/*========================================================================= Program: Visualization Toolkit Module: vtkTetra.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkTetra * @brief a 3D cell that represents a tetrahedron * * vtkTetra is a concrete implementation of vtkCell to represent a 3D * tetrahedron. vtkTetra uses the standard isoparametric shape functions * for a linear tetrahedron. The tetrahedron is defined by the four points * (0-3); where (0,1,2) is the base of the tetrahedron which, using the * right hand rule, forms a triangle whose normal points in the direction * of the fourth point. * * @sa * vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge */ #ifndef vtkTetra_h #define vtkTetra_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkCell3D.h" class vtkLine; class vtkTriangle; class vtkUnstructuredGrid; class vtkIncrementalPointLocator; class VTKCOMMONDATAMODEL_EXPORT vtkTetra : public vtkCell3D { public: static vtkTetra *New(); vtkTypeMacro(vtkTetra,vtkCell3D); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * See vtkCell3D API for description of these methods. */ void GetEdgePoints(int edgeId, int* &pts) override; void GetFacePoints(int faceId, int* &pts) override; //@} //@{ /** * See the vtkCell API for descriptions of these methods. */ int GetCellType() override {return VTK_TETRA;} int GetNumberOfEdges() override {return 6;} int GetNumberOfFaces() override {return 4;} vtkCell *GetEdge(int edgeId) override; vtkCell *GetFace(int faceId) override; void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) override; void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights) override; int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; double *GetParametricCoords() override; //@} /** * Returns the set of points that are on the boundary of the tetrahedron that * are closest parametrically to the point specified. This may include faces, * edges, or vertices. */ int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; /** * Return the center of the tetrahedron in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; /** * Return the distance of the parametric coordinate provided to the * cell. If inside the cell, a distance of zero is returned. */ double GetParametricDistance(double pcoords[3]) override; /** * Compute the center of the tetrahedron, */ static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); /** * Compute the circumcenter (center[3]) and radius squared (method * return value) of a tetrahedron defined by the four points x1, x2, * x3, and x4. */ static double Circumsphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); /** * Compute the center (center[3]) and radius (method return value) of * a sphere that just fits inside the faces of a tetrahedron defined * by the four points x1, x2, x3, and x4. */ static double Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); /** * Given a 3D point x[3], determine the barycentric coordinates of the point. * Barycentric coordinates are a natural coordinate system for simplices that * express a position as a linear combination of the vertices. For a * tetrahedron, there are four barycentric coordinates (because there are * four vertices), and the sum of the coordinates must equal 1. If a * point x is inside a simplex, then all four coordinates will be strictly * positive. If three coordinates are zero (so the fourth =1), then the * point x is on a vertex. If two coordinates are zero, the point x is on an * edge (and so on). In this method, you must specify the vertex coordinates * x1->x4. Returns 0 if tetrahedron is degenerate. */ static int BarycentricCoords(double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]); /** * Compute the volume of a tetrahedron defined by the four points * p1, p2, p3, and p4. */ static double ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]); /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. Returns 0 if no inverse exists. */ int JacobianInverse(double **inverse, double derivs[12]); /** * @deprecated Replaced by vtkTetra::InterpolateFunctions as of VTK 5.2 */ static void InterpolationFunctions(double pcoords[3], double weights[4]); /** * @deprecated Replaced by vtkTetra::InterpolateDerivs as of VTK 5.2 */ static void InterpolationDerivs(double pcoords[3], double derivs[12]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(double pcoords[3], double weights[4]) override { vtkTetra::InterpolationFunctions(pcoords,weights); } void InterpolateDerivs(double pcoords[3], double derivs[12]) override { vtkTetra::InterpolationDerivs(pcoords,derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. */ static int *GetEdgeArray(int edgeId); static int *GetFaceArray(int faceId); //@} protected: vtkTetra(); ~vtkTetra() override; vtkLine *Line; vtkTriangle *Triangle; private: vtkTetra(const vtkTetra&) = delete; void operator=(const vtkTetra&) = delete; }; inline int vtkTetra::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = pcoords[2] = 0.25; return 0; } #endif