/*========================================================================= Program: Visualization Toolkit Module: vtkFixedPointVolumeRayCastCompositeHelper.cxx Language: C++ Copyright (c) 1993-2002 Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkFixedPointVolumeRayCastCompositeHelper.h" #include "vtkCommand.h" #include "vtkDataArray.h" #include "vtkFixedPointRayCastImage.h" #include "vtkFixedPointVolumeRayCastMapper.h" #include "vtkImageData.h" #include "vtkObjectFactory.h" #include "vtkRectilinearGrid.h" #include "vtkRenderWindow.h" #include "vtkVolume.h" #include "vtkVolumeProperty.h" #include vtkStandardNewMacro(vtkFixedPointVolumeRayCastCompositeHelper); // Construct a new vtkFixedPointVolumeRayCastCompositeHelper with default values vtkFixedPointVolumeRayCastCompositeHelper::vtkFixedPointVolumeRayCastCompositeHelper() = default; // Destruct a vtkFixedPointVolumeRayCastCompositeHelper - clean up any memory used vtkFixedPointVolumeRayCastCompositeHelper::~vtkFixedPointVolumeRayCastCompositeHelper() = default; // This method is used when the interpolation type is nearest neighbor and // the data has one component and scale == 1.0 and shift == 0.0. In the inner // loop we get the data value as an unsigned short, and use this index to // lookup a color and opacity for this sample. We then composite this into // the color computed so far along the ray, and check if we can terminate at // this point (if the accumulated opacity is higher than some threshold). // Finally we move on to the next sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageOneSimpleNN(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartNN(); VTKKWRCHelper_InitializeCompositeOneNN(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { VTKKWRCHelper_MoveToNextSampleNN(); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckNN(pos); unsigned short val = static_cast(((*dptr))); VTKKWRCHelper_LookupColorUS(colorTable[0], scalarOpacityTable[0], val, tmp); if (tmp[3]) { VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is nearest neighbor and // the data has one component. In the inner loop we get the data value as // an unsigned short using the scale/shift, and use this index to lookup // a color and opacity for this sample. We then composite this into the // color computed so far along the ray, and check if we can terminate at // this point (if the accumulated opacity is higher than some threshold). // Finally we move on to the next sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageOneNN(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartNN(); VTKKWRCHelper_InitializeCompositeOneNN(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { VTKKWRCHelper_MoveToNextSampleNN(); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckNN(pos); unsigned short val = static_cast(((*dptr) + shift[0]) * scale[0]); VTKKWRCHelper_LookupColorUS(colorTable[0], scalarOpacityTable[0], val, tmp); if (tmp[3]) { VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is nearest neighbor and // the data has two components which are not considered independent. In the // inner loop we compute the two unsigned short index values from the data // values (using the scale/shift). We use the first index to lookup a color, // and we use the second index to look up the opacity. We then composite // the color into the color computed so far along this ray, and check to // see if we can terminate here (if the opacity accumulated exceed some // threshold). Finally we move to the next sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageTwoDependentNN(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartNN(); VTKKWRCHelper_InitializeCompositeOneNN(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { VTKKWRCHelper_MoveToNextSampleNN(); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckNN(pos); unsigned short val[2]; val[1] = static_cast(((*(dptr + 1)) + shift[1]) * scale[1]); tmp[3] = scalarOpacityTable[0][val[1]]; if (!tmp[3]) { continue; } val[0] = static_cast(((*(dptr)) + shift[0]) * scale[0]); tmp[0] = static_cast( (colorTable[0][3 * val[0]] * tmp[3] + 0x7fff) >> (VTKKW_FP_SHIFT)); tmp[1] = static_cast( (colorTable[0][3 * val[0] + 1] * tmp[3] + 0x7fff) >> (VTKKW_FP_SHIFT)); tmp[2] = static_cast( (colorTable[0][3 * val[0] + 2] * tmp[3] + 0x7fff) >> (VTKKW_FP_SHIFT)); VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is nearest neighbor and // the data has four components which are not considered independent . This // means that the first three components directly represent color, and this // data must be of unsigned char type. In the inner loop we directly access // the four data values (no scale/shift is needed). The first three are the // color of this sample and the fourth is used to look up an opacity in the // scalar opacity transfer function. We then composite this color into the // color we have accumulated so far along the ray, and check if we can // terminate here (if our accumulated opacity has exceed some threshold). // Finally we move onto the next sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageFourDependentNN(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartNN(); VTKKWRCHelper_InitializeCompositeOneNN(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { VTKKWRCHelper_MoveToNextSampleNN(); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckNN(pos); unsigned short val[4]; val[3] = static_cast(((*(dptr + 3)) + shift[3]) * scale[3]); tmp[3] = scalarOpacityTable[0][val[3]]; if (!tmp[3]) { continue; } val[0] = *(dptr); val[1] = *(dptr + 1); val[2] = *(dptr + 2); tmp[0] = (val[0] * tmp[3] + 0x7f) >> (8); tmp[1] = (val[1] * tmp[3] + 0x7f) >> (8); tmp[2] = (val[2] * tmp[3] + 0x7f) >> (8); VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is nearest neighbor and // the data has more than one component and the components are considered to // be independent. In the inner loop we access each component value, using // the scale/shift to turn the data value into an unsigned short index. We // then lookup the color/opacity for each component and combine them according // to the weighting value for each component. We composite this resulting // color into the color already accumulated for this ray, and we check // whether we can terminate here (if the accumulated opacity exceeds some // threshold). Finally we increment to the next sample on the ray. template void vtkFixedPointCompositeHelperGenerateImageIndependentNN( T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vol) { VTKKWRCHelper_InitializeWeights(); VTKKWRCHelper_InitializationAndLoopStartNN(); VTKKWRCHelper_InitializeCompositeMultiNN(); for (k = 0; k < numSteps; k++) { if (k) { VTKKWRCHelper_MoveToNextSampleNN(); } VTKKWRCHelper_CroppingCheckNN(pos); for (c = 0; c < components; c++) { val[c] = static_cast(((*(dptr + c)) + shift[c]) * scale[c]); } VTKKWRCHelper_LookupAndCombineIndependentColorsUS( colorTable, scalarOpacityTable, val, weights, components, tmp); if (tmp[3]) { VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is linear and the data // has one component and scale = 1.0 and shift = 0.0. In the inner loop we // get the data value for the eight cell corners (if we have changed cells) // as an unsigned short (the range must be right and we don't need the // scale/shift). We compute our weights within the cell according to our // fractional position within the cell, apply trilinear interpolation to // compute the index, and use this index to lookup a color and opacity for // this sample. We then composite this into the color computed so far along // the ray, and check if we can terminate at this point (if the accumulated // opacity is higher than some threshold). Finally we move on to the next // sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageOneSimpleTrilin(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartTrilin(); VTKKWRCHelper_InitializeCompositeOneTrilin(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { mapper->FixedPointIncrement(pos, dir); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckTrilin(pos); mapper->ShiftVectorDown(pos, spos); if (spos[0] != oldSPos[0] || spos[1] != oldSPos[1] || spos[2] != oldSPos[2]) { oldSPos[0] = spos[0]; oldSPos[1] = spos[1]; oldSPos[2] = spos[2]; dptr = data + spos[0] * inc[0] + spos[1] * inc[1] + spos[2] * inc[2]; VTKKWRCHelper_GetCellScalarValuesSimple(dptr); } VTKKWRCHelper_ComputeWeights(pos); VTKKWRCHelper_InterpolateScalar(val); VTKKWRCHelper_LookupColorUS(colorTable[0], scalarOpacityTable[0], val, tmp); VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is linear and the data // has one component and scale != 1.0 or shift != 0.0. In the inner loop we // get the data value for the eight cell corners (if we have changed cells) // as an unsigned short (we use the scale/shift to ensure the correct range). // We compute our weights within the cell according to our fractional position // within the cell, apply trilinear interpolation to compute the index, and use // this index to lookup a color and opacity for this sample. We then composite // this into the color computed so far along the ray, and check if we can // terminate at this point (if the accumulated opacity is higher than some // threshold). Finally we move on to the next sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageOneTrilin(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartTrilin(); VTKKWRCHelper_InitializeCompositeOneTrilin(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { mapper->FixedPointIncrement(pos, dir); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckTrilin(pos); mapper->ShiftVectorDown(pos, spos); if (spos[0] != oldSPos[0] || spos[1] != oldSPos[1] || spos[2] != oldSPos[2]) { oldSPos[0] = spos[0]; oldSPos[1] = spos[1]; oldSPos[2] = spos[2]; dptr = data + spos[0] * inc[0] + spos[1] * inc[1] + spos[2] * inc[2]; VTKKWRCHelper_GetCellScalarValues(dptr, scale[0], shift[0]); } VTKKWRCHelper_ComputeWeights(pos); VTKKWRCHelper_InterpolateScalar(val); VTKKWRCHelper_LookupColorUS(colorTable[0], scalarOpacityTable[0], val, tmp); VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is linear, the data has // two components and the components are not considered independent. In the // inner loop we get the data value for the eight cell corners (if we have // changed cells) for both components as an unsigned shorts (we use the // scale/shift to ensure the correct range). We compute our weights within // the cell according to our fractional position within the cell, and apply // trilinear interpolation to compute the two index value. We use the first // index to lookup a color and the second to look up an opacity for this sample. // We then composite this into the color computed so far along the ray, and // check if we can terminate at this point (if the accumulated opacity is // higher than some threshold). Finally we move on to the next sample along // the ray. template void vtkFixedPointCompositeHelperGenerateImageTwoDependentTrilin(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartTrilin(); VTKKWRCHelper_InitializeCompositeMultiTrilin(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { mapper->FixedPointIncrement(pos, dir); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckTrilin(pos); mapper->ShiftVectorDown(pos, spos); if (spos[0] != oldSPos[0] || spos[1] != oldSPos[1] || spos[2] != oldSPos[2]) { oldSPos[0] = spos[0]; oldSPos[1] = spos[1]; oldSPos[2] = spos[2]; dptr = data + spos[0] * inc[0] + spos[1] * inc[1] + spos[2] * inc[2]; VTKKWRCHelper_GetCellComponentScalarValues(dptr, 0, scale[0], shift[0]); dptr++; VTKKWRCHelper_GetCellComponentScalarValues(dptr, 1, scale[1], shift[1]); } VTKKWRCHelper_ComputeWeights(pos); VTKKWRCHelper_InterpolateScalarComponent(val, c, 2); tmp[3] = scalarOpacityTable[0][val[1]]; if (!tmp[3]) { continue; } tmp[0] = static_cast( (colorTable[0][3 * val[0]] * tmp[3] + 0x7fff) >> (VTKKW_FP_SHIFT)); tmp[1] = static_cast( (colorTable[0][3 * val[0] + 1] * tmp[3] + 0x7fff) >> (VTKKW_FP_SHIFT)); tmp[2] = static_cast( (colorTable[0][3 * val[0] + 2] * tmp[3] + 0x7fff) >> (VTKKW_FP_SHIFT)); VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is linear, the data has // four components and the