ELF>4@@$#  UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fHGI~H)ǃuHH=LHH51HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$tHl$H=HtHH=uHuHc@HSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDHHuӐHuHcSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qUH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(upH@]HtHh(HtՋD$$tTH|$1Ht$ H|$tHEHt$ HuHcT$ WUH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(u}H@]HtHh(HtՋD$$taH|$1H5HT$H|$|$HtHEHHuHHsT$ Jff.UH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(utH@]HtHh(HtՋD$$tXH|$1Ht$H|$tHEHHt$HuHc|T$ S@UH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$1HT$8dH+%(H@]@HtHh(Ht͋D$$tdH|$1H5HT$H|$|$HtHEHHsHchT$ ?UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u^H@]f.HHuϐH5HT$H|$|$HtHHuHcff.fUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(H0]fDHtHx(HtˋD$tjH1fHHHuHt%HH5HyfHH`T$@fUH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$1HT$8dH+%(H@]@HtHh(Ht͋D$$tdH|$1H5HT$H|$|$HtHEHHsHchT$ ?UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ u|Ho(D$ Ht;D$$uSD$ wr;D$(HEHHf1HT$8dH+%(u{H@]H|$@HHsDH|$11Ht$ H|$tt$ e@Hcuff.UH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$1HT$8dH+%(H@]@HtHh(Ht͋D$$~H|$1Ht$ H|$tHEHt$ HH{HtHH5H\fHHJT$ !fUH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uBHo(HttdH|$1HT$8dH+%(H@]@HtHh(Ht͋D$$~H|$1Ht$ H|$tHEHt$ HH{HtHH5H\fHHJT$ !fAVAUATUHHVdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uDHo(HttfH|$1HT$8dH+%(HH]A\A]A^HtHh(HtˋD$$H|$1Lt$Ll$LH5L|$ItLH5L|$HhHMLH HJHH<T$ ff.AUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(D$ HD$$uoD$ Ll$HT$ H5L|$ ItFD$ 9D$(HET$ LHHuHHH|$1HT$8dH+%(uSH@]A\A]fHH;DH|$1Ht$ Le@AUATUH`VdH%(HD$X1HHt$ HD$(HGfnfnЉD$8fbfD$0uFHo(HtthH|$ 1HT$XdH+%(H`]A\A]@HtHh(HtɋD$4H|$ 1Ld$@Ll$ LLtf(L$@HEHLd$PfL$) $d$f( $f.L$@fH~zDuB\$f.\$Hz4u2d$f.d$Pz$u"H fHnDHuԹL1LT$0@AUATUH`VdH%(HD$X1HHt$ HD$(HGfnfnȉD$8fbfD$0uFHo(HtthH|$ 1HT$XdH+%(H`]A\A]@HtHh(HtɋD$4H|$ 1Ld$@Ll$ LLtf(D$@HEHL\$PfD$)$\$f($f.D$@zGuET$f.T$Hz7u5\$f.\$Pz'u%H#Hcf.HuѹL1LT$0@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;u\H=tLH=u)HeHcZfDLL@HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfAVAUATUSH`fnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$HLw(11HH|$ 4AHcLl$ EurMD$uq|$HH|$ E1HtHD$(H9tHD$XdH+%(H`L[]A\A]A^@IcI\fDHfDHH-H1E1H|$ 4HcH|$ IdLE1YDDLH6E~VIEH9AD$D1HAoTHH9uDAt ITHILLE~)Ic1 @HH9tH I9LtHt'H|$ E1HL%I$DL1HfD1ITHHH9ubHAVAUATUSHPfnFdH%(HD$H1HH4$HD$HGfnȉD$fbfD$HLw(11HH|$ 4AHcLl$ EurMD$uq|$HH|$ E1HtHD$(H9tHD$HdH+%(HPL[]A\A]A^@IcI\fDHfDHH-H1E1H|$ 4HcH|$ IdLE1YDDLH6EIUHH)HAD$D1HAoTHH9uDAt4AtH4HA9~ALLD9} ADDILLE~%Ic1 HH9t A9LtHt'H|$ E1HaL%I$PDL1Hf.D1ATHH9ufHAWAVAUATUSHVdH%(H$1HHt$@HD$HHGfnfnȉD$XfbfD$PuSLw(MttuH|$@1H$dH+%(HĨ[]A\A]A^A_fDHtLp(MtD$TH|$@1Hl$@Ht$ int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkGenericAdaptorCell C++: static vtkGenericAdaptorCell *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGenericAdaptorCell C++: vtkGenericAdaptorCell *NewInstance() V.GetId() -> int C++: virtual vtkIdType GetId() Unique identification number of the cell over the whole data set. This unique key may not be contiguous. V.IsInDataSet() -> int C++: virtual int IsInDataSet() Does `this' a cell of a dataset? (otherwise, it is a boundary cell) V.GetType() -> int C++: virtual int GetType() Return the type of the current cell. \post (result==VTK_HIGHER_ORDER_EDGE)|| (result==VTK_HIGHER_ORDER_TRIANGLE)|| (result==VTK_HIGHER_ORDER_TETRAHEDRON) V.GetDimension() -> int C++: virtual int GetDimension() Return