ELF>@@87 ./AUATUHPdH%(H$H1HHt$ HD$(HFHD$4D$0t>H|$ 1H$HdH+%(HP]A\A]@Ld$@Hl$ LHtLl$`HLtT$PLLf(D$@fo$foL$`fo$T$fo$foT$pfD$fo$fo$)$)$)$)$)$)$)$ )$0f($f.D$@L$f.L$HT$f.T$PD$`f.$$f.D$h$f.D$pyD$xf.$d^$f.$F@$f.$("$f.$ $f.$$f.$$f.$$f.$ $f.$(zxuv$f.$0zbu`$f.$8zLuJH2HH$@HPL1H9HuLHfAUATUHdH%(H$1HHt$ HD$(HFHD$4D$0t>H|$ 1H$dH+%(H]A\A]@Ld$@Hl$ LHtLl$`HLtf(D$@l$PLLfoL$`foT$pfo$H$fD$)$H$l$)$)$)$f($f.D$@ d$f.d$Hl$f.l$PD$`f.$$f.D$h$f.D$pD$xf.$$f.$z~u|$f.$zhuf$f.$zRuPH8HH*f.HL1HHuLHfUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tHH=tHSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDHHuӐt1HuHcfDHHH;tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐ"tHuHcH"HH;tЉff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;uHuLf.t$ HIff.fAUATUH`fnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLtD$4L$HD$@T$Pt`f(1HD$P)\$@f.D$@~f.L$Hzvutf.T$PzlujH>Hc3HEHXH;tT$HLD$L$T$D$L$qHuL1Luf.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H;H=tLH=u-HaHcVf.LLH=tLH=tLfDHЉfAWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(fH[]A\A]A^A_HHu뾐Ll$0Ld$LLtLt$PLLtH$T$8\$@fod$PH$D$$fH~fol$`fot$pfI~)$D$0)$)$uHEHxH;sLLD$D$f.D$0fHnf.|$8fInf.|$@D$Pf.$$f.D$X$f.D$`D$hf.$D$pf.$zwuuD$xf.$zdub$f.$zNuLHHHfDH&L1LHuLLD$LLHD$ff.@AWAVAUATUSHHfnFdH%(H$81HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$8dH+%(fHH[]A\A]A^A_HHu뾐Ll$0Ld$LLtLt$PLLtT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$)$D$$fo$D$0)$fo$)$)$)$)$)$ uHEHH;?LLD$D$f.D$0fHnf.l$8fInf.t$@D$Pf.$$f.D$X$f.D$`uoD$hf.$ZTD$pf.$?9D$xf.$$$f.$$f.$$f.$$f.$$f.$$f.$ztur$f.$ z^u\$f.$(zHuFHHHHZL1LCHuLLD$LLHD$ff.@ATL%H HH5LuLHLA\ATIUHHt HH5LHtHmtH]A\HH]A\AVAUATUSHPfnFdH%(HD$H1HHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%(HP[]A\A]A^HHuƐLd$0Ll$LLt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEH,fHnHLL$L$fH~fHuL1Lff.fAWAVAUATUSH8fnFdH%(H$(1HH$H$HGfn$fbfք$uaHo(Ht*$+$tUH$1H$(dH+%(dH8[]A\A]A^A_HHuÐL$L$LLtL$LLtH$LjL$LLOH$LHHD$*H$LH HT$|LHHT$$$$HT$$l$P$$t$0$$|$X$$l$ $$t$$|$H$ l$@t$(|$8T$h\$`L$HEHLLRILD$LH@Y^L$\$`AT$hf.$f.$f.$L$0f.$T$Pf.$rl\$Xf.$WQHL$f.$T$ f.$\$Hf.$l$(f.$t$@f.$zxuv|$8f.$ zeucH HIcHLILRLD$LHAXZT$h\$`L$mHuHھLyH*HT$LHLLH(L1L$LUT$|Lff.AWAVAUATUSHxfnFdH%(HD$h1HHt$@HD$HHGfnȉD$XfbfD$PHo(Ht!D$P+D$T t9H|$@ 1HT$hdH+%(Hx[]A\A]A^A_L|$@Ht$0LtLt$8H5LL|$8ItLH5L|$8ItLH5L|$8kHLLH$H|$8GLHLHD$|$8)LLLHD$L|$8HLLH $LD$LLL$L\$,LLLL$LLD$HL$L$|$,L$HL$LD$ILL$LLLL$LD$H $qL$TT$,HD$8D$0LD$H $LL$uaLURLLAVHPSA8H H!HHfDHHf.RLLHAVPSH fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐu int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkBiQuadraticTriangle C++: static vtkBiQuadraticTriangle *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkBiQuadraticTriangle C++: vtkBiQuadraticTriangle *NewInstance() V.GetCellType() -> int C++: int GetCellType() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetCellDimension() -> int C++: int GetCellDimension() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; Implement the vtkCell API. See the vtkCell API for descriptions of these methods. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is nullptr, then no interpolation is performed. Also, if the output cell data is non-nullptr, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Clip this quadratic triangle using scalar value provided. Like contouring, except that it cuts the triangle to produce linear triangles. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Line-edge intersection. Intersection has to occur within [0,1] parametric coordinates and with specified tolerance. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the quadratic triangle in parametric coordinates. V.GetParametricDistance([float, float, float]) -> float C++: double GetParametricDistance(double pcoords[3]) override; Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[7]) @deprecated Replaced by vtkBiQuadraticTriangle::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[14]) @deprecated Replaced by vtkBiQuadraticTriangle::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[7]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[14]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) HHH$H$H9t HtH$HtH$H9tHH$H$H9t HtHH}HEH9t HtHPHXH9t HtH{   Az 8 " 7HDUUUUUU?UUUUUU?GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D Xl  0FBA Gn  ABBE 0FBA Gn  ABBE LEDPa AE pbEY B }(EAD`n AAF ED@ AG ED@ AG ED@ AG (ED@ AG (LFAD` ABG 0xFBA D  ABBG gFD@ EE 0FAA D`  AABH HFBB B(A0A8G 8A0A(B BBBI HPFBB B(A0A8G 8A0A(B BBBI MFF0OFDD n ABA DDB@FBB A(A0D 0A(A BBBI lD$FBB B(A0A8G 8A0A(B BBBD GUArJTAtFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI ,ED@ AG zPLRx P$FBB B(A0D8Gq 8D0A(B BBBJ xF8tFBB A(Dp (A BBBG LFBB B(A0A8G 8D0A(B BBBE ('@LDEC P G e...R. < 6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@FBB A(A0D 0A(A BBBI $ EDP AK   * h  0  N    , j g 0   I)l+@!""  `$> m P#& `$(&F )tR +&F' /D&m<H 76z P: 0< )++8F] fw#)/5-:@FLRX^ d%j2pMvZ|gs!" " %" U""" " 5 "j       < M "   % "bI P p       0  MR a }   PO     7 w    _!. -4hw/%8I\t_ZL34PyvtkBiQuadraticTriangle_StaticNewv_ZL44PyvtkBiQuadraticTriangle_InterpolationDerivsP7_objectS0__ZL47PyvtkBiQuadraticTriangle_InterpolationFunctionsP7_objectS0__ZL37PyvtkBiQuadraticTriangle_SafeDownCastP7_objectS0__ZL33PyvtkBiQuadraticTriangle_IsTypeOfP7_objectS0__ZL41PyvtkBiQuadraticTriangle_GetNumberOfFacesP7_objectS0__ZL41PyvtkBiQuadraticTriangle_GetCellDimensionP7_objectS0__ZL41PyvtkBiQuadraticTriangle_GetNumberOfEdgesP7_objectS0__ZL36PyvtkBiQuadraticTriangle_GetCellTypeP7_objectS0__ZL32PyvtkBiQuadraticTriangle_GetFaceP7_objectS0__ZL44PyvtkBiQuadraticTriangle_GetParametricCenterP7_objectS0__ZL36PyvtkBiQuadraticTriangle_NewInstanceP7_objectS0__ZL28PyvtkBiQuadraticTriangle_IsAP7_objectS0__ZL45PyvtkBiQuadraticTriangle_InterpolateFunctionsP7_objectS0__ZL42PyvtkBiQuadraticTriangle_InterpolateDerivsP7_objectS0__ZL29PyvtkBiQuadraticTriangle_Type_ZL32PyvtkBiQuadraticTriangle_Methods_GLOBAL__sub_I_vtkBiQuadraticTrianglePython.cxx_ZL46PyvtkBiQuadraticTriangle_GetParametricDistanceP7_objectS0__ZL42PyvtkBiQuadraticTriangle_IntersectWithLineP7_objectS0__ZL29PyvtkBiQuadraticTriangle_ClipP7_objectS0__ZL44PyvtkBiQuadraticTriangle_GetParametricCoordsP7_objectS0__ZL36PyvtkBiQuadraticTriangle_DerivativesP7_objectS0__ZL36PyvtkBiQuadraticTriangle_DerivativesP7_objectS0_.cold_ZL36PyvtkBiQuadraticTriangle_TriangulateP7_objectS0__ZL41PyvtkBiQuadraticTriangle_EvaluateLocationP7_objectS0__ZL41PyvtkBiQuadraticTriangle_EvaluateLocationP7_objectS0_.cold_ZL41PyvtkBiQuadraticTriangle_EvaluatePositionP7_objectS0__ZL41PyvtkBiQuadraticTriangle_EvaluatePositionP7_objectS0_.cold_ZL32PyvtkBiQuadraticTriangle_ContourP7_objectS0__ZL37PyvtkBiQuadraticTriangle_CellBoundaryP7_objectS0__ZL32PyvtkBiQuadraticTriangle_GetEdgeP7_objectS0_.LC2.LC3.LC4.LC5.LC6.LC10.LC7.LC8.LC9.LC11.LC12.LC13.LC14.LC15.LC16.LC0.LC17.LC18.LC19.LC20.LC22.LC23.LC24.LC25.LC26.LC27.LC28.LC29.LC30.LC31.LC32.LC34.LC35.LC36.LC37.LC39.LC41.LC42.LC43.LC21_ZN22vtkBiQuadraticTriangle11GetCellTypeEv_ZN22vtkBiQuadraticTriangle16GetCellDimensionEv_ZN22vtkBiQuadraticTriangle16GetNumberOfEdgesEv_ZN22vtkBiQuadraticTriangle16GetNumberOfFacesEv_ZN22vtkBiQuadraticTriangle7GetFaceEi_ZN22vtkBiQuadraticTriangle19GetParametricCenterEPd_ZN22vtkBiQuadraticTriangle3NewEv_ZNK22vtkBiQuadraticTriangle19NewInstanceInternalEv_ZN22vtkBiQuadraticTriangle17InterpolateDerivsEPdS0__ZN22vtkBiQuadraticTriangle19InterpolationDerivsEPdS0__ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs8GetArrayEPdiPyErr_Occurred_GLOBAL_OFFSET_TABLE__Py_NoneStruct_ZN13vtkPythonArgs8SetArrayEiPKdi__stack_chk_fail_ZN22vtkBiQuadraticTriangle20InterpolateFunctionsEPdS0__ZN22vtkBiQuadraticTriangle22InterpolationFunctionsEPdS0__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN22vtkBiQuadraticTriangle3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN13vtkPythonArgs8GetValueERiPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyvtkBiQuadraticTriangle_ClassNewPyVTKClass_AddPyvtkNonLinearCell_ClassNewPyType_ReadyPyVTKAddFile_vtkBiQuadraticTrianglePyDict_SetItemString_Py_DeallocPyFloat_FromDouble_ZN22vtkBiQuadraticTriangle21GetParametricDistanceEPd_ZN13vtkPythonArgs8GetValueERd_ZN22vtkBiQuadraticTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs11SetArgValueEii_ZN13vtkPythonArgs8GetValueERx_ZN22vtkBiQuadraticTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromString_ZN22vtkBiQuadraticTriangle19GetParametricCoordsEvDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN22vtkBiQuadraticTriangle11DerivativesEiPdS0_iS0__Unwind_Resume_ZN22vtkBiQuadraticTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN22vtkBiQuadraticTriangle16EvaluateLocationERiPdS1_S1__ZN22vtkBiQuadraticTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN22vtkBiQuadraticTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN22vtkBiQuadraticTriangle12CellBoundaryEiPdP9vtkIdList_ZN22vtkBiQuadraticTriangle7GetEdgeEiPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del64jfggce/h?*jQhlkyhkl5f>gWgnh*jhk h#k*lL6f7o8hphl-9jft8r:rhu;r<rslA=fvhu*_l! >n f v h u *] l ?^ f v h u *^ l @N fq v h u *\ l AL fq v w *` h p l Bn f v g C'h8uV*ahklD/fYvz*cb8hpxyzh#lTEfvt*q+80r>:CrLh]u~;r<rslFIfvgg3*mJn=hM*jah|khklGifvgg*dechs*jhkhkl 283&|,24}>2C~_{n8yH!fQvvgh1hHkOlIf1v\gxggg whQh_hpuhkhk h k* hE k` v  l J!fN!^!Ki!o}!L!o!M!o!N!o!o!O"o!"1"Od"o"w"h"*j#v?#J#lq#P#f#v$h$Q$"$1$C$*jQ$l$R$$%5%%f%%&v)&wK&ga&gv&w&g (hY(hg(h(*j((h(k7)kO)kY)l)S*f>*wN*TY*om*Uu*o*h*u*v**l0+V{+++f+1,vO,d,,w,g,g,g-h.h.h.*j/ /h,/k6/hV/k//k/l/WW0l0001f$1A1q1v1g1g1w2g(2>2gr4h4h4h35hA5hV5uy5h5k5h5k 6_6y66k6k6l=7X7f77K7o8L8o98MG8oj8o8o8N8o8o9O#9oa9h9O9o9h9*j:v7:B:lx:Y:f;v;w7;gG;TO;o;h;u;<h <k'<lQ<Z<f<v<w=h=p,=6=lbe)&q)&/&B6&7&iCb e n8r&:+r9;>rL<Qr^s[2 :Bai0X8@ ]  (08@ +H0X` hxX   w @   f p 0<  ( 8 @ HP:X@ ` h7x  / + ) `$ sP#  ( 8@ H`X!` h xH# $ $ & H' X( 4H\p  P0t   , P | 0TP H` 0P#_t`$}(&( )(+1((x&F(B/(J&m(k7P:0<.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN22vtkBiQuadraticTriangle11GetCellTypeEv.text._ZN22vtkBiQuadraticTriangle16GetCellDimensionEv.text._ZN22vtkBiQuadraticTriangle16GetNumberOfEdgesEv.text._ZN22vtkBiQuadraticTriangle16GetNumberOfFacesEv.text._ZN22vtkBiQuadraticTriangle7GetFaceEi.rela.text._ZN22vtkBiQuadraticTriangle19GetParametricCenterEPd.rela.text._ZNK22vtkBiQuadraticTriangle19NewInstanceInternalEv.rela.text._ZN22vtkBiQuadraticTriangle17InterpolateDerivsEPdS0_.rodata.str1.1.rela.text._ZN22vtkBiQuadraticTriangle20InterpolateFunctionsEPdS0_.rodata._ZN22vtkBiQuadraticTriangle3IsAEPKc.str1.1.rela.text._ZN22vtkBiQuadraticTriangle3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.text.unlikely.gcc_except_table.rela.data.rel.rela.data.rel.local.rodata.cst16.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@5\H5]P5^X5_`5`h 5at 5c 5d 5m 5q 5 :=@@#5 &=,=1= b> >  >0>5@>0@5t`> o@5p>@52>@@(5@2@#x@bs@@52(A)j@05"j@H5$j@`5&ksl @ 5)m@ @@5+p2p-@H5.^0p,g$qw(q Hq@`538yx6\