components are not considered independent. In the // inner loop we get the data value for the eight cell corners (if we have // changed cells) for all components as an unsigned shorts (we don't have to // use the scale/shift because only unsigned char data is supported for four // component data when the components are not independent). We compute our // weights within the cell according to our fractional position within the cell, // and apply trilinear interpolation to compute a value for each component. We // use the first three directly as the color of the sample, and the fourth is // used to look up an opacity for this sample. We then composite this into the // color computed so far along the ray, and check if we can terminate at this // point (if the accumulated opacity is higher than some threshold). Finally we // move on to the next sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageFourDependentTrilin(T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vtkNotUsed(vol)) { VTKKWRCHelper_InitializationAndLoopStartTrilin(); VTKKWRCHelper_InitializeCompositeMultiTrilin(); VTKKWRCHelper_SpaceLeapSetup(); for (k = 0; k < numSteps; k++) { if (k) { mapper->FixedPointIncrement(pos, dir); } VTKKWRCHelper_SpaceLeapCheck(); VTKKWRCHelper_CroppingCheckTrilin(pos); mapper->ShiftVectorDown(pos, spos); if (spos[0] != oldSPos[0] || spos[1] != oldSPos[1] || spos[2] != oldSPos[2]) { oldSPos[0] = spos[0]; oldSPos[1] = spos[1]; oldSPos[2] = spos[2]; dptr = data + spos[0] * inc[0] + spos[1] * inc[1] + spos[2] * inc[2]; VTKKWRCHelper_GetCellComponentRawScalarValues(dptr, 0); dptr++; VTKKWRCHelper_GetCellComponentRawScalarValues(dptr, 1); dptr++; VTKKWRCHelper_GetCellComponentRawScalarValues(dptr, 2); dptr++; VTKKWRCHelper_GetCellComponentScalarValues(dptr, 3, scale[3], shift[3]); } VTKKWRCHelper_ComputeWeights(pos); VTKKWRCHelper_InterpolateScalarComponent(val, c, components); tmp[3] = scalarOpacityTable[0][val[3]]; if (!tmp[3]) { continue; } tmp[0] = (val[0] * tmp[3] + 0x7f) >> 8; tmp[1] = (val[1] * tmp[3] + 0x7f) >> 8; tmp[2] = (val[2] * tmp[3] + 0x7f) >> 8; VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } // This method is used when the interpolation type is linear, the data has // more than one component and the components are considered independent. In // the inner loop we get the data value for the eight cell corners (if we have // changed cells) for all components as an unsigned shorts (we have to use the // scale/shift to ensure that we obtained unsigned short indices) We compute our // weights within the cell according to our fractional position within the cell, // and apply trilinear interpolation to compute a value for each component. We // look up a color/opacity for each component and blend them according to the // component weights. We then composite this resulting color into the // color computed so far along the ray, and check if we can terminate at this // point (if the accumulated opacity is higher than some threshold). Finally we // move on to the next sample along the ray. template void vtkFixedPointCompositeHelperGenerateImageIndependentTrilin( T* data, int threadID, int threadCount, vtkFixedPointVolumeRayCastMapper* mapper, vtkVolume* vol) { VTKKWRCHelper_InitializeWeights(); VTKKWRCHelper_InitializationAndLoopStartTrilin(); VTKKWRCHelper_InitializeCompositeMultiTrilin(); for (k = 0; k < numSteps; k++) { if (k) { mapper->FixedPointIncrement(pos, dir); } VTKKWRCHelper_CroppingCheckTrilin(pos); mapper->ShiftVectorDown(pos, spos); if (spos[0] != oldSPos[0] || spos[1] != oldSPos[1] || spos[2] != oldSPos[2]) { oldSPos[0] = spos[0]; oldSPos[1] = spos[1]; oldSPos[2] = spos[2]; dptr = data + spos[0] * inc[0] + spos[1] * inc[1] + spos[2] * inc[2]; VTKKWRCHelper_GetCellComponentScalarValues(dptr, 0, scale[0], shift[0]); dptr++; VTKKWRCHelper_GetCellComponentScalarValues(dptr, 1, scale[1], shift[1]); if (components > 2) { dptr++; VTKKWRCHelper_GetCellComponentScalarValues(dptr, 2, scale[2], shift[2]); } if (components > 3) { dptr++; VTKKWRCHelper_GetCellComponentScalarValues(dptr, 