/*========================================================================= Program: Visualization Toolkit Module: vtkBiQuadraticQuadraticHexahedron.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ //Thanks to Soeren Gebbert who developed this class and //integrated it into VTK 5.0. #include "vtkBiQuadraticQuadraticHexahedron.h" #include "vtkObjectFactory.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkHexahedron.h" #include "vtkMath.h" #include "vtkPointData.h" #include "vtkQuadraticEdge.h" #include "vtkQuadraticQuad.h" #include "vtkBiQuadraticQuad.h" #include "vtkPoints.h" #include vtkStandardNewMacro(vtkBiQuadraticQuadraticHexahedron); //---------------------------------------------------------------------------- // Construct the hex with 24 points + 3 extra points for internal // computation. vtkBiQuadraticQuadraticHexahedron::vtkBiQuadraticQuadraticHexahedron() { // At times the cell looks like it has 27 points (during interpolation) // We initially allocate for 27. this->Points->SetNumberOfPoints(27); this->PointIds->SetNumberOfIds(27); for (int i = 0; i < 27; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Points->SetNumberOfPoints(24); this->PointIds->SetNumberOfIds(24); this->Edge = vtkQuadraticEdge::New(); this->Face = vtkQuadraticQuad::New(); this->BiQuadFace = vtkBiQuadraticQuad::New(); this->Hex = vtkHexahedron::New(); this->PointData = vtkPointData::New(); this->CellData = vtkCellData::New(); this->CellScalars = vtkDoubleArray::New(); this->CellScalars->SetNumberOfTuples(27); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(8); // vertices of a linear hexahedron } //---------------------------------------------------------------------------- vtkBiQuadraticQuadraticHexahedron::~vtkBiQuadraticQuadraticHexahedron() { this->Edge->Delete(); this->Face->Delete(); this->BiQuadFace->Delete(); this->Hex->Delete(); this->PointData->Delete(); this->CellData->Delete(); this->Scalars->Delete(); this->CellScalars->Delete(); } static int LinearHexs[8][8] = { { 0, 8, 24, 11, 16, 22, 26, 20}, { 8, 1, 9, 24, 22, 17, 21, 26}, {11, 24, 10, 3, 20, 26, 23, 19}, {24, 9, 2, 10, 26, 21, 18, 23}, {16, 22, 26, 20, 4, 12, 25, 15}, {22, 17, 21, 26, 12, 5, 13, 25}, {20, 26, 23, 19, 15, 25, 14, 7}, {26, 21, 18, 23, 25, 13, 6, 14} }; static int HexFaces[6][9] = { {0,4,7,3,16,15,19,11, 20},//BiQuadQuad {1,2,6,5,9,18,13,17,21},//BiQuadQuad {0,1,5,4,8,17,12,16,22}, //BiQuadQuad {3,7,6,2,19,14,18,10,23},//BiQuadQuad {0,3,2,1,11,10,9,8, 0},//QuadQuad {4,5,6,7,12,13,14,15, 0} };//QuadQuad static int HexEdges[12][3] = { {0,1,8}, {1,2,9}, {3,2,10}, {0,3,11}, {4,5,12}, {5,6,13}, {7,6,14}, {4,7,15}, {0,4,16}, {1,5,17}, {3,7,19}, {2,6,18} }; static double MidPoints[3][3] = { {0.5,0.5,0.0}, {0.5,0.5,1.0}, {0.5,0.5,0.5} }; //---------------------------------------------------------------------------- int *vtkBiQuadraticQuadraticHexahedron::GetEdgeArray(int edgeId) { return HexEdges[edgeId]; } //---------------------------------------------------------------------------- int *vtkBiQuadraticQuadraticHexahedron::GetFaceArray(int faceId) { return HexFaces[faceId]; } //---------------------------------------------------------------------------- vtkCell *vtkBiQuadraticQuadraticHexahedron::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 11 ? 