the topological dimension of the current cell. \post valid_result: result>=0 && result<=3 V.GetGeometryOrder() -> int C++: virtual int GetGeometryOrder() Return the interpolation order of the geometry. \post positive_result: result>=0 V.IsGeometryLinear() -> int C++: int IsGeometryLinear() Does the cell have a non-linear interpolation for the geometry? \post definition: result==(GetGeometryOrder()==1) V.GetAttributeOrder(vtkGenericAttribute) -> int C++: virtual int GetAttributeOrder(vtkGenericAttribute *a) Return the interpolation order of attribute `a' on the cell (may differ by cell). \pre a_exists: a!=0 \post positive_result: result>=0 V.GetHighestOrderAttribute(vtkGenericAttributeCollection) -> int C++: virtual int GetHighestOrderAttribute( vtkGenericAttributeCollection *ac) Return the index of the first point centered attribute with the highest order in `ac'. \pre ac_exists: ac!=0 \post valid_result: result>=-1 && resultGetNumberOfAttributes() V.IsAttributeLinear(vtkGenericAttribute) -> int C++: int IsAttributeLinear(vtkGenericAttribute *a) Does the attribute `a' have a non-linear interpolation? \pre a_exists: a!=0 \post definition: result==(GetAttributeOrder()==1) V.IsPrimary() -> int C++: virtual int IsPrimary() Is the cell primary (i.e. not composite) ? V.GetNumberOfPoints() -> int C++: virtual int GetNumberOfPoints() Return the number of corner points that compose the cell. \post positive_result: result>=0 V.GetNumberOfBoundaries(int) -> int C++: virtual int GetNumberOfBoundaries(int dim=-1) Return the number of boundaries of dimension `dim' (or all dimensions greater than 0 and less than GetDimension() if -1) of the cell. When dim is -1, the number of vertices is not included in the count because vertices are a special case: a vertex will have at most a single field value associated with it; DOF nodes may have an arbitrary number of field values associated with them. \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim=0 V.GetNumberOfDOFNodes() -> int C++: virtual int GetNumberOfDOFNodes() Accumulated number of DOF nodes of the current cell. A DOF node is a component of cell with a given topological dimension. e.g.: a triangle has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF: 1 region, 6 faces, and 12 edges. * The number of vertices is not included in the * count because vertices are a special case: a vertex will have * at most a single field value associated with it; DOF nodes may have * an arbitrary number of field values associated with them. * \post valid_result: result==GetNumberOfBoundaries(-1)+1 V.GetPointIterator(vtkGenericPointIterator) C++: virtual void GetPointIterator(vtkGenericPointIterator *it) Return the points of cell into `it'. \pre it_exists: it!=0 V.NewCellIterator() -> vtkGenericCellIterator C++: virtual vtkGenericCellIterator *NewCellIterator() Create an empty cell iterator. The user is responsible for deleting it. \post result_exists: result!=0 V.GetBoundaryIterator(vtkGenericCellIterator, int) C++: virtual void GetBoundaryIterator( vtkGenericCellIterator *boundaries, int dim=-1) Return the `boundaries' cells of dimension `dim' (or all dimensions less than GetDimension() if -1) that are part of the boundary of the cell. \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim int C++: virtual int CountNeighbors(vtkGenericAdaptorCell *boundary) Number of cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' of `this'. `this' IS NOT INCLUDED. \pre boundary_exists: boundary!