/*========================================================================= Program: Visualization Toolkit Module: vtkQuadraticQuad.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkQuadraticQuad * @brief cell represents a parabolic, 8-node isoparametric quad * * vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to * represent a two-dimensional, 8-node isoparametric parabolic quadrilateral * element. The interpolation is the standard finite element, quadratic * isoparametric shape function. The cell includes a mid-edge node for each * of the four edges of the cell. The ordering of the eight points defining * the cell are point ids (0-3,4-7) where ids 0-3 define the four corner * vertices of the quad; ids 4-7 define the midedge nodes (0,1), (1,2), * (2,3), (3,0). * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra * vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid */ #ifndef vtkQuadraticQuad_h #define vtkQuadraticQuad_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkQuad; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticQuad : public vtkNonLinearCell { public: static vtkQuadraticQuad *New(); vtkTypeMacro(vtkQuadraticQuad,vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override {return VTK_QUADRATIC_QUAD;}; int GetCellDimension() override {return 2;} int GetNumberOfEdges() override {return 4;} int GetNumberOfFaces() override {return 0;} vtkCell *GetEdge(int) override; vtkCell *GetFace(int) override {return nullptr;} //@} int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) override; void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights) override; int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; double *GetParametricCoords() override; /** * Clip this quadratic quad using scalar value provided. Like contouring, * except that it cuts the quad to produce linear triangles. */ void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; /** * Return the center of the pyramid in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; /** * @deprecated Replaced by vtkQuadraticQuad::InterpolateFunctions as of VTK 5.2 */ static void InterpolationFunctions(double pcoords[3], double weights[8]); /** * @deprecated Replaced by vtkQuadraticQuad::InterpolateDerivs as of VTK 5.2 */ static void InterpolationDerivs(double pcoords[3], double derivs[16]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(double pcoords[3], double weights[8]) override { vtkQuadraticQuad::InterpolationFunctions(pcoords,weights); } void InterpolateDerivs(double pcoords[3], double derivs[16]) override { vtkQuadraticQuad::InterpolationDerivs(pcoords,derivs); } //@} protected: vtkQuadraticQuad(); ~vtkQuadraticQuad() override; vtkQuadraticEdge *Edge; vtkQuad *Quad; vtkPointData *PointData; vtkDoubleArray *Scalars; // In order to achieve some functionality we introduce a fake center point // which require to have some extra functionalities compare to other non-linar // cells vtkCellData *CellData; vtkDoubleArray *CellScalars; void Subdivide(double *weights); void InterpolateAttributes(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars); private: vtkQuadraticQuad(const vtkQuadraticQuad&) = delete; void operator=(const vtkQuadraticQuad&) = delete; }; //---------------------------------------------------------------------------- inline int vtkQuadraticQuad::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = 0.5; pcoords[2] = 0.; return 0; } #endif