11 : edgeId )); for (int i=0; i<3; i++) { this->Edge->PointIds->SetId(i,this->PointIds->GetId(HexEdges[edgeId][i])); this->Edge->Points->SetPoint(i,this->Points->GetPoint(HexEdges[edgeId][i])); } return this->Edge; } //---------------------------------------------------------------------------- vtkCell *vtkBiQuadraticQuadraticHexahedron::GetFace(int faceId) { faceId = (faceId < 0 ? 0 : (faceId > 5 ? 5 : faceId )); //4 BiQuaduadaticQuads if(faceId < 4) { for (int i=0; i<9; i++) { this->BiQuadFace->PointIds->SetId(i,this->PointIds->GetId(HexFaces[faceId][i])); this->BiQuadFace->Points->SetPoint(i,this->Points->GetPoint(HexFaces[faceId][i])); } return this->BiQuadFace; } else { //2 QuadraticQuads for (int i=0; i<8; i++) { this->Face->PointIds->SetId(i,this->PointIds->GetId(HexFaces[faceId][i])); this->Face->Points->SetPoint(i,this->Points->GetPoint(HexFaces[faceId][i])); } return this->Face; } } //---------------------------------------------------------------------------- void vtkBiQuadraticQuadraticHexahedron::Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars) { int numMidPts, i, j; double weights[24]; double x[3]; double s; //Copy point and cell attribute data, first make sure it's empty: this->PointData->Initialize(); this->CellData->Initialize(); // Make sure to copy ALL arrays. These field data have to be // identical to the input field data. Otherwise, CopyData // that occurs later may not work because the output field // data was initialized (CopyAllocate) with the input field // data. this->PointData->CopyAllOn(); this->CellData->CopyAllOn(); this->PointData->CopyAllocate(inPd,27); this->CellData->CopyAllocate(inCd,8); for (i=0; i<24; i++) { this->PointData->CopyData(inPd,this->PointIds->GetId(i),i); this->CellScalars->SetValue( i, cellScalars->GetTuple1(i)); } this->CellData->CopyData(inCd,cellId,0); //Interpolate new values double p[3]; this->Points->Resize(27); this->CellScalars->Resize(27); for ( numMidPts=0; numMidPts < 3; numMidPts++ ) { this->InterpolationFunctions(MidPoints[numMidPts], weights); x[0] = x[1] = x[2] = 0.0; s = 0.0; for (i=0; i<24; i++) { this->Points->GetPoint(i, p); for (j=0; j<3; j++) { x[j] += p[j] * weights[i]; } s += cellScalars->GetTuple1(i) * weights[i]; } this->Points->SetPoint(24+numMidPts,x); this->CellScalars->SetValue(24+numMidPts,s); this->PointData->InterpolatePoint(inPd, 24+numMidPts, this->PointIds, weights); } } //---------------------------------------------------------------------------- static const double VTK_DIVERGED = 1.e6; static const int VTK_HEX_MAX_ITERATION=20; static const double VTK_HEX_CONVERGED=1.e-03; int vtkBiQuadraticQuadraticHexahedron::EvaluatePosition(double* x, double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[72]; double hexweights[8]; // set initial position for Newton's method pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2]=0.0; subId = 0; // Use a tri-linear hexahederon to get good starting values vtkHexahedron *hex = vtkHexahedron::New(); for(i = 0; i < 8; i++) hex->GetPoints()->SetPoint(i, this->Points->GetPoint(i)); hex->EvaluatePosition(x, closestPoint, subId, pcoords, dist2, hexweights); hex->Delete(); params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; // enter iteration loop for (iteration=converged=0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i=0; i<3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i=0; i<24; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i+24]; tcol[j] += pt[j] * derivs[i+48]; } } for (i=0; i<3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d=vtkMath::Determinant3x3(rcol,scol,tcol); if ( fabs(d) < 1.e-20) { vtkDebugMacro (<<"Determinant