#define PJ_LIB__ #include #include #include "proj.h" #include "proj_internal.h" #include namespace { // anonymous namespace struct pj_opaque { double phi1; double phi2; double n; double rho; double rho0; double c; double *en; int ellips; }; } // anonymous namespace PROJ_HEAD(eqdc, "Equidistant Conic") "\n\tConic, Sph&Ell\n\tlat_1= lat_2="; # define EPS10 1.e-10 static PJ_XY eqdc_e_forward (PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */ PJ_XY xy = {0.0,0.0}; struct pj_opaque *Q = static_cast(P->opaque); Q->rho = Q->c - (Q->ellips ? pj_mlfn(lp.phi, sin(lp.phi), cos(lp.phi), Q->en) : lp.phi); const double lam_mul_n = lp.lam * Q->n; xy.x = Q->rho * sin(lam_mul_n); xy.y = Q->rho0 - Q->rho * cos(lam_mul_n); return xy; } static PJ_LP eqdc_e_inverse (PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */ PJ_LP lp = {0.0,0.0}; struct pj_opaque *Q = static_cast(P->opaque); if ((Q->rho = hypot(xy.x, xy.y = Q->rho0 - xy.y)) != 0.0 ) { if (Q->n < 0.) { Q->rho = -Q->rho; xy.x = -xy.x; xy.y = -xy.y; } lp.phi = Q->c - Q->rho; if (Q->ellips) lp.phi = pj_inv_mlfn(P->ctx, lp.phi, P->es, Q->en); lp.lam = atan2(xy.x, xy.y) / Q->n; } else { lp.lam = 0.; lp.phi = Q->n > 0. ? M_HALFPI : -M_HALFPI; } return lp; } static PJ *destructor (PJ *P, int errlev) { /* Destructor */ if (nullptr==P) return nullptr; if (nullptr==P->opaque) return pj_default_destructor (P, errlev); free (static_cast(P->opaque)->en); return pj_default_destructor (P, errlev); } PJ *PROJECTION(eqdc) { double cosphi, sinphi; int secant; struct pj_opaque *Q = static_cast(calloc (1, sizeof (struct pj_opaque))); if (nullptr==Q) return pj_default_destructor (P, PROJ_ERR_OTHER /*ENOMEM*/); P->opaque = Q; P->destructor = destructor; Q->phi1 = pj_param(P->ctx, P->params, "rlat_1").f; Q->phi2 = pj_param(P->ctx, P->params, "rlat_2").f; if (fabs(Q->phi1) > M_HALFPI) { proj_log_error(P, _("Invalid value for lat_1: |lat_1| should be <= 90°")); return destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } if (fabs(Q->phi2) > M_HALFPI) { proj_log_error(P, _("Invalid value for lat_2: |lat_2| should be <= 90°")); return destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } if (fabs(Q->phi1 + Q->phi2) < EPS10) { proj_log_error(P, _("Invalid value for lat_1 and lat_2: |lat_1 + lat_2| should be > 0")); return destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } if (!(Q->en = pj_enfn(P->es))) return destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); sinphi = sin(Q->phi1); Q->n = sinphi; cosphi = cos(Q->phi1); secant = fabs(Q->phi1 - Q->phi2) >= EPS10; Q->ellips = (P->es > 0.); if( Q->ellips ) { double ml1, m1; m1 = pj_msfn(sinphi, cosphi, P->es); ml1 = pj_mlfn(Q->phi1, sinphi, cosphi, Q->en); if (secant) { /* secant cone */ sinphi = sin(Q->phi2); cosphi = cos(Q->phi2); Q->n = (m1 - pj_msfn(sinphi, cosphi, P->es)) / (pj_mlfn(Q->phi2, sinphi, cosphi, Q->en) - ml1); if (Q->n == 0) { // Not quite, but es is very close to 1... proj_log_error(P, _("Invalid value for eccentricity")); return destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } } Q->c = ml1 + m1 / Q->n; Q->rho0 = Q->c - pj_mlfn(P->phi0, sin(P->phi0), cos(P->phi0), Q->en); } else { if (secant) Q->n = (cosphi - cos(Q->phi2)) / (Q->phi2 - Q->phi1); if (Q->n == 0) { proj_log_error(P, _("Invalid value for lat_1 and lat_2: lat_1 + lat_2 should be > 0")); return destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } Q->c = Q->phi1 + cos(Q->phi1) / Q->n; Q->rho0 = Q->c - P->phi0; } P->inv = eqdc_e_inverse; P->fwd = eqdc_e_forward; return P; }