=0 \pre real_boundary: !boundary->IsInDataSet() \pre cell_of_the_dataset: IsInDataSet() \pre boundary: HasBoundary(boundary) \post positive_result: result>=0 V.CountEdgeNeighbors([int, ...]) C++: virtual void CountEdgeNeighbors(int *sharing) Number of cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' of `this'. `this' IS NOT INCLUDED. \pre boundary_exists: boundary!=0 \pre real_boundary: !boundary->IsInDataSet() \pre cell_of_the_dataset: IsInDataSet() \pre boundary: HasBoundary(boundary) \post positive_result: result>=0 V.GetNeighbors(vtkGenericAdaptorCell, vtkGenericCellIterator) C++: virtual void GetNeighbors(vtkGenericAdaptorCell *boundary, vtkGenericCellIterator *neighbors) Put into `neighbors' the cells (dimension>boundary->GetDimension()) of the dataset that share the boundary `boundary' with this cell. `this' IS NOT INCLUDED. \pre boundary_exists: boundary!=0 \pre real_boundary: !boundary->IsInDataSet() \pre cell_of_the_dataset: IsInDataSet() \pre boundary: HasBoundary(boundary) \pre neighbors_exist: neighbors!=0 V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float) -> int C++: virtual int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2) Is `x' inside the current cell? It also evaluates parametric coordinates `pcoords', sub-cell id `subId' (0 means primary cell), distance squared to the sub-cell in `dist2' and closest corner point `closestPoint'. `dist2' and `closestPoint' are not evaluated if `closestPoint'==0. If a numerical error occurred, -1 is returned and all other results should be ignored. \post valid_result: result==-1 || result==0 || result==1 \post positive_distance: result!=-1 implies (closestPoint!=0 implies dist2>=0) V.EvaluateLocation(int, [float, float, float], [float, float, float]) C++: virtual void EvaluateLocation(int subId, double pcoords[3], double x[3]) Determine the global coordinates `x' from sub-cell `subId' and parametric coordinates `pcoords' in the cell. \pre positive_subId: subId>=0 \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1) V.InterpolateTuple(vtkGenericAttribute, [float, float, float], [float, ...]) C++: virtual void InterpolateTuple(vtkGenericAttribute *a, double pcoords[3], double *val) V.InterpolateTuple(vtkGenericAttributeCollection, [float, float, float], [float, ...]) C++: virtual void InterpolateTuple( vtkGenericAttributeCollection *c, double pcoords[3], double *val) Interpolate the attribute `a' at local position `pcoords' of the cell into `val'. \pre a_exists: a!=0 \pre a_is_point_centered: a->GetCentering()==vtkPointCentered \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 && pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1 \pre val_exists: val!=0 \pre valid_size: sizeof(val)==a->GetNumberOfComponents() V.Contour(vtkContourValues, vtkImplicitFunction, vtkGenericAttributeCollection, vtkGenericCellTessellator, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkCellData, vtkPointData, vtkPointData, vtkCellData) C++: virtual void Contour(vtkContourValues *values, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *outPd, vtkCellData *outCd, vtkPointData *internalPd, vtkPointData *secondaryPd, vtkCellData *secondaryCd) Generate a contour (contouring primitives) for each `values' or with respect to an implicit function `f'. Contouring is performed on the scalar attribute (`attributes->GetActiveAttribute()' `attributes->GetActiveComponent()'). Contouring interpolates the `attributes->GetNumberOfattributesToInterpolate()' attributes `attributes->GetAttributesToInterpolate()'. The `locator', `verts', `lines', `polys', `outPd' and `outCd' are cumulative data arrays over cell iterations: they store the result of each call to Contour(): - `locator' is a points list that merges points as they are inserted (i.e., prevents duplicates). - `verts' is an array of generated vertices - `lines' is an array of generated lines - `polys' is an array of generated polygons - `outPd' is an array of interpolated point data along the edge (if not-nullptr) - `outCd' is an array of copied cell data of the current cell (if not-nullptr) `internalPd', `secondaryPd' and `secondaryCd' are initialized by the filter that call it from `attributes'. - `internalPd' stores the result of the tessellation pass: the higher-order cell is tessellated into linear sub-cells. - `secondaryPd' and `secondaryCd' are used internally as inputs to the Contour() method on linear sub-cells. Note: the CopyAllocate() method must be invoked on both `outPd' ... [Truncated] V.Clip(float, vtkImplicitFunction, vtkGenericAttributeCollection, vtkGenericCellTessellator, int, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkCellData, vtkPointData, vtkPointData, vtkCellData) C++: virtual void Clip(double value, vtkImplicitFunction *f, vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int insideOut, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *outPd, vtkCellData *outCd, vtkPointData *internalPd, vtkPointData *secondaryPd, vtkCellData *secondaryCd) Cut (or clip) the current cell with respect to the contour defined by the `value' or the implicit function `f' of the scalar attribute (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()' ). If `f' exists, `value' is not used. The output is the part of the current cell which is inside the contour. The output is a set of zero, one or more cells of the same topological dimension as the current cell. Normally, cell points whose scalar value is greater than "value" are considered inside. If `insideOut' is on, this is reversed. Clipping interpolates the `attributes->GetNumberOfattributesToInterpolate()' attributes `attributes->GetAttributesToInterpolate()'. `locator', `connectivity', `outPd' and `outCd' are cumulative data arrays over cell iterations: they store the result of each call to Clip(): - `locator' is a points list that merges points as they are inserted (i.e., prevents duplicates). - `connectivity' is an array of generated cells - `outPd' is an array of interpolated point data along the edge (if not-nullptr) - `outCd' is an array of copied cell data of the current cell (if not-nullptr) `internalPd', `secondaryPd' and `secondaryCd' are initialized by the filter that call it from `attributes'. - `internalPd' stores the result of the tessellation pass: the higher-order cell is tessellated into linear sub-cells. - `secondaryPd' and `secondaryCd' a ... [Truncated] V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: virtual int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) Is there an intersection between the current cell and the ray (`p1',`p2') according to a tolerance `tol'? If true, `x' is the global intersection, `t' is the parametric coordinate for the line, `pcoords' are the parametric coordinates for cell. `subId' is the sub-cell where the intersection occurs. \pre positive_tolerance: tol>0 V.Derivatives(int, [float, float, float], vtkGenericAttribute, [float, ...]) C++: virtual