incorrect, iteration " << iteration); return -1; } pcoords[0] = params[0] - 0.5*vtkMath::Determinant3x3 (fcol,scol,tcol) / d; pcoords[1] = params[1] - 0.5*vtkMath::Determinant3x3 (rcol,fcol,tcol) / d; pcoords[2] = params[2] - 0.5*vtkMath::Determinant3x3 (rcol,scol,fcol) / d; // check for convergence if ( ((fabs(pcoords[0]-params[0])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[2]-params[2])) < VTK_HEX_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; //inside hexahedron } return 1; } else { double pc[3], w[24]; if (closestPoint) { for (i=0; i<3; i++) //only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, static_cast(w)); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- void vtkBiQuadraticQuadraticHexahedron::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i=0; i<24; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { x[j] += pt[j] * weights[i]; } } } //---------------------------------------------------------------------------- int vtkBiQuadraticQuadraticHexahedron::CellBoundary(int subId, double pcoords[3], vtkIdList *pts) { return this->Hex->CellBoundary(subId, pcoords, pts); } //---------------------------------------------------------------------------- void vtkBiQuadraticQuadraticHexahedron::Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray *verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { //subdivide into 8 linear hexs this->Subdivide(inPd,inCd,cellId, cellScalars); //contour each linear quad separately for (int i=0; i<8; i++) // For each subdivided hexahedron { for (int j=0; j<8; j++) // For each of the eight vertices of the hexhedron { this->Hex->Points->SetPoint(j,this->Points->GetPoint(LinearHexs[i][j])); this->Hex->PointIds->SetId(j,LinearHexs[i][j]); this->Scalars->SetValue(j,this->CellScalars->GetValue(LinearHexs[i][j])); } this->Hex->Contour(value,this->Scalars,locator,verts,lines,polys, this->PointData,outPd,this->CellData,i,outCd); } } //---------------------------------------------------------------------------- // Line-hex intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkBiQuadraticQuadraticHexahedron::IntersectWithLine(double* p1, double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int intersection = 0; double tTemp; double pc[3], xTemp[3]; t = VTK_DOUBLE_MAX; for (int faceNum=0; faceNum<6; faceNum++) { int status = 0; //4 BiQuaduadaticQuads if(faceNum < 4) { for (int i=0; i<9; i++) { this->BiQuadFace->PointIds->SetId(i, this->PointIds->GetId(HexFaces[faceNum][i])); this->BiQuadFace->Points->SetPoint(i, this->Points->GetPoint(HexFaces[faceNum][i])); } status = this->BiQuadFace->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); } else { //2 QuadraticQuads for (int i=0; i<8; i++) { this->Face->PointIds->SetId(i,this->PointIds->GetId(HexFaces[faceNum][i])); this->Face->Points->SetPoint(i,this->Points->GetPoint(HexFaces[faceNum][i])); } status = this->Face->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId); } if (status) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; case 1: pcoords[0] = 1.0; pcoords[1] = pc[0]; pcoords[2] = pc[1]; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = pc[1]; break; case 3: pcoords[0] = pc[1]; pcoords[1] = 1.0; pcoords[2] = pc[0]; break; case 4: pcoords[0] = pc[1]; pcoords[1] = pc[0]; pcoords[2] = 0.0; break; case 5: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; default: assert("check: impossible case." && 0); // reaching this line is a bug. break; } } } } return