/*========================================================================= Program: Visualization Toolkit Module: vtkBiQuadraticQuadraticHexahedron.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkBiQuadraticQuadraticHexahedron * @brief cell represents a biquadratic, * 24-node isoparametric hexahedron * * vtkBiQuadraticQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to * represent a three-dimensional, 24-node isoparametric biquadratic * hexahedron. The interpolation is the standard finite element, * biquadratic-quadratic * isoparametric shape function. The cell includes mid-edge and center-face nodes. The * ordering of the 24 points defining the cell is point ids (0-7,8-19, 20-23) * where point ids 0-7 are the eight corner vertices of the cube; followed by * twelve midedge nodes (8-19), nodes 20-23 are the center-face nodes. Note that * these midedge nodes correspond lie * on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), * (7,4), (0,4), (1,5), (2,6), (3,7). The center face nodes laying in quad * 22-(0,1,5,4), 21-(1,2,6,5), 23-(2,3,7,6) and 22-(3,0,4,7) * * \verbatim * * top * 7--14--6 * | | * 15 13 * | | * 4--12--5 * * middle * 19--23--18 * | | * 20 21 * | | * 16--22--17 * * bottom * 3--10--2 * | | * 11 9 * | | * 0-- 8--1 * * \endverbatim * * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra * vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge * * @par Thanks: * Thanks to Soeren Gebbert who developed this class and * integrated it into VTK 5.0. */ #ifndef vtkBiQuadraticQuadraticHexahedron_h #define vtkBiQuadraticQuadraticHexahedron_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkQuadraticQuad; class vtkBiQuadraticQuad; class vtkHexahedron; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkBiQuadraticQuadraticHexahedron : public vtkNonLinearCell { public: static vtkBiQuadraticQuadraticHexahedron *New(); vtkTypeMacro(vtkBiQuadraticQuadraticHexahedron,vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override {return VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON;} int GetCellDimension() override {return 3;} int GetNumberOfEdges() override {return 12;} int GetNumberOfFaces() override {return 6;} vtkCell *GetEdge(int) override; vtkCell *GetFace(int) override; //@} int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) override; void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights) override; int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; double *GetParametricCoords() override; /** * Clip this biquadratic hexahedron using scalar value provided. Like * contouring, except that it cuts the hex to produce linear * tetrahedron. */ void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; /** * @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateFunctions as of VTK 5.2 */ static void InterpolationFunctions(double pcoords[3], double weights[24]); /** * @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateDerivs as of VTK 5.2 */ static void InterpolationDerivs(double pcoords[3], double derivs[72]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(double pcoords[3], double weights[24]) override { vtkBiQuadraticQuadraticHexahedron::InterpolationFunctions(pcoords,weights); } void InterpolateDerivs(double pcoords[3], double derivs[72]) override { vtkBiQuadraticQuadraticHexahedron::InterpolationDerivs(pcoords,derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. */ static int *GetEdgeArray(int edgeId); static int *GetFaceArray(int faceId); //@} /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse(double pcoords[3], double **inverse, double derivs[72]); protected: vtkBiQuadraticQuadraticHexahedron(); ~vtkBiQuadraticQuadraticHexahedron() override; vtkQuadraticEdge *Edge; vtkQuadraticQuad *Face; vtkBiQuadraticQuad *BiQuadFace; vtkHexahedron *Hex; vtkPointData *PointData; vtkCellData *CellData; vtkDoubleArray *CellScalars; vtkDoubleArray *Scalars; void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars); private: vtkBiQuadraticQuadraticHexahedron(const vtkBiQuadraticQuadraticHexahedron&) = delete; void operator=(const vtkBiQuadraticQuadraticHexahedron&) = delete; }; #endif