void Derivatives(int subId, double pcoords[3], vtkGenericAttribute *attribute, double *derivs) Compute derivatives `derivs' of the attribute `attribute' (from its values at the corner points of the cell) given sub-cell `subId' (0 means primary cell) and parametric coordinates `pcoords'. Derivatives are in the x-y-z coordinate directions for each data value. \pre positive_subId: subId>=0 \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1]) &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1) \pre attribute_exists: attribute!=0 \pre derivs_exists: derivs!=0 \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3 V.GetBounds([float, float, float, float, float, float]) C++: virtual void GetBounds(double bounds[6]) V.GetBounds() -> (float, ...) C++: virtual double *GetBounds() Compute the bounding box of the current cell in `bounds' in global coordinates. THREAD SAFE V.GetLength2() -> float C++: virtual double GetLength2() Return the bounding box diagonal squared of the current cell. \post positive_result: result>=0 V.GetParametricCenter([float, float, float]) -> int C++: virtual int GetParametricCenter(double pcoords[3]) Get the center of the current cell (in parametric coordinates) and place it in `pcoords'. If the current cell is a composite, the return value is the sub-cell id that the center is in. \post valid_result: (result>=0) && (IsPrimary() implies result==0) V.GetParametricDistance([float, float, float]) -> float C++: virtual double GetParametricDistance(double pcoords[3]) Return the distance of the parametric coordinate `pcoords' to the current cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.) \post positive_result: result>=0 V.GetParametricCoords() -> (float, ...) C++: virtual double *GetParametricCoords() Return a contiguous array of parametric coordinates of the corrner points defining the current cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. \post valid_result_exists: ((IsPrimary()) && (result!=0)) || ((!IsPrimary()) && (result==0)) result!=0 implies sizeof(result)==GetNumberOfPoints() V.Tessellate(vtkGenericAttributeCollection, vtkGenericCellTessellator, vtkPoints, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, vtkUnsignedCharArray) C++: virtual void Tessellate( vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, vtkPoints *points, vtkIncrementalPointLocator *locator, vtkCellArray *cellArray, vtkPointData *internalPd, vtkPointData *pd, vtkCellData *cd, vtkUnsignedCharArray *types) Tessellate the cell if it is not linear or if at least one attribute of `attributes' is not linear. The output are linear cells of the same dimension than the cell. If the cell is linear and all attributes are linear, the output is just a copy of the current cell. `points', `cellArray', `pd' and `cd' are cumulative output data arrays over cell iterations: they store the result of each call to Tessellate(). `internalPd' is initialized by the calling filter and stores the result of the tessellation. If it is not null, `types' is filled with the types of the linear cells. `types' is null when it is called from vtkGenericGeometryFilter and not null when it is called from vtkGenericDatasetTessellator. \pre attributes_exist: attributes!=0 \pre tessellator_exists: tess!=0 \pre points_exist: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 \pre pd_exist: pd!=0 \pre cd_exists: cd!