intersection; } //---------------------------------------------------------------------------- int vtkBiQuadraticQuadraticHexahedron::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { pts->Reset(); ptIds->Reset(); ptIds->InsertId(0,this->PointIds->GetId(0)); pts->InsertPoint(0,this->Points->GetPoint(0)); ptIds->InsertId(1,this->PointIds->GetId(1)); pts->InsertPoint(1,this->Points->GetPoint(1)); return 1; } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkBiQuadraticQuadraticHexahedron::JacobianInverse(double pcoords[3], double **inverse, double derivs[72]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 24; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[24 + j]; m2[i] += x[i] * derivs[48 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { return; } } //---------------------------------------------------------------------------- void vtkBiQuadraticQuadraticHexahedron::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[72], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 24; i++) //loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim*i + k]; sum[1] += functionDerivs[24 + i] * values[dim*i + k]; sum[2] += functionDerivs[48 + i] * values[dim*i + k]; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2]; } } } //---------------------------------------------------------------------------- // Clip this quadratic hex using scalar value provided. Like contouring, // except that it cuts the hex to produce tetrahedra. void vtkBiQuadraticQuadraticHexahedron::Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tets, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { //create eight linear hexes this->Subdivide(inPd,inCd,cellId,cellScalars); //contour each linear hex separately for (int i=0; i<8; i++) // For each subdivided hexahedron { for (int j=0; j<8; j++) // For each of the eight vertices of the hexhedron { this->Hex->Points->SetPoint(j,this->Points->GetPoint(LinearHexs[i][j])); this->Hex->PointIds->SetId(j,LinearHexs[i][j]); this->Scalars->SetValue(j,this->CellScalars->GetValue(LinearHexs[i][j])); } this->Hex->Clip(value,this->Scalars,locator,tets,this->PointData,outPd, this->CellData,i,outCd,insideOut); } } //---------------------------------------------------------------------------- // Compute interpolation functions for the twenty four nodes. void vtkBiQuadraticQuadraticHexahedron::InterpolationFunctions(double pcoords[3], double weights[24]) { //VTK needs parametric coordinates to be between (0,1). Isoparametric //shape functions are formulated between (-1,1). Here we do a //coordinate system conversion from (0,1) to (-1,1). double x = 2.0*(pcoords[0]-0.5); double y = 2.0*(pcoords[1]-0.5); double z = 2.0*(pcoords[2]-0.5); //The eight corner points weights[0] = ( 0.25*(x*(1-x))*(y*(1-y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*(-0.5*z*(1-z)); weights[1] = (-0.25*(x*(1+x))*(y*(1-y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*(-0.5*z*(1-z)); weights[2] = ( 0.25*(x*(1+x))*(y*(1+y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*(-0.5*z*(1-z)); weights[3] = (-0.25*(x*(1-x))*(y*(1+y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*(-0.5*z*(1-z)); weights[4] = ( 0.25*(x*(1-x))*(y*(1-y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*( 0.5*z*(1+z)); weights[5] = (-0.25*(x*(1+x))*(y*(1-y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*( 0.5*z*(1+z)); weights[6] = ( 0.25*(x*(1+x))*(y*(1+y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*( 