_table32GCC_except_table19GCC_except_table20GCC_except_table30__dyld_private__ZL27PyvtkAbstractTransform_Type__ZL30PyvtkAbstractTransform_Methods__ZL23PyvtkTransformPair_Type__ZL26PyvtkTransformPair_Methods__ZL43PyvtkTransformPair_vtkTransformPair_Methods__ZL32PyvtkTransformConcatenation_Type__ZL35PyvtkTransformConcatenation_Methods__ZL37PyvtkTransformConcatenationStack_Type__ZZL50PyvtkAbstractTransform_InternalTransformDerivativeP7_objectS0_E5size2__ZL47PyvtkTransformConcatenation_Concatenate_Methods__ZL30PyvtkCylindricalTransform_Type__ZL33PyvtkCylindricalTransform_Methods__ZL26PyvtkGeneralTransform_Type__ZL29PyvtkGeneralTransform_Methods__ZL41PyvtkGeneralTransform_Concatenate_Methods__ZZL49PyvtkGeneralTransform_InternalTransformDerivativeP7_objectS0_E5size2__ZL30PyvtkHomogeneousTransform_Type__ZL33PyvtkHomogeneousTransform_Methods__ZZL53PyvtkHomogeneousTransform_InternalTransformDerivativeP7_objectS0_E5size2__ZL27PyvtkIdentityTransform_Type__ZL30PyvtkIdentityTransform_Methods__ZZL50PyvtkIdentityTransform_InternalTransformDerivativeP7_objectS0_E5size2__ZL25PyvtkLinearTransform_Type__ZL28PyvtkLinearTransform_Methods__ZZL48PyvtkLinearTransform_InternalTransformDerivativeP7_objectS0_E5size2__ZL38PyvtkMatrixToHomogeneousTransform_Type__ZL41PyvtkMatrixToHomogeneousTransform_Methods__ZL33PyvtkMatrixToLinearTransform_Type__ZL36PyvtkMatrixToLinearTransform_Methods__ZL30PyvtkPerspectiveTransform_Type__ZL33PyvtkPerspectiveTransform_Methods__ZL43PyvtkPerspectiveTransform_SetMatrix_Methods__ZL45PyvtkPerspectiveTransform_Concatenate_Methods__ZL28PyvtkSphericalTransform_Type__ZL31PyvtkSphericalTransform_Methods__ZL34PyvtkThinPlateSplineTransform_Type__ZL37PyvtkThinPlateSplineTransform_Methods__ZL21PyvtkTransform2D_Type__ZL24PyvtkTransform2D_Methods__ZL34PyvtkTransform2D_SetMatrix_Methods__ZL29PyvtkTransformCollection_Type__ZL32PyvtkTransformCollection_Methods__ZL19PyvtkTransform_Type__ZL22PyvtkTransform_Methods__ZL32PyvtkTransform_SetMatrix_Methods__ZL34PyvtkTransform_Concatenate_Methods__ZL23PyvtkWarpTransform_Type__ZL26PyvtkWarpTransform_Methods__ZZL46PyvtkWarpTransform_InternalTransformDerivativeP7_objectS0_E5size2__ZZL44PyvtkWarpTransform_TemplateTransformPoint_s2P7_objectS0_E5size2__ZZL46PyvtkWarpTransform_TemplateTransformInverse_s2P7_objectS0_E5size2__ZL27PyvtkLandmarkTransform_Type__ZL30PyvtkLandmarkTransform_Methods__ZL34PyvtkCommonTransformsPython_Module__ZL40PyvtkTransformConcatenationStack_Methods__ZL35PyvtkCommonTransformsPython_Methods