=0 V.IsFaceOnBoundary(int) -> int C++: virtual int IsFaceOnBoundary(vtkIdType faceId) Is the face `faceId' of the current cell on the exterior boundary of the dataset? \pre 3d: GetDimension()==3 V.IsOnBoundary() -> int C++: virtual int IsOnBoundary() Is the cell on the exterior boundary of the dataset? \pre 2d: GetDimension()==2 V.GetPointIds([int, ...]) C++: virtual void GetPointIds(vtkIdType *id) Put into `id' the list of the dataset points that define the corner points of the cell. \pre id_exists: id!=0 \pre valid_size: sizeof(id)==GetNumberOfPoints(); V.TriangulateFace(vtkGenericAttributeCollection, vtkGenericCellTessellator, int, vtkPoints, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData) C++: virtual void TriangulateFace( vtkGenericAttributeCollection *attributes, vtkGenericCellTessellator *tess, int index, vtkPoints *points, vtkIncrementalPointLocator *locator, vtkCellArray *cellArray, vtkPointData *internalPd, vtkPointData *pd, vtkCellData *cd) Tessellate face `index' of the cell. See Tessellate() for further explanations. \pre cell_is_3d: GetDimension()==3 \pre attributes_exist: attributes!=0 \pre tessellator_exists: tess!=0 \pre valid_face: index>=0 \pre points_exist: points!=0 \pre cellArray_exists: cellArray!=0 \pre internalPd_exists: internalPd!=0 \pre pd_exist: pd!=0 \pre cd_exists: cd!=0 V.GetFaceArray(int) -> (int, ...) C++: virtual int *GetFaceArray(int faceId) Return the ids of the vertices defining face `faceId'. Ids are related to the cell, not to the dataset. \pre is_3d: this->GetDimension()==3 \pre valid_faceId_range: faceId>=0 && faceIdGetNumberOfBoundaries(2) \post result_exists: result!=0 \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId) V.GetNumberOfVerticesOnFace(int) -> int C++: virtual int GetNumberOfVerticesOnFace(int faceId) Return the number of vertices defining face `faceId'. \pre is_3d: this->GetDimension()==3 \pre valid_faceId_range: faceId>=0 && faceIdGetNumberOfBoundaries(2) \post positive_result: && result>0 V.GetEdgeArray(int) -> (int, ...) C++: virtual int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge `edgeId'. Ids are related to the cell, not to the dataset. \pre valid_dimension: this->GetDimension()>=2 \pre valid_edgeId_range: edgeId>=0 && edgeIdGetNumberOfBoundaries(1) \post result_exists: result!=0 \post valid_size: sizeof(result)==2 @VPP *vtkGenericAttribute *d *d@VPP *vtkGenericAttributeCollection *d *dHHHDGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  EDPa AE @ TO|Rl<EY B W(EAD`j AAJ ED@ AG ED@{ AK ED@{ AK $ED@{ AK HED@{ AK lED@{ AK ED@{ AK ED@{ AK ED@{ AK ED@{ AK ED@{ AK DEDP AA hEDP AA  EDP AA  EDP AE EDP AK ED@ AG  EDP AE @2EDP AI d>EDP AE >EDP AE 8RFBB A(Dp (A BBBA 0\FBA D`  ABBC 0FBA D  ABBE 0PFBA D  ABBE 0^FAA D`  AABH gFD@ EE zPLRx D$FBB A(A0D 0D(A BBBE l!DFBB A(A0D 0D(A BBBE !HlFBB B(A0A8G 8A0A(B BBBG LH{FBB B(A0A8G 8D0A(B BBBG !L{FBB B(A0A8G 8D0A(B BBBG !L0FBB B(A0A8G 8D0A(B BBBG !LFBB B(A0A8G 8D0A(B BBBC '\FBB B(A0A8G 8A0A(B BBBD %dAPHFA0lOFDD n ABA DDBtFBB B(A0A8D 8A0A(B BBBA \HEAJ}KBAIt, FBB B(A0A8D 8A0A(B BBBA RHEAJGKBAI ED@ AG 0 FBA G  ABBD %FBB B(A0A8D 8A0A(B BBBA HEDBAJzKBDBAI FBB B(A0A8G 8A0A(B BBBE LHEDDADDJ}KBDDADDI$ EDP AK m  7Oq` 0 HyNp ` P 2@ uP p  $_ 2 >I`>R\`1n^gp !?#{!!