0.5*z*(1+z)); weights[7] = (-0.25*(x*(1-x))*(y*(1+y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y))*( 0.5*z*(1+z)); //The mid-edge nodes weights[8] = 0.5*((1+x)*(1-x))*(1-y) *(-0.5*z*(1-z)); weights[9] = 0.5*((1+y)*(1-y))*(1+x) *(-0.5*z*(1-z)); weights[10] = 0.5*((1+x)*(1-x))*(1+y) *(-0.5*z*(1-z)); weights[11] = 0.5*((1+y)*(1-y))*(1-x) *(-0.5*z*(1-z)); weights[12] = 0.5*((1+x)*(1-x))*(1-y) *( 0.5*z*(1+z)); weights[13] = 0.5*((1+y)*(1-y))*(1+x) *( 0.5*z*(1+z)); weights[14] = 0.5*((1+x)*(1-x))*(1+y) *( 0.5*z*(1+z)); weights[15] = 0.5*((1+y)*(1-y))*(1-x) *( 0.5*z*(1+z)); weights[16] =( 0.25*(x*(1-x))*(y*(1-y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y)) *((1+z)*(1-z)); weights[17] =(-0.25*(x*(1+x))*(y*(1-y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y)) *((1+z)*(1-z)); weights[18] =( 0.25*(x*(1+x))*(y*(1+y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y)) *((1+z)*(1-z)); weights[19] =(-0.25*(x*(1-x))*(y*(1+y)) - 0.25*(1+x)*(1-x)*(1+y)*(1-y)) *((1+z)*(1-z)); //Face center Nodes in xz and yz direction weights[20] = 0.5*((1+y)*(1-y))*(1-x) *((1+z)*(1-z)); weights[21] = 0.5*((1+y)*(1-y))*(1+x) *((1+z)*(1-z)); weights[22] = 0.5*((1+x)*(1-x))*(1-y) *((1+z)*(1-z)); weights[23] = 0.5*((1+x)*(1-x))*(1+y) *((1+z)*(1-z)); } //---------------------------------------------------------------------------- // Derivatives in parametric space. void vtkBiQuadraticQuadraticHexahedron::InterpolationDerivs(double pcoords[3], double derivs[72]) { //VTK needs parametric coordinates to be between (0,1). Isoparametric //shape functions are formulated between (-1,1). Here we do a //coordinate system conversion from (0,1) to (-1,1). double x = 2.0*(pcoords[0]-0.5); double y = 2.0*(pcoords[1]-0.5); double z = 2.0*(pcoords[2]-0.5); // x direction derivs[0] =-((y*y+(2*x-1)*y-2*x)*z*z+(-y*y+(1-2*x)*y+2*x)*z)/8; derivs[1] =((y*y+(-2*x-1)*y+2*x)*z*z+(-y*y+(2*x+1)*y-2*x)*z)/8; derivs[2] =((y*y+(2*x+1)*y+2*x)*z*z+(-y*y+(-2*x-1)*y-2*x)*z)/8; derivs[3] =-((y*y+(1-2*x)*y-2*x)*z*z+(-y*y+(2*x-1)*y+2*x)*z)/8; derivs[4] =-((y*y+(2*x-1)*y-2*x)*z*z+(y*y+(2*x-1)*y-2*x)*z)/8; derivs[5] =((y*y+(-2*x-1)*y+2*x)*z*z+(y*y+(-2*x-1)*y+2*x)*z)/8; derivs[6] =((y*y+(2*x+1)*y+2*x)*z*z+(y*y+(2*x+1)*y+2*x)*z)/8; derivs[7] =-((y*y+(1-2*x)*y-2*x)*z*z+(y*y+(1-2*x)*y-2*x)*z)/8; derivs[8] =((x*y-x)*z*z+(x-x*y)*z)/2; derivs[9] =-((y*y-1)*z*z+(1-y*y)*z)/4; derivs[10] =-((x*y+x)*z*z+(-x*y-x)*z)/2; derivs[11] =((y*y-1)*z*z+(1-y*y)*z)/4; derivs[12] =((x*y-x)*z*z+(x*y-x)*z)/2; derivs[13] =-((y*y-1)*z*z+(y*y-1)*z)/4; derivs[14] =-((x*y+x)*z*z+(x*y+x)*z)/2; derivs[15] =((y*y-1)*z*z+(y*y-1)*z)/4; derivs[16] =((y*y+(2*x-1)*y-2*x)*z*z-y*y+(1-2*x)*y+2*x)/4; derivs[17] =-((y*y+(-2*x-1)*y+2*x)*z*z-y*y+(2*x+1)*y-2*x)/4; derivs[18] =-((y*y+(2*x+1)*y+2*x)*z*z-y*y+(-2*x-1)*y-2*x)/4; derivs[19] =((y*y+(1-2*x)*y-2*x)*z*z-y*y+(2*x-1)*y+2*x)/4; derivs[20] =-((y*y-1)*z*z-y*y+1)/2; derivs[21] =((y*y-1)*z*z-y*y+1)/2; derivs[22] =(x-x*y)*z*z+x*y-x; derivs[23] =(x*y+x)*z*z-x*y-x; // y direction