#!/usr/bin/env python from __future__ import print_function from vtk import * import os.path from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # Set database parameters data_dir = VTK_DATA_ROOT + "/Data/Infovis/SQLite/" if not os.path.exists( data_dir): data_dir = VTK_DATA_ROOT + "/Data/Infovis/SQLite/" if not os.path.exists( data_dir): data_dir = VTK_DATA_ROOT + "/Data/Infovis/SQLite/" sqlite_file = data_dir + "temperatures.db" databaseToTable = vtkSQLDatabaseTableSource() databaseToTable.SetURL("sqlite://" + sqlite_file) # Pull the first data set from the database databaseToTable.SetQuery("select * from main_tbl where CompId==2") # Calculate primary descriptive statistics for first batch print("# Calculate primary model of descriptive statistics for first data set:") ds1 = vtkDescriptiveStatistics() ds1.AddInputConnection( databaseToTable.GetOutputPort() ) ds1.AddColumn("Temp1") ds1.AddColumn("Temp2") ds1.SetLearnOption( 1 ) ds1.SetDeriveOption( 0 ) ds1.SetAssessOption( 0 ) ds1.SetTestOption( 0 ) ds1.Update() # Show primary descriptive statistics for first batch dStats1 = ds1.GetOutputDataObject( 1 ) dPrimary1 = dStats1.GetBlock( 0 ) dPrimary1.Dump( 15 ) print() # Pull the second data set from the database databaseToTable.SetQuery("select * from main_tbl where CompId==3") # Calculate primary descriptive statistics for second batch print("# Calculate primary model of descriptive statistics for second data set:") ds2 = vtkDescriptiveStatistics() ds2.AddInputConnection( databaseToTable.GetOutputPort() ) ds2.AddColumn("Temp1") ds2.AddColumn("Temp2") ds2.SetLearnOption( 1 ) ds2.SetDeriveOption( 0 ) ds2.SetAssessOption( 0 ) ds2.SetTestOption( 0 ) ds2.Update() # Show primary descriptive statistics for second batch dStats2 = ds2.GetOutputDataObject( 1 ) dPrimary2 = dStats2.GetBlock( 0 ) dPrimary2.Dump( 15 ) print() # Finally aggregate both models to get a new primary model for the whole ensemble print("# Aggregate both primary models:") collection = vtkDataObjectCollection() collection.AddItem( dStats1 ) collection.AddItem( dStats2 ) ds = vtkDescriptiveStatistics() aggregated = vtkMultiBlockDataSet() ds.Aggregate( collection, aggregated ) dPrimary = aggregated.GetBlock( 0 ) dPrimary.Dump( 15 ) print() # Calculate derived model for whole ensemble print("# Now calculating derived statistics for whole ensemble:") ds.SetInputData( 2, aggregated ) ds.SetLearnOption( 0 ) ds.SetDeriveOption( 1 ) ds.SetAssessOption( 0 ) ds.SetTestOption( 0 ) ds.Update() dStats = ds.GetOutputDataObject( 1 ) dDerived = dStats.GetBlock( 1 ) dDerived.Dump( 15 ) print() # Pull entire data set from the database databaseToTable.SetQuery("select * from main_tbl") # Verify with calculation for whole ensemble at once print("# Finally verifying by directly calculating statistics for whole ensemble:") ds0 = vtkDescriptiveStatistics() ds0.AddInputConnection( databaseToTable.GetOutputPort() ) ds0.AddColumn("Temp1") ds0.AddColumn("Temp2") ds0.SetLearnOption( 1 ) ds0.SetDeriveOption( 1 ) ds0.SetAssessOption( 0 ) ds0.SetTestOption( 0 ) ds0.Update() # Show all descriptive statistics for whole ensemble dStats0 = ds0.GetOutputDataObject( 1 ) dPrimary0 = dStats0.GetBlock( 0 ) dPrimary0.Dump( 15 ) dDerived0 = dStats0.GetBlock( 1 ) dDerived0.Dump( 15 ) print()