3, scale[3], shift[3]); } } VTKKWRCHelper_ComputeWeights(pos); VTKKWRCHelper_InterpolateScalarComponent(val, c, components); VTKKWRCHelper_LookupAndCombineIndependentColorsUS( colorTable, scalarOpacityTable, val, weights, components, tmp); VTKKWRCHelper_CompositeColorAndCheckEarlyTermination(color, tmp, remainingOpacity); } VTKKWRCHelper_SetPixelColor(imagePtr, color, remainingOpacity); VTKKWRCHelper_IncrementAndLoopEnd(); } void vtkFixedPointVolumeRayCastCompositeHelper::GenerateImage( int threadID, int threadCount, vtkVolume* vol, vtkFixedPointVolumeRayCastMapper* mapper) { void* data = mapper->GetCurrentScalars()->GetVoidPointer(0); int scalarType = mapper->GetCurrentScalars()->GetDataType(); // Nearest Neighbor interpolate if (mapper->ShouldUseNearestNeighborInterpolation(vol)) { // One component data if (mapper->GetCurrentScalars()->GetNumberOfComponents() == 1) { // Scale == 1.0 and shift == 0.0 - simple case (faster) if (mapper->GetTableScale()[0] == 1.0 && mapper->GetTableShift()[0] == 0.0) { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageOneSimpleNN( static_cast(data), threadID, threadCount, mapper, vol)); } } else { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageOneNN( static_cast(data), threadID, threadCount, mapper, vol)); } } } // More that one independent components else if (vol->GetProperty()->GetIndependentComponents()) { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageIndependentNN( static_cast(data), threadID, threadCount, mapper, vol)); } } // Dependent (color) components else { // Two components - the first specifies color (through a lookup table) // and the second specified opacity (through a lookup table) if (mapper->GetCurrentScalars()->GetNumberOfComponents() == 2) { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageTwoDependentNN( static_cast(data), threadID, threadCount, mapper, vol)); } } // Four components - they must be unsigned char, the first three directly // specify color and the fourth specifies opacity (through a lookup // table) else { if (scalarType == VTK_UNSIGNED_CHAR) { vtkFixedPointCompositeHelperGenerateImageFourDependentNN( static_cast(data), threadID, threadCount, mapper, vol); } else { vtkErrorMacro("Four component dependent data must be unsigned char!"); } } } } // Trilinear Interpolation else { // One component if (mapper->GetCurrentScalars()->GetNumberOfComponents() == 1) { // Scale == 1.0 and shift == 0.0 - simple case (faster) if (mapper->GetTableScale()[0] == 1.0 && mapper->GetTableShift()[0] == 0.0) { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageOneSimpleTrilin( static_cast(data), threadID, threadCount, mapper, vol)); } } // Scale != 1.0 or shift != 0.0 - must apply scale/shift in inner loop else { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageOneTrilin( static_cast(data), threadID, threadCount, mapper, vol)); } } } // Independent components (more than one) else if (vol->GetProperty()->GetIndependentComponents()) { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageIndependentTrilin( static_cast(data), threadID, threadCount, mapper, vol)); } } // Dependent components else { // Two components - the first specifies color (through a lookup table) // and the second specified opacity (through a lookup table) if (mapper->GetCurrentScalars()->GetNumberOfComponents() == 2) { switch (scalarType) { vtkTemplateMacro(vtkFixedPointCompositeHelperGenerateImageTwoDependentTrilin( static_cast(data), threadID, threadCount, mapper, vol)); } } // Four components - they must be unsigned char, the first three directly // specify color and the fourth specifies opacity (through a lookup // table) else { if (scalarType == VTK_UNSIGNED_CHAR) { vtkFixedPointCompositeHelperGenerateImageFourDependentTrilin( static_cast(data), threadID, threadCount, mapper, vol); } else { vtkErrorMacro("Four component dependent data must be unsigned char!"); } } } } } // Print method for vtkFixedPointVolumeRayCastCompositeHelper void vtkFixedPointVolumeRayCastCompositeHelper::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); }