derivs[24] =-(((2*x-2)*y+x*x-x)*z*z+((2-2*x)*y-x*x+x)*z)/8; derivs[25] =(((2*x+2)*y-x*x-x)*z*z+((-2*x-2)*y+x*x+x)*z)/8; derivs[26] =(((2*x+2)*y+x*x+x)*z*z+((-2*x-2)*y-x*x-x)*z)/8; derivs[27] =-(((2*x-2)*y-x*x+x)*z*z+((2-2*x)*y+x*x-x)*z)/8; derivs[28] =-(((2*x-2)*y+x*x-x)*z*z+((2*x-2)*y+x*x-x)*z)/8; derivs[29] =(((2*x+2)*y-x*x-x)*z*z+((2*x+2)*y-x*x-x)*z)/8; derivs[30] =(((2*x+2)*y+x*x+x)*z*z+((2*x+2)*y+x*x+x)*z)/8; derivs[31] =-(((2*x-2)*y-x*x+x)*z*z+((2*x-2)*y-x*x+x)*z)/8; derivs[32] =((x*x-1)*z*z+(1-x*x)*z)/4; derivs[33] =-((x+1)*y*z*z+(-x-1)*y*z)/2; derivs[34] =-((x*x-1)*z*z+(1-x*x)*z)/4; derivs[35] =((x-1)*y*z*z+(1-x)*y*z)/2; derivs[36] =((x*x-1)*z*z+(x*x-1)*z)/4; derivs[37] =-((x+1)*y*z*z+(x+1)*y*z)/2; derivs[38] =-((x*x-1)*z*z+(x*x-1)*z)/4; derivs[39] =((x-1)*y*z*z+(x-1)*y*z)/2; derivs[40] =(((2*x-2)*y+x*x-x)*z*z+(2-2*x)*y-x*x+x)/4; derivs[41] =-(((2*x+2)*y-x*x-x)*z*z+(-2*x-2)*y+x*x+x)/4; derivs[42] =-(((2*x+2)*y+x*x+x)*z*z+(-2*x-2)*y-x*x-x)/4; derivs[43] =(((2*x-2)*y-x*x+x)*z*z+(2-2*x)*y+x*x-x)/4; derivs[44] =(1-x)*y*z*z+(x-1)*y; derivs[45] =(x+1)*y*z*z+(-x-1)*y; derivs[46] =-((x*x-1)*z*z-x*x+1)/2; derivs[47] =((x*x-1)*z*z-x*x+1)/2; // z direction derivs[48] =-(((2*x-2)*y*y+(2*x*x-2*x)*y-2*x*x+2)*z+(1-x)*y*y+(x-x*x)*y+x*x-1)/8; derivs[49] =(((2*x+2)*y*y+(-2*x*x-2*x)*y+2*x*x-2)*z+(-x-1)*y*y+(x*x+x)*y-x*x+1)/8; derivs[50] =(((2*x+2)*y*y+(2*x*x+2*x)*y+2*x*x-2)*z+(-x-1)*y*y+(-x*x-x)*y-x*x+1)/8; derivs[51] =-(((2*x-2)*y*y+(2*x-2*x*x)*y-2*x*x+2)*z+(1-x)*y*y+(x*x-x)*y+x*x-1)/8; derivs[52] =-(((2*x-2)*y*y+(2*x*x-2*x)*y-2*x*x+2)*z+(x-1)*y*y+(x*x-x)*y-x*x+1)/8; derivs[53] =(((2*x+2)*y*y+(-2*x*x-2*x)*y+2*x*x-2)*z+(x+1)*y*y+(-x*x-x)*y+x*x-1)/8; derivs[54] =(((2*x+2)*y*y+(2*x*x+2*x)*y+2*x*x-2)*z+(x+1)*y*y+(x*x+x)*y+x*x-1)/8; derivs[55] =-(((2*x-2)*y*y+(2*x-2*x*x)*y-2*x*x+2)*z+(x-1)*y*y+(x-x*x)*y-x*x+1)/8; derivs[56] =(((2*x*x-2)*y-2*x*x+2)*z+(1-x*x)*y+x*x-1)/4; derivs[57] =-(((2*x+2)*y*y-2*x-2)*z+(-x-1)*y*y+x+1)/4; derivs[58] =-(((2*x*x-2)*y+2*x*x-2)*z+(1-x*x)*y-x*x+1)/4; derivs[59] =(((2*x-2)*y*y-2*x+2)*z+(1-x)*y*y+x-1)/4; derivs[60] =(((2*x*x-2)*y-2*x*x+2)*z+(x*x-1)*y-x*x+1)/4; derivs[61] =-(((2*x+2)*y*y-2*x-2)*z+(x+1)*y*y-x-1)/4; derivs[62] =-(((2*x*x-2)*y+2*x*x-2)*z+(x*x-1)*y+x*x-1)/4; derivs[63] =(((2*x-2)*y*y-2*x+2)*z+(x-1)*y*y-x+1)/4; derivs[64] =((x-1)*y*y+(x*x-x)*y-x*x+1)*z/2; derivs[65] =-((x+1)*y*y+(-x*x-x)*y+x*x-1)*z/2; derivs[66] =-((x+1)*y*y+(x*x+x)*y+x*x-1)*z/2; derivs[67] =((x-1)*y*y+(x-x*x)*y-x*x+1)*z/2; derivs[68] =((1-x)*y*y+x-1)*z; derivs[69] =((x+1)*y*y-x-1)*z; derivs[70] =((1-x*x)*y+x*x-1)*z; derivs[71] =((x*x-1)*y+x*x-1)*z; // we compute derivatives in in [-1; 1] but we need them in [ 0; 1] for(int i = 0; i < 72; i++) derivs[i] *= 2; } //---------------------------------------------------------------------------- static double vtkQHexCellPCoords[72] ={0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,1.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0, 0.0,1.0,1.0, 0.5,0.0,0.0, 1.0,0.5,0.0, 0.5,1.0,0.0, 0.0,0.5,0.0, 0.5,0.0,1.0, 1.0,0.5,1.0, 0.5,1.0,1.0, 0.0,0.5,1.0, 0.0,0.0,0.5, 1.0,0.0,0.5, 1.0,1.0,0.5, 0.0,1.0,0.5, 0.0,0.5,0.5, // 20 1.0,0.5,0.5, // 21 0.5,0.0,0.5, // 22 0.5,1.0,0.5}; // 23 double *vtkBiQuadraticQuadraticHexahedron::GetParametricCoords() { return vtkQHexCellPCoords; } //---------------------------------------------------------------------------- void vtkBiQuadraticQuadraticHexahedron::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Edge:\n"; this->Edge->PrintSelf(os,indent.GetNextIndent()); os << indent << "Face:\n"; this->Face->PrintSelf(os,indent.GetNextIndent()); this->BiQuadFace->PrintSelf(os,indent.GetNextIndent()); os << indent << "Hex:\n"; this->Hex->PrintSelf(os,indent.GetNextIndent()); os << indent << "PointData:\n"; this->PointData->PrintSelf(os,indent.GetNextIndent()); os << indent << "CellData:\n"; this->CellData->PrintSelf(os,indent.GetNextIndent()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf(os,indent.GetNextIndent()); }