/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #include "itkImageFileReader.h" #include "itkImageFileWriter.h" #include "itkImageRegistrationMethodv4.h" #include "itkTimeVaryingVelocityFieldImageRegistrationMethodv4.h" #include "itkAffineTransform.h" #include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h" #include "itkCompositeTransform.h" #include "itkTimeVaryingVelocityFieldTransformParametersAdaptor.h" #include "itkVector.h" #include "itkTestingMacros.h" template class CommandIterationUpdate : public itk::Command { public: using Self = CommandIterationUpdate; using Superclass = itk::Command; using Pointer = itk::SmartPointer; itkNewMacro(Self); protected: CommandIterationUpdate() = default; public: void Execute(itk::Object * caller, const itk::EventObject & event) override { Execute((const itk::Object *)caller, event); } void Execute(const itk::Object * object, const itk::EventObject & event) override { const auto * filter = dynamic_cast(object); if (typeid(event) != typeid(itk::IterationEvent)) { return; } unsigned int currentLevel = filter->GetCurrentLevel(); typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors = filter->GetShrinkFactorsPerDimension(currentLevel); typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel(); typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel(); std::cout << " Current level = " << currentLevel << std::endl; std::cout << " shrink factor = " << shrinkFactors << std::endl; std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl; std::cout << " required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl; } }; template int PerformTimeVaryingVelocityFieldImageRegistration(int argc, char * argv[]) { int numberOfAffineIterations = 100; int numberOfDeformableIterationsLevel0 = 10; int numberOfDeformableIterationsLevel1 = 20; int numberOfDeformableIterationsLevel2 = 11; double learningRate = 0.5; if (argc >= 6) { numberOfAffineIterations = std::stoi(argv[5]); } if (argc >= 7) { numberOfDeformableIterationsLevel0 = std::stoi(argv[6]); } if (argc >= 8) { numberOfDeformableIterationsLevel1 = std::stoi(argv[7]); } if (argc >= 9) { numberOfDeformableIterationsLevel2 = std::stoi(argv[8]); } if (argc >= 10) { learningRate = std::stod(argv[9]); } const unsigned int ImageDimension = TDimension; using PixelType = double; using FixedImageType = itk::Image; using MovingImageType = itk::Image; using ImageReaderType = itk::ImageFileReader; auto fixedImageReader = ImageReaderType::New(); fixedImageReader->SetFileName(argv[2]); fixedImageReader->Update(); typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput(); fixedImage->Update(); fixedImage->DisconnectPipeline(); auto movingImageReader = ImageReaderType::New(); movingImageReader->SetFileName(argv[3]); movingImageReader->Update(); typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput(); movingImage->Update(); movingImage->DisconnectPipeline(); using AffineTransformType = itk::AffineTransform; using AffineRegistrationType = itk::ImageRegistrationMethodv4; auto affineSimple = AffineRegistrationType::New(); affineSimple->SetFixedImage(fixedImage); affineSimple->SetMovingImage(movingImage); // Shrink the virtual domain by specified factors for each level. See documentation // for the itkShrinkImageFilter for more detailed behavior. typename AffineRegistrationType::ShrinkFactorsArrayType affineShrinkFactorsPerLevel; affineShrinkFactorsPerLevel.SetSize(3); affineShrinkFactorsPerLevel[0] = 4; affineShrinkFactorsPerLevel[1] = 4; affineShrinkFactorsPerLevel[2] = 4; affineSimple->SetShrinkFactorsPerLevel(affineShrinkFactorsPerLevel); // Set the number of iterations using GradientDescentOptimizerv4Type = itk::GradientDescentOptimizerv4; auto * optimizer = dynamic_cast(affineSimple->GetModifiableOptimizer()); ITK_TEST_EXPECT_TRUE(optimizer != nullptr); optimizer->SetNumberOfIterations(numberOfAffineIterations); std::cout << "number of affine iterations: " << numberOfAffineIterations << std::endl; using AffineCommandType = CommandIterationUpdate; auto affineObserver = AffineCommandType::New(); affineSimple->AddObserver(itk::IterationEvent(), affineObserver); ITK_TRY_EXPECT_NO_EXCEPTION(affineSimple->Update()); // // Now do the displacement field transform with gaussian smoothing using // the composite transform. // using RealType = typename AffineRegistrationType::RealType; using CompositeTransformType = itk::CompositeTransform; auto compositeTransform = CompositeTransformType::New(); compositeTransform->AddTransform(affineSimple->GetModifiableTransform()); using AffineResampleFilterType = itk::ResampleImageFilter; auto affineResampler = AffineResampleFilterType::New(); affineResampler->SetTransform(compositeTransform); affineResampler->SetInput(movingImage); affineResampler->SetSize(fixedImage->GetBufferedRegion().GetSize()); affineResampler->SetOutputOrigin(fixedImage->GetOrigin()); affineResampler->SetOutputSpacing(fixedImage->GetSpacing()); affineResampler->SetOutputDirection(fixedImage->GetDirection()); affineResampler->SetDefaultPixelValue(0); affineResampler->Update(); std::string affineMovingImageFileName = std::string(argv[4]) + std::string("MovingImageAfterAffineTransform.nii.gz"); using AffineWriterType = itk::ImageFileWriter; auto affineWriter = AffineWriterType::New(); affineWriter->SetFileName(affineMovingImageFileName.c_str()); affineWriter->SetInput(affineResampler->GetOutput()); affineWriter->Update(); using VectorType = itk::Vector; constexpr VectorType zeroVector{}; // Determine the parameters (size, spacing, etc) for the time-varying velocity field // Here we use 10 time index points. using TimeVaryingVelocityFieldType = itk::Image; auto velocityField = TimeVaryingVelocityFieldType::New(); typename TimeVaryingVelocityFieldType::IndexType velocityFieldIndex; typename TimeVaryingVelocityFieldType::SizeType velocityFieldSize; typename TimeVaryingVelocityFieldType::PointType velocityFieldOrigin; typename TimeVaryingVelocityFieldType::SpacingType velocityFieldSpacing; typename TimeVaryingVelocityFieldType::DirectionType velocityFieldDirection; typename TimeVaryingVelocityFieldType::RegionType velocityFieldRegion; velocityFieldIndex.Fill(0); velocityFieldSize.Fill(4); velocityFieldOrigin.Fill(0.0); velocityFieldSpacing.Fill(1.0); velocityFieldDirection.SetIdentity(); typename FixedImageType::IndexType fixedImageIndex = fixedImage->GetBufferedRegion().GetIndex(); typename FixedImageType::SizeType fixedImageSize = fixedImage->GetBufferedRegion().GetSize(); typename FixedImageType::PointType fixedImageOrigin = fixedImage->GetOrigin(); typename FixedImageType::SpacingType fixedImageSpacing = fixedImage->GetSpacing(); typename FixedImageType::DirectionType fixedImageDirection = fixedImage->GetDirection(); for (unsigned int i = 0; i < ImageDimension; ++i) { velocityFieldIndex[i] = fixedImageIndex[i]; velocityFieldSize[i] = fixedImageSize[i]; velocityFieldOrigin[i] = fixedImageOrigin[i]; velocityFieldSpacing[i] = fixedImageSpacing[i]; for (unsigned int j = 0; j < ImageDimension; ++j) { velocityFieldDirection[i][j] = fixedImageDirection[i][j]; } } velocityFieldRegion.SetSize(velocityFieldSize); velocityFieldRegion.SetIndex(velocityFieldIndex); velocityField->SetOrigin(velocityFieldOrigin); velocityField->SetSpacing(velocityFieldSpacing); velocityField->SetDirection(velocityFieldDirection); velocityField->SetRegions(velocityFieldRegion); velocityField->Allocate(); velocityField->FillBuffer(zeroVector); using CorrelationMetricType = itk::ANTSNeighborhoodCorrelationImageToImageMetricv4; auto correlationMetric = CorrelationMetricType::New(); typename CorrelationMetricType::RadiusType radius; radius.Fill(4); correlationMetric->SetRadius(radius); correlationMetric->SetUseMovingImageGradientFilter(false); correlationMetric->SetUseFixedImageGradientFilter(false); using VelocityFieldRegistrationType = itk::TimeVaryingVelocityFieldImageRegistrationMethodv4; auto velocityFieldRegistration = VelocityFieldRegistrationType::New(); ITK_EXERCISE_BASIC_OBJECT_METHODS( velocityFieldRegistration, TimeVaryingVelocityFieldImageRegistrationMethodv4, ImageRegistrationMethodv4); using OutputTransformType = typename VelocityFieldRegistrationType::OutputTransformType; auto outputTransform = OutputTransformType::New(); velocityFieldRegistration->SetFixedImage(fixedImage); velocityFieldRegistration->SetMovingInitialTransform(compositeTransform); velocityFieldRegistration->SetMovingImage(movingImage); velocityFieldRegistration->SetNumberOfLevels(3); velocityFieldRegistration->SetMetric(correlationMetric); velocityFieldRegistration->SetLearningRate(learningRate); ITK_TEST_SET_GET_VALUE(learningRate, velocityFieldRegistration->GetLearningRate()); outputTransform->SetGaussianSpatialSmoothingVarianceForTheTotalField(0.0); outputTransform->SetGaussianSpatialSmoothingVarianceForTheUpdateField(3.0); outputTransform->SetGaussianTemporalSmoothingVarianceForTheTotalField(0.0); outputTransform->SetGaussianTemporalSmoothingVarianceForTheUpdateField(0.5); outputTransform->SetVelocityField(velocityField); outputTransform->SetLowerTimeBound(0.0); outputTransform->SetUpperTimeBound(1.0); outputTransform->IntegrateVelocityField(); velocityFieldRegistration->SetInitialTransform(outputTransform); velocityFieldRegistration->InPlaceOn(); typename VelocityFieldRegistrationType::ShrinkFactorsArrayType numberOfIterationsPerLevel; numberOfIterationsPerLevel.SetSize(3); numberOfIterationsPerLevel[0] = numberOfDeformableIterationsLevel0; numberOfIterationsPerLevel[1] = numberOfDeformableIterationsLevel1; numberOfIterationsPerLevel[2] = numberOfDeformableIterationsLevel2; velocityFieldRegistration->SetNumberOfIterationsPerLevel(numberOfIterationsPerLevel); ITK_TEST_SET_GET_VALUE(numberOfIterationsPerLevel, velocityFieldRegistration->GetNumberOfIterationsPerLevel()); typename VelocityFieldRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel; shrinkFactorsPerLevel.SetSize(3); shrinkFactorsPerLevel[0] = 3; shrinkFactorsPerLevel[1] = 2; shrinkFactorsPerLevel[2] = 1; velocityFieldRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel); typename VelocityFieldRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel; smoothingSigmasPerLevel.SetSize(3); smoothingSigmasPerLevel[0] = 2; smoothingSigmasPerLevel[1] = 1; smoothingSigmasPerLevel[2] = 0; velocityFieldRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel); typename VelocityFieldRegistrationType::RealType convergenceThreshold = 1.0e-7; velocityFieldRegistration->SetConvergenceThreshold(convergenceThreshold); ITK_TEST_SET_GET_VALUE(convergenceThreshold, velocityFieldRegistration->GetConvergenceThreshold()); unsigned int convergenceWindowSize = 10; velocityFieldRegistration->SetConvergenceWindowSize(convergenceWindowSize); ITK_TEST_SET_GET_VALUE(convergenceWindowSize, velocityFieldRegistration->GetConvergenceWindowSize()); velocityFieldRegistration->DebugOn(); using VelocityFieldTransformAdaptorType = itk::TimeVaryingVelocityFieldTransformParametersAdaptor; typename VelocityFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors; for (unsigned int level = 0; level < shrinkFactorsPerLevel.Size(); ++level) { using ShrinkFilterType = itk::ShrinkImageFilter; auto shrinkFilter = ShrinkFilterType::New(); shrinkFilter->SetShrinkFactors(shrinkFactorsPerLevel[level]); shrinkFilter->SetInput(fixedImage); shrinkFilter->Update(); // Although we shrink the images for the given levels, // we keep the size in time the same velocityFieldSize.Fill(10); velocityFieldOrigin.Fill(0.0); velocityFieldSpacing.Fill(1.0); velocityFieldDirection.SetIdentity(); fixedImageSize = shrinkFilter->GetOutput()->GetBufferedRegion().GetSize(); fixedImageOrigin = shrinkFilter->GetOutput()->GetOrigin(); fixedImageSpacing = shrinkFilter->GetOutput()->GetSpacing(); fixedImageDirection = shrinkFilter->GetOutput()->GetDirection(); for (unsigned int i = 0; i < ImageDimension; ++i) { velocityFieldSize[i] = fixedImageSize[i]; velocityFieldOrigin[i] = fixedImageOrigin[i]; velocityFieldSpacing[i] = fixedImageSpacing[i]; for (unsigned int j = 0; j < ImageDimension; ++j) { velocityFieldDirection[i][j] = fixedImageDirection[i][j]; } } typename VelocityFieldTransformAdaptorType::Pointer fieldTransformAdaptor = VelocityFieldTransformAdaptorType::New(); fieldTransformAdaptor->SetRequiredSpacing(velocityFieldSpacing); fieldTransformAdaptor->SetRequiredSize(velocityFieldSize); fieldTransformAdaptor->SetRequiredDirection(velocityFieldDirection); fieldTransformAdaptor->SetRequiredOrigin(velocityFieldOrigin); adaptors.push_back(fieldTransformAdaptor); } velocityFieldRegistration->SetTransformParametersAdaptorsPerLevel(adaptors); using VelocityFieldRegistrationCommandType = CommandIterationUpdate; typename VelocityFieldRegistrationCommandType::Pointer displacementFieldObserver = VelocityFieldRegistrationCommandType::New(); velocityFieldRegistration->AddObserver(itk::IterationEvent(), displacementFieldObserver); ITK_TRY_EXPECT_NO_EXCEPTION(velocityFieldRegistration->Update()); compositeTransform->AddTransform(outputTransform); using ResampleFilterType = itk::ResampleImageFilter; auto resampler = ResampleFilterType::New(); resampler->SetTransform(compositeTransform); resampler->SetInput(movingImage); resampler->SetSize(fixedImage->GetBufferedRegion().GetSize()); resampler->SetOutputOrigin(fixedImage->GetOrigin()); resampler->SetOutputSpacing(fixedImage->GetSpacing()); resampler->SetOutputDirection(fixedImage->GetDirection()); resampler->SetDefaultPixelValue(0); resampler->Update(); std::string warpedMovingImageFileName = std::string(argv[4]) + std::string("MovingImageAfterVelocityFieldTransform.nii.gz"); using WriterType = itk::ImageFileWriter; auto writer = WriterType::New(); writer->SetFileName(warpedMovingImageFileName.c_str()); writer->SetInput(resampler->GetOutput()); writer->Update(); using InverseResampleFilterType = itk::ResampleImageFilter; typename InverseResampleFilterType::Pointer inverseResampler = ResampleFilterType::New(); inverseResampler->SetTransform(compositeTransform->GetInverseTransform()); inverseResampler->SetInput(fixedImage); inverseResampler->SetSize(movingImage->GetBufferedRegion().GetSize()); inverseResampler->SetOutputOrigin(movingImage->GetOrigin()); inverseResampler->SetOutputSpacing(movingImage->GetSpacing()); inverseResampler->SetOutputDirection(movingImage->GetDirection()); inverseResampler->SetDefaultPixelValue(0); inverseResampler->Update(); std::string inverseWarpedFixedImageFileName = std::string(argv[4]) + std::string("InverseWarpedFixedImage.nii.gz"); using InverseWriterType = itk::ImageFileWriter; auto inverseWriter = InverseWriterType::New(); inverseWriter->SetFileName(inverseWarpedFixedImageFileName.c_str()); inverseWriter->SetInput(inverseResampler->GetOutput()); inverseWriter->Update(); std::string velocityFieldFileName = std::string(argv[4]) + std::string("VelocityField.nii.gz"); using VelocityFieldWriterType = itk::ImageFileWriter; auto velocityFieldWriter = VelocityFieldWriterType::New(); velocityFieldWriter->SetFileName(velocityFieldFileName.c_str()); velocityFieldWriter->SetInput(outputTransform->GetVelocityField()); velocityFieldWriter->Update(); return EXIT_SUCCESS; } int itkTimeVaryingVelocityFieldImageRegistrationTest(int argc, char * argv[]) { if (argc < 4) { std::cerr << "Missing parameters." << std::endl; std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv); std::cerr << " imageDimension fixedImage movingImage outputPrefix [numberOfAffineIterations = 100] " << "[numberOfDeformableIterationsLevel0 = 10] [numberOfDeformableIterationsLevel1 = 20] " "[numberOfDeformableIterationsLevel2 = 11 ] [learningRate = 0.5]" << std::endl; return EXIT_FAILURE; } switch (std::stoi(argv[1])) { case 2: PerformTimeVaryingVelocityFieldImageRegistration<2>(argc, argv); break; case 3: PerformTimeVaryingVelocityFieldImageRegistration<3>(argc, argv); break; default: std::cerr << "Unsupported dimension" << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }