/*========================================================================= Program: Visualization Toolkit Module: vtkSphere.cxx Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkSphere.h" #include "vtkMath.h" #include "vtkObjectFactory.h" vtkStandardNewMacro(vtkSphere); //---------------------------------------------------------------------------- // Construct sphere with center at (0,0,0) and radius=0.5. vtkSphere::vtkSphere() { this->Radius = 0.5; this->Center[0] = 0.0; this->Center[1] = 0.0; this->Center[2] = 0.0; } //---------------------------------------------------------------------------- // Evaluate sphere equation ((x-x0)^2 + (y-y0)^2 + (z-z0)^2) - R^2. double vtkSphere::EvaluateFunction(double x[3]) { return ( ((x[0] - this->Center[0]) * (x[0] - this->Center[0]) + (x[1] - this->Center[1]) * (x[1] - this->Center[1]) + (x[2] - this->Center[2]) * (x[2] - this->Center[2])) - this->Radius*this->Radius ); } //---------------------------------------------------------------------------- // Evaluate sphere gradient. void vtkSphere::EvaluateGradient(double x[3], double n[3]) { n[0] = 2.0 * (x[0] - this->Center[0]); n[1] = 2.0 * (x[1] - this->Center[1]); n[2] = 2.0 * (x[2] - this->Center[2]); } // The following methods are used to compute bounding spheres. // #define VTK_ASSIGN_POINT(_x,_y) {_x[0]=_y[0];_x[1]=_y[1];_x[2]=_y[2];} //---------------------------------------------------------------------------- // Inspired by Graphics Gems Vol. I ("An Efficient Bounding Sphere" by Jack Ritter). // The algorithm works in two parts: first an initial estimate of the largest sphere; // second an adjustment to the sphere to make sure that it includes all the points. // Typically this returns a bounding sphere that is ~5% larger than the minimal // bounding sphere. template void vtkSphereComputeBoundingSphere(T *pts, vtkIdType numPts, T sphere[4], vtkIdType hints[2]) { sphere[0] = sphere[1] = sphere[2] = sphere[3] = 0.0; if ( numPts < 1 ) { return; } vtkIdType i; T *p, d1[3], d2[3]; if ( hints ) { p = pts + 3*hints[0]; VTK_ASSIGN_POINT(d1,p); p = pts + 3*hints[1]; VTK_ASSIGN_POINT(d2,p); } else //no hints provided, compute an initial guess { T xMin[3], xMax[3], yMin[3], yMax[3], zMin[3], zMax[3]; xMin[0] = xMin[1] = xMin[2] = VTK_FLOAT_MAX; yMin[0] = yMin[1] = yMin[2] = VTK_FLOAT_MAX; zMin[0] = zMin[1] = zMin[2] = VTK_FLOAT_MAX; xMax[0] = xMax[1] = xMax[2] = -VTK_FLOAT_MAX; yMax[0] = yMax[1] = yMax[2] = -VTK_FLOAT_MAX; zMax[0] = zMax[1] = zMax[2] = -VTK_FLOAT_MAX; // First part: Estimate the points furthest apart to define the largest sphere. // Find the points that span the greatest distance on the x-y-z axes. Use these // two points to define a sphere centered between the two points. for (p=pts, i=0; i xMax[0] ) VTK_ASSIGN_POINT(xMax,p); if (p[1] < yMin[1] ) VTK_ASSIGN_POINT(yMin,p); if (p[1] > yMax[1] ) VTK_ASSIGN_POINT(yMax,p); if (p[2] < zMin[2] ) VTK_ASSIGN_POINT(zMin,p); if (p[2] > zMax[2] ) VTK_ASSIGN_POINT(zMax,p); } T xSpan = (xMax[0]-xMin[0])*(xMax[0]-xMin[0]) + (xMax[1]-xMin[1])*(xMax[1]-xMin[1]) + (xMax[2]-xMin[2])*(xMax[2]-xMin[2]); T ySpan = (yMax[0]-yMin[0])*(yMax[0]-yMin[0]) + (yMax[1]-yMin[1])*(yMax[1]-yMin[1]) + (yMax[2]-yMin[2])*(yMax[2]-yMin[2]); T zSpan = (zMax[0]-zMin[0])*(zMax[0]-zMin[0]) + (zMax[1]-zMin[1])*(zMax[1]-zMin[1]) + (zMax[2]-zMin[2])*(zMax[2]-zMin[2]); if ( xSpan > ySpan ) { if ( xSpan > zSpan ) { VTK_ASSIGN_POINT(d1,xMin); VTK_ASSIGN_POINT(d2,xMax); } else { VTK_ASSIGN_POINT(d1,zMin); VTK_ASSIGN_POINT(d2,zMax); } } else //ySpan > xSpan { if ( ySpan > zSpan ) { VTK_ASSIGN_POINT(d1,yMin); VTK_ASSIGN_POINT(d2,yMax); } else { VTK_ASSIGN_POINT(d1,zMin); VTK_ASSIGN_POINT(d2,zMax); } } }//no hints provided // Compute initial estimated sphere sphere[0] = (d1[0]+d2[0]) / 2.0; sphere[1] = (d1[1]+d2[1]) / 2.0; sphere[2] = (d1[2]+d2[2]) / 2.0; T r2 = vtkMath::Distance2BetweenPoints(d1,d2)/4.0; sphere[3] = sqrt(r2); // Second part: Make a pass over the points to make sure that they fit inside the sphere. // If not, adjust the sphere to fit the point. T dist, dist2, delta; for (p=pts, i=0; i r2 ) { dist = sqrt(dist2); sphere[3] = (sphere[3] + dist) / 2.0; r2 = sphere[3]*sphere[3]; delta = dist - sphere[3]; sphere[0] = (sphere[3]*sphere[0] + delta*p[0]) / dist; sphere[1] = (sphere[3]*sphere[1] + delta*p[1]) / dist; sphere[2] = (sphere[3]*sphere[2] + delta*p[2]) / dist; } } } #undef VTK_ASSIGN_POINT #define VTK_ASSIGN_SPHERE(_x,_y) {_x[0]=_y[0];_x[1]=_y[1];_x[2]=_y[2];_x[3]=_y[3];} // An approximation to the bounding sphere of a set of spheres. The algorithm // creates an iniitial approximation from two spheres that are expected to be // the farthest apart (taking into accout their radius). A second pass may // grow the bounding sphere if the remaining spheres are not contained within // it. The hints[2] array indicates two spheres that are expected to be the // farthest apart. //---------------------------------------------------------------------------- template void vtkSphereComputeBoundingSphere(T **spheres, vtkIdType numSpheres, T sphere[4], vtkIdType hints[2]) { if ( numSpheres < 1 ) { sphere[0] = sphere[1] = sphere[2] = sphere[3] = 0.0; return; } else if ( numSpheres == 1 ) { VTK_ASSIGN_SPHERE(sphere,spheres[0]); return; } // Okay two or more spheres vtkIdType i, j; T *s, s1[4], s2[4]; if ( hints ) { s = spheres[hints[0]]; VTK_ASSIGN_SPHERE(s1,s); s = spheres[hints[1]]; VTK_ASSIGN_SPHERE(s2,s); } else //no hints provided, compute an initial guess { T xMin[4], xMax[4], yMin[4], yMax[4], zMin[4], zMax[4]; xMin[0] = xMin[1] = xMin[2] = VTK_FLOAT_MAX; yMin[0] = yMin[1] = yMin[2] = VTK_FLOAT_MAX; zMin[0] = zMin[1] = zMin[2] = VTK_FLOAT_MAX; xMax[0] = xMax[1] = xMax[2] = -VTK_FLOAT_MAX; yMax[0] = yMax[1] = yMax[2] = -VTK_FLOAT_MAX; zMax[0] = zMax[1] = zMax[2] = -VTK_FLOAT_MAX; xMin[3] = xMax[3] = yMin[3] = yMax[3] = zMin[3] = zMax[3] = 0.0; // First part: Estimate the points furthest apart to define the largest sphere. // Find the points that span the greatest distance on the x-y-z axes. Use these // two points to define a sphere centered between the two points. for (i=0; i (xMax[0]+xMax[3]) ) VTK_ASSIGN_SPHERE(xMax,s); if ((s[1]-s[3]) < (yMin[1]-yMin[3]) ) VTK_ASSIGN_SPHERE(yMin,s); if ((s[1]+s[3]) > (yMax[1]+yMax[3]) ) VTK_ASSIGN_SPHERE(yMax,s); if ((s[2]-s[3]) < (zMin[2]-zMin[3]) ) VTK_ASSIGN_SPHERE(zMin,s); if ((s[2]+s[3]) > (zMax[2]+zMax[3]) ) VTK_ASSIGN_SPHERE(zMax,s); } T xSpan = (xMax[0]+xMax[3]-xMin[0]-xMin[3])*(xMax[0]+xMax[3]-xMin[0]-xMin[3]) + (xMax[1]+xMax[3]-xMin[1]-xMin[3])*(xMax[1]+xMax[3]-xMin[1]-xMin[3]) + (xMax[2]+xMax[3]-xMin[2]-xMin[3])*(xMax[2]+xMax[3]-xMin[2]-xMin[3]); T ySpan = (yMax[0]+yMax[3]-yMin[0]-yMin[3])*(yMax[0]+yMax[3]-yMin[0]-yMin[3]) + (yMax[1]+yMax[3]-yMin[1]-yMin[3])*(yMax[1]+yMax[3]-yMin[1]-yMin[3]) + (yMax[2]+yMax[3]-yMin[2]-yMin[3])*(yMax[2]+yMax[3]-yMin[2]-yMin[3]); T zSpan = (zMax[0]+zMax[3]-zMin[0]-zMin[3])*(zMax[0]+zMax[3]-zMin[0]-zMin[3]) + (zMax[1]+zMax[3]-zMin[1]-zMin[3])*(zMax[1]+zMax[3]-zMin[1]-zMin[3]) + (zMax[2]+zMax[3]-zMin[2]-zMin[3])*(zMax[2]+zMax[3]-zMin[2]-zMin[3]); if ( xSpan > ySpan ) { if ( xSpan > zSpan ) { VTK_ASSIGN_SPHERE(s1,xMin); VTK_ASSIGN_SPHERE(s2,xMax); } else { VTK_ASSIGN_SPHERE(s1,zMin); VTK_ASSIGN_SPHERE(s2,zMax); } } else //ySpan > xSpan { if ( ySpan > zSpan ) { VTK_ASSIGN_SPHERE(s1,yMin); VTK_ASSIGN_SPHERE(s2,yMax); } else { VTK_ASSIGN_SPHERE(s1,zMin); VTK_ASSIGN_SPHERE(s2,zMax); } } }//no hints provided // Compute initial estimated sphere, take into account the radius of each sphere T tmp, v[3], r2 = vtkMath::Distance2BetweenPoints(s1,s2)/4.0; sphere[3] = sqrt(r2); T t1 = -s1[3]/(2.0*sphere[3]); T t2 = 1.0 + s2[3]/(2.0*sphere[3]); for (i=0; i<3; ++i) { v[i] = s2[i] - s1[i]; tmp = s1[i] + t1*v[i]; s2[i] = s1[i] + t2*v[i]; s1[i] = tmp; sphere[i] = (s1[i]+s2[i]) / 2.0; } r2 = vtkMath::Distance2BetweenPoints(s1,s2)/4.0; sphere[3] = sqrt(r2); // Second part: Make a pass over the points to make sure that they fit inside the sphere. // If not, adjust the sphere to fit the point. T dist, dist2, fac, sR2; for (i=0; i dist2 ) //approximation to avoid square roots if possible { fac = 2.0*sR2; } else { fac = 2.0*dist2; } if ( (dist2 + fac + sR2) > r2 ) //approximate test { dist = sqrt(dist2); if ( ((dist+s[3])*(dist+s[3])) > r2 ) //more accurate test { for (j=0; j<3; ++j) { v[j] = s[j] - sphere[j]; s1[j] = sphere[j] - (sphere[3]/dist)*v[j]; s2[j] = sphere[j] + (1.0+s[3]/dist)*v[j]; sphere[j] = (s1[j]+s2[j]) / 2.0; } r2 = vtkMath::Distance2BetweenPoints(s1,s2)/4.0; sphere[3] = sqrt(r2); } } } } #undef VTK_ASSIGN_SPHERE // Type specific wrappers for the templated functions below //---------------------------------------------------------------------------- void vtkSphere::ComputeBoundingSphere(float *pts, vtkIdType numPts, float sphere[4], vtkIdType hints[2]) { vtkSphereComputeBoundingSphere(pts,numPts,sphere,hints); } //---------------------------------------------------------------------------- void vtkSphere::ComputeBoundingSphere(double *pts, vtkIdType numPts, double sphere[4], vtkIdType hints[2]) { vtkSphereComputeBoundingSphere(pts,numPts,sphere,hints); } //---------------------------------------------------------------------------- void vtkSphere::ComputeBoundingSphere(float **spheres, vtkIdType numSpheres, float sphere[4], vtkIdType hints[2]) { vtkSphereComputeBoundingSphere(spheres,numSpheres,sphere,hints); } //---------------------------------------------------------------------------- void vtkSphere::ComputeBoundingSphere(double **spheres, vtkIdType numSpheres, double sphere[4], vtkIdType hints[2]) { vtkSphereComputeBoundingSphere(spheres,numSpheres,sphere,hints); } //---------------------------------------------------------------------------- void vtkSphere::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Radius: " << this->Radius << "\n"; os << indent << "Center: (" << this->Center[0] << ", " << this->Center[1] << ", " << this->Center[2] << ")\n"; }