/*========================================================================= Program: Visualization Toolkit Module: vtkLine.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkLine * @brief cell represents a 1D line * * vtkLine is a concrete implementation of vtkCell to represent a 1D line. */ #ifndef vtkLine_h #define vtkLine_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkCell.h" class vtkIncrementalPointLocator; class VTKCOMMONDATAMODEL_EXPORT vtkLine : public vtkCell { public: static vtkLine *New(); vtkTypeMacro(vtkLine,vtkCell); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * See the vtkCell API for descriptions of these methods. */ int GetCellType() override {return VTK_LINE;}; int GetCellDimension() override {return 1;}; int GetNumberOfEdges() override {return 0;}; int GetNumberOfFaces() override {return 0;}; vtkCell *GetEdge(int) override {return nullptr;}; vtkCell *GetFace(int) override {return nullptr;}; int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) override; void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights) override; int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; double *GetParametricCoords() override; //@} /** * Clip this line using scalar value provided. Like contouring, except * that it cuts the line to produce other lines. */ void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *lines, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; /** * Return the center of the triangle in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; /** * Line-line intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; /** * Performs intersection of the projection of two finite 3D lines onto a 2D * plane. An intersection is found if the projection of the two lines onto * the plane perpendicular to the cross product of the two lines intersect. * The parameters (u,v) are the parametric coordinates of the lines at the * position of closest approach. */ static int Intersection(const double p1[3], const double p2[3], const double x1[3], const double x2[3], double& u, double& v); /** * Performs intersection of two finite 3D lines. An intersection is found if * the projection of the two lines onto the plane perpendicular to the cross * product of the two lines intersect, and if the distance between the * closest points of approach are within a relative tolerance. The parameters * (u,v) are the parametric coordinates of the lines at the position of * closest approach. * NOTE: "Unlike Intersection(), which determines whether the projections of * two lines onto a plane intersect, Intersection3D() determines whether the * lines themselves in 3D space intersect, within a tolerance. */ static int Intersection3D(double p1[3], double p2[3], double x1[3], double x2[3], double& u, double& v); /** * Compute the distance of a point x to a finite line (p1,p2). The method * computes the parametric coordinate t and the point location on the * line. Note that t is unconstrained (i.e., it may lie outside the range * [0,1]) but the closest point will lie within the finite line [p1,p2], if * it is defined. Also, the method returns the distance squared between x and * the line (p1,p2). */ static double DistanceToLine(const double x[3], const double p1[3], const double p2[3], double &t, double* closestPoint=nullptr); /** * Determine the distance of the current vertex to the edge defined by * the vertices provided. Returns distance squared. Note: line is assumed * infinite in extent. */ static double DistanceToLine(const double x[3], const double p1[3], const double p2[3]); /** * Computes the shortest distance squared between two infinite lines, each * defined by a pair of points (l0,l1) and (m0,m1). * Upon return, the closest points on the two line segments will be stored * in closestPt1 and closestPt2. Their parametric coords * (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is * the shortest distance squared between the two line-segments. */ static double DistanceBetweenLines( double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double &t1, double &t2 ); /** * Computes the shortest distance squared between two finite line segments * defined by their end points (l0,l1) and (m0,m1). * Upon return, the closest points on the two line segments will be stored * in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1) * will be stored in t0 and t1. The return value is the shortest distance * squared between the two line-segments. */ static double DistanceBetweenLineSegments( double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double &t1, double &t2 ); /** * @deprecated Replaced by vtkLine::InterpolateFunctions as of VTK 5.2 */ static void InterpolationFunctions(double pcoords[3], double weights[2]); /** * @deprecated Replaced by vtkLine::InterpolateDerivs as of VTK 5.2 */ static void InterpolationDerivs(double pcoords[3], double derivs[2]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(double pcoords[3], double weights[2]) override { vtkLine::InterpolationFunctions(pcoords,weights); } void InterpolateDerivs(double pcoords[3], double derivs[2]) override { vtkLine::InterpolationDerivs(pcoords,derivs); } //@} protected: vtkLine(); ~vtkLine() override {} private: vtkLine(const vtkLine&) = delete; void operator=(const vtkLine&) = delete; }; //---------------------------------------------------------------------------- inline int vtkLine::GetParametricCenter(double pcoords[3]) { pcoords[0] = 0.5; pcoords[1] = pcoords[2] = 0.0; return 0; } #endif