#define PJ_LIB__ #include #include "proj.h" #include "proj_internal.h" #include PROJ_HEAD(lcc, "Lambert Conformal Conic") "\n\tConic, Sph&Ell\n\tlat_1= and lat_2= or lat_0, k_0="; #define EPS10 1.e-10 namespace { // anonymous namespace struct pj_opaque { double phi1; double phi2; double n; double rho0; double c; }; } // anonymous namespace static PJ_XY lcc_e_forward (PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */ PJ_XY xy = {0., 0.}; struct pj_opaque *Q = static_cast(P->opaque); double rho; if (fabs(fabs(lp.phi) - M_HALFPI) < EPS10) { if ((lp.phi * Q->n) <= 0.) { proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); return xy; } rho = 0.; } else { rho = Q->c * (P->es != 0. ? pow(pj_tsfn(lp.phi, sin(lp.phi), P->e), Q->n) : pow(tan(M_FORTPI + .5 * lp.phi), -Q->n)); } lp.lam *= Q->n; xy.x = P->k0 * (rho * sin(lp.lam)); xy.y = P->k0 * (Q->rho0 - rho * cos(lp.lam)); return xy; } static PJ_LP lcc_e_inverse (PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */ PJ_LP lp = {0., 0.}; struct pj_opaque *Q = static_cast(P->opaque); double rho; xy.x /= P->k0; xy.y /= P->k0; xy.y = Q->rho0 - xy.y; rho = hypot(xy.x, xy.y); if (rho != 0.) { if (Q->n < 0.) { rho = -rho; xy.x = -xy.x; xy.y = -xy.y; } if (P->es != 0.) { lp.phi = pj_phi2(P->ctx, pow(rho / Q->c, 1./Q->n), P->e); if (lp.phi == HUGE_VAL) { proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); return lp; } } else lp.phi = 2. * atan(pow(Q->c / rho, 1./Q->n)) - M_HALFPI; lp.lam = atan2(xy.x, xy.y) / Q->n; } else { lp.lam = 0.; lp.phi = Q->n > 0. ? M_HALFPI : -M_HALFPI; } return lp; } PJ *PROJECTION(lcc) { double cosphi, sinphi; int secant; struct pj_opaque *Q = static_cast(calloc(1, sizeof (struct pj_opaque))); if (nullptr == Q) return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); P->opaque = Q; Q->phi1 = pj_param(P->ctx, P->params, "rlat_1").f; if (pj_param(P->ctx, P->params, "tlat_2").i) Q->phi2 = pj_param(P->ctx, P->params, "rlat_2").f; else { Q->phi2 = Q->phi1; if (!pj_param(P->ctx, P->params, "tlat_0").i) P->phi0 = Q->phi1; } if (fabs(Q->phi1 + Q->phi2) < EPS10) { proj_log_error(P, _("Invalid value for lat_1 and lat_2: |lat_1 + lat_2| should be > 0")); return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } Q->n = sinphi = sin(Q->phi1); cosphi = cos(Q->phi1); if( fabs(cosphi) < EPS10 || fabs(Q->phi1) >= M_PI_2 ) { proj_log_error(P, _("Invalid value for lat_1: |lat_1| should be < 90°")); return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } if( fabs(cos(Q->phi2)) < EPS10 || fabs(Q->phi2) >= M_PI_2 ) { proj_log_error(P, _("Invalid value for lat_2: |lat_2| should be < 90°")); return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } secant = fabs(Q->phi1 - Q->phi2) >= EPS10; if (P->es != 0.) { double ml1, m1; m1 = pj_msfn(sinphi, cosphi, P->es); ml1 = pj_tsfn(Q->phi1, sinphi, P->e); if (secant) { /* secant cone */ sinphi = sin(Q->phi2); Q->n = log(m1 / pj_msfn(sinphi, cos(Q->phi2), P->es)); if (Q->n == 0) { // Not quite, but es is very close to 1... proj_log_error(P, _("Invalid value for eccentricity")); return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } const double ml2 = pj_tsfn(Q->phi2, sinphi, P->e); const double denom = log(ml1 / ml2); if( denom == 0 ) { // Not quite, but es is very close to 1... proj_log_error(P, _("Invalid value for eccentricity")); return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } Q->n /= denom; } Q->rho0 = m1 * pow(ml1, -Q->n) / Q->n; Q->c = Q->rho0; Q->rho0 *= (fabs(fabs(P->phi0) - M_HALFPI) < EPS10) ? 0. : pow(pj_tsfn(P->phi0, sin(P->phi0), P->e), Q->n); } else { if (secant) Q->n = log(cosphi / cos(Q->phi2)) / log(tan(M_FORTPI + .5 * Q->phi2) / tan(M_FORTPI + .5 * Q->phi1)); if( Q->n == 0 ) { // Likely reason is that phi1 / phi2 are too close to zero. // Can be reproduced with +proj=lcc +a=1 +lat_2=.0000001 proj_log_error(P, _("Invalid value for lat_1 and lat_2: |lat_1 + lat_2| should be > 0")); return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } Q->c = cosphi * pow(tan(M_FORTPI + .5 * Q->phi1), Q->n) / Q->n; Q->rho0 = (fabs(fabs(P->phi0) - M_HALFPI) < EPS10) ? 0. : Q->c * pow(tan(M_FORTPI + .5 * P->phi0), -Q->n); } P->inv = lcc_e_inverse; P->fwd = lcc_e_forward; return P; }