%l0({3B!u+{c!0/) !c 2 ' 7 9 ^  `= ? `B. PCa @F% pI M    1 B K% \* h/ p4 }: @ F L R X ^ d j  p $v 5| G [ m           ) - 9 E X i         $ * +0 66 K< VB `H eN yT Z ` f    " DX" <'7l 9~#9M!iT"Bd<H .;=O^s@;b) `l _ZL36PyvtkGenericAdaptorCell_SafeDownCastP7_objectS0__ZL40PyvtkGenericAdaptorCell_InterpolateTupleP7_objectS0__ZL48PyvtkGenericAdaptorCell_InterpolateTuple_Methods_ZL32PyvtkGenericAdaptorCell_IsTypeOfP7_objectS0__ZL40PyvtkGenericAdaptorCell_IsGeometryLinearP7_objectS0__ZL35PyvtkGenericAdaptorCell_IsInDataSetP7_objectS0__ZL31PyvtkGenericAdaptorCell_GetTypeP7_objectS0__ZL36PyvtkGenericAdaptorCell_IsOnBoundaryP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetDimensionP7_objectS0__ZL40PyvtkGenericAdaptorCell_GetGeometryOrderP7_objectS0__ZL29PyvtkGenericAdaptorCell_GetIdP7_objectS0__ZL33PyvtkGenericAdaptorCell_IsPrimaryP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetNumberOfDOFNodesP7_objectS0__ZL39PyvtkGenericAdaptorCell_NewCellIteratorP7_objectS0__ZL41PyvtkGenericAdaptorCell_GetNumberOfPointsP7_objectS0__ZL49PyvtkGenericAdaptorCell_GetNumberOfVerticesOnFaceP7_objectS0__ZL40PyvtkGenericAdaptorCell_GetPointIteratorP7_objectS0__ZL40PyvtkGenericAdaptorCell_IsFaceOnBoundaryP7_objectS0__ZL41PyvtkGenericAdaptorCell_GetAttributeOrderP7_objectS0__ZL41PyvtkGenericAdaptorCell_IsAttributeLinearP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetParametricCoordsP7_objectS0__ZL38PyvtkGenericAdaptorCell_CountNeighborsP7_objectS0__ZL45PyvtkGenericAdaptorCell_GetNumberOfBoundariesP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetEdgeArrayP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetFaceArrayP7_objectS0__ZL36PyvtkGenericAdaptorCell_GetNeighborsP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetBoundaryIteratorP7_objectS0__ZL45PyvtkGenericAdaptorCell_GetParametricDistanceP7_objectS0__ZL43PyvtkGenericAdaptorCell_GetParametricCenterP7_objectS0__ZL27PyvtkGenericAdaptorCell_IsAP7_objectS0__ZL35PyvtkGenericAdaptorCell_NewInstanceP7_objectS0__ZL35PyvtkGenericAdaptorCell_GetPointIdsP7_objectS0__ZL35PyvtkGenericAdaptorCell_GetPointIdsP7_objectS0_.cold_ZL42PyvtkGenericAdaptorCell_CountEdgeNeighborsP7_objectS0__ZL42PyvtkGenericAdaptorCell_CountEdgeNeighborsP7_objectS0_.cold_ZL40PyvtkGenericAdaptorCell_EvaluateLocationP7_objectS0__ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s1P7_objectS0__ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s1P7_objectS0_.cold_ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s2P7_objectS0__ZL43PyvtkGenericAdaptorCell_InterpolateTuple_s2P7_objectS0_.cold_ZL35PyvtkGenericAdaptorCell_DerivativesP7_objectS0__ZL35PyvtkGenericAdaptorCell_DerivativesP7_objectS0_.cold_ZL40PyvtkGenericAdaptorCell_EvaluatePositionP7_objectS0__ZL40PyvtkGenericAdaptorCell_EvaluatePositionP7_objectS0_.cold_ZL41PyvtkGenericAdaptorCell_IntersectWithLineP7_objectS0__ZL28PyvtkGenericAdaptorCell_Type_ZL31PyvtkGenericAdaptorCell_Methods_GLOBAL__sub_I_vtkGenericAdaptorCellPython.cxx_ZL39PyvtkGenericAdaptorCell_TriangulateFaceP7_objectS0__ZL34PyvtkGenericAdaptorCell_TessellateP7_objectS0__ZL34PyvtkGenericAdaptorCell_GetLength2P7_objectS0__ZL33PyvtkGenericAdaptorCell_GetBoundsP7_objectS0__ZL28PyvtkGenericAdaptorCell_ClipP7_objectS0__ZL31PyvtkGenericAdaptorCell_ContourP7_objectS0__ZL48PyvtkGenericAdaptorCell_GetHighestOrderAttributeP7_objectS0_.LC0.LC1.LC2.LC3.LC5.LC4.LC6.LC7.LC8.LC9.LC10.LC11.LC12.LC13.LC14.LC15.LC16.LC17.LC18.LC19.LC20.LC21.LC22.LC23.LC24.LC25.LC26.LC27.LC28.LC29.LC30.LC31.LC32.LC33.LC34.LC35.LC36.LC37.LC39.LC41.LC43.LC45.LC47.LC49.LC51.LC52.LC53.LC54.LC55.LC56.LC57.LC58.LC59.LC60.LC61.LC62.LC63.LC64.LC65.LC66.LC50_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZNK21vtkGenericAdaptorCell19NewInstanceInternalEv_ZN9vtkObject3NewEv_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN21vtkGenericAdaptorCell3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN21vtkGenericAdaptorCell16IsGeometryLinearEv_ZN13vtkPythonArgs16PureVirtualErrorEvPyLong_FromLongLong_ZN13vtkPythonArgs8GetValueERi_GLOBAL_OFFSET_TABLE__Py_NoneStruct_ZN13vtkPythonArgs8GetValueERx_ZN21vtkGenericAdaptorCell17IsAttributeLinearEP19vtkGenericAttribute_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromString_ZN13vtkPythonArgs8GetArrayEPdiPyFloat_FromDouble_ZN13vtkPythonArgs8SetArrayEiPKdiPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIxEC1El_ZdaPv_ZN13vtkPythonArgs8GetArrayEPxi_ZN13vtkPythonArgs8SetArrayEiPKxi_Unwind_Resume_ZN13vtkPythonArgs5ArrayIiEC1El_ZN13vtkPythonArgs8GetArrayEPii_ZN13vtkPythonArgs8SetArrayEiPKii_ZN13vtkPythonArgs5ArrayIdEC1El_ZN13vtkPythonArgs8GetValueERd_ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs11SetArgValueEiiPyvtkGenericAdaptorCell_ClassNewPyVTKClass_AddPyvtkObject_ClassNewPyType_ReadyPyVTKAddFile_vtkGenericAdaptorCellPyDict_SetItemString_Py_Dealloc_ZN21vtkGenericAdaptorCell15TriangulateFaceEP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatoriP9vtkPointsP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataSB_P11vtkCellData_ZN21vtkGenericAdaptorCell10TessellateEP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatorP9vtkPointsP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataSB_P11vtkCellDataP20vtkUnsignedCharArray_ZN21vtkGenericAdaptorCell10GetLength2Ev_ZN21vtkGenericAdaptorCell9GetBoundsEv_ZN21vtkGenericAdaptorCell4ClipEdP19vtkImplicitFunctionP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatoriP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataP11vtkCellDataSB_SB_SD__ZN21vtkGenericAdaptorCell7ContourEP16vtkContourValuesP19vtkImplicitFunctionP29vtkGenericAttributeCollectionP25vtkGenericCellTessellatorP26vtkIncrementalPointLocatorP12vtkCellArraySB_SB_P12vtkPointDataP11vtkCellDataSD_SD_SF__ZN21vtkGenericAdaptorCell24GetHighestOrderAttributeEP29vtkGenericAttributeCollectionPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_DelCP}DEB|F$MGEH AIJJqK:aL*QoMA_|N 1OlyO!?]jqP / L Y `  Q   < I P  R   - : A o S    ) 0 _ T    ' 4 ; o U  V">J*XW!;XeoX9KYZxZASYbt{[ 1Om\*]4YyE^q?_(\-5C*Q`3Ph\mu*aAeEb*%cb*8IXd%F#exL]qf&Qk*EH"go*E  5 D c  h  (!D!!!!!!"""*""(#im####$!$:$L$z$D%N%f%*%%%jC&y&&&&&''*'''((`(F((()\)i))))Y)) * ++,+*;+U++++F+,>,v,,,,--H-kP-t--...*..//`/l///0\0i000000Y11"2,2D2*S2m2223mK3a33344/4D444444Z6h6666667757K7777nF8y888899D9d99;;;;;;;<<=<G<e<~<<<<A<E<B<<A<<A<=.=E9==o= >k(><>pD>Y>i>qv>>r>>s>>t>>t?#?u:???*??? @vg@@k@@p@@q@@rAAs$A6AtFARAtfA{AuAAwAA B*!BPB[BBxBBC"C1C=CCyCDy D;DyxDDDDD\DDE4EEE*FF(F/FjFzFFG{G-Gk5GIGpQGlGGrGGsGGtGHuH,HtBHSHtiHHuHII*)IVIaII|I@J}HJ\J{dJxJkJJpJJrJJsJ9KWK{KtKKuKKtK Lt"L7LuDLLL*LM M1M~MMMkMMNNN "%%%+%>'/%_2%7%[=E&H+86>W_xA87H0X8@B07x )(87 @HX7x `-hx7 7P \7 h7p }7@ 7 K( 87x@5HX7(`hMx7 [7p7XP 77Xp 7 (P 87@H` X7`hx77E#77p27x X%7X# 1(87%@yHpIX7'``h@Fx7/7770/7:VPC7=K`B7>7> (`87(@@mHX7A`+h?x70D$p7Ip7J9p 7K`=7L`7HO (@ 87P@H X7R0(7S+7S DXp0 (Lpp ` $P H@ lP p Dh ` `Tp 'H%Q'l#u'"%!'<%$0(-'Dt%B}'^+'f%c' 0/'\%e'2'%'7T<p=8`=0 ? `B PC @F pI M.symtab.strtab.shstrtab.rela.text.data.bss.rodata.str1.1.rela.text._ZNK21vtkGenericAdaptorCell19NewInstanceInternalEv.rodata._ZN21vtkGenericAdaptorCell3IsAEPKc.str1.1.rela.text._ZN21vtkGenericAdaptorCell3IsAEPKc.rela.text.unlikely.gcc_except_table.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@ !L !X ! p!N@0x6!&N,N12NE@R @@! ~2IR `R<@x! R@8 !hS28TS@X0!+(&@!<@ 7@ !K F@x !`[@8,!0ȯ, @ @P,x!X" 02