ELF>pY@@'&  UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tH@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDHHuӐHuHcSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uuH0[fDHHuӐt$W@fH~HufHn@HHH;u_@fH~ffH~fUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uXH@]f.HHuϐHt$H|$tD$HHuHHATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(uzHH]A\fDHHuѐLd$Ht$LtH5HT$L|$HtD$HHuHHvff.@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;ulH=tLH=u)HeHcZfDLLH=tL븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfATL%H LHH5LuLHLA\ATIUHHt HH5LHtHmtH]A\HH]A\AWAVAUATUHSH8fnFdH%(H$(1HHt$PHD$XHGfnȉD$hfbfD$`Hm(H\$P1HH|$p4AHcHL$pHD$HL$ Et IcHHD$H4H$AHcH$HD$HT$(Et IcHHD$H4H$AHcHD$L$Et IcIHD$HD$`+D$dHL$E1MtH$I9tLH$H$H9t HtH|$pHD$xH9t HtH$(dH+%(H8L[]A\A]A^A_HHYXf.Ht$ DH7Ht$(DHDLH Ht$HHE~lHD$ HH9D$AD$D1HHL$ fHL$H)T$0H9uDAtHT$ E~kHD$(HH9D$AE D1HHL$(f$HL$$H)d$0H9uDAtHT$(E~^AFIGH9D$}D1HfA4HL$4HH9uDAt AD$dD$HHEHT$(LHHt$ fH~E~:Ic1 @HH9t&HL$ HL$f.ztH[E~;Ic1DHH9t&HL$(HL$f.ztH2E~7Ic1DHH9t"HL$Af.ztHHfHnL$IDE1HT$(Ht$ LHD1AHL$HH9uD1DHL$(HL$HH9uD1HL$ HL$HH9uzDLH!HT$ D1HHT$(DHHHHff.AWAVAUATUHSH8fnFdH%(H$(1HHt$PHD$XHGfnȉD$hfbfD$`Hm(H\$P1HH|$p4AHcHL$pHD$HL$ Et IcHHD$H4H$AHcH$HD$HT$(Et IcHHD$H4H$AHcHD$L$Et IcIHD$HD$`+D$dHL$E1MtH$I9tLH$H$H9t HtH|$pHD$xH9t HtH$(dH+%(H8L[]A\A]A^A_HHYXf.Ht$ DH7Ht$(DHDLH Ht$HHE~lHD$ HH9D$AD$D1HHL$ fHL$H)T$0H9uDAtHT$ E~kHD$(HH9D$AE D1HHL$(f$HL$$H)d$0H9uDAtHT$(E~^AFIGH9D$}D1HfA4HL$4HH9uDAt AD$dD$HHEHT$(LHHt$ E~=Ic1HH9t&HL$ HL$f.ztH[E~;Ic1DHH9t&HL$(HL$f.ztH2E~7Ic1DHH9t"HL$Af.ztHHHcL$IE1HT$(Ht$ LHD1AHL$HH9uD1DHL$(HL$HH9uD1HL$ HL$HH9uzDLH!HT$ D1HHT$(DHHHHG@SafeDownCastvtkObjectBasevtkGeometricErrorMetricIsTypeOfGetRelativeGetAbsoluteGeometricToleranceSetAbsoluteGeometricToleranceSetRelativeGeometricTolerancevtkGenericDataSetIsANewInstanceGetErrorRequiresEdgeSubdivisionvtkGenericSubdivisionErrorMetricvtkObjectUH=Hu]ÐHH=tHH=tH]vtkGeometricErrorMetric - Objects that compute geometry-based error during cell tessellation. Superclass: vtkGenericSubdivisionErrorMetric It is a concrete error metric, based on a geometric criterium: the variation of the edge from a straight line. @sa vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkCommonDataModelPython.vtkGeometricErrorMetricV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Standard VTK type and error macros. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard VTK type and error macros. V.SafeDownCast(vtkObjectBase) -> vtkGeometricErrorMetric C++: static vtkGeometricErrorMetric *SafeDownCast( vtkObjectBase *o) Standard VTK type and error macros. V.NewInstance() -> vtkGeometricErrorMetric C++: vtkGeometricErrorMetric *NewInstance() Standard VTK type and error macros. V.GetAbsoluteGeometricTolerance() -> float C++: virtual double GetAbsoluteGeometricTolerance() Return the squared absolute geometric accuracy. See SetAbsoluteGeometricTolerance() for details. \post positive_result: result>0 V.SetAbsoluteGeometricTolerance(float) C++: void SetAbsoluteGeometricTolerance(double value) Set the geometric accuracy with a squared absolute value. This is the geometric object-based accuracy. Subdivision will be required if the square distance between the real point and the straight line passing through the vertices of the edge is greater than `value'. For instance 0.01 will give better result than 0.1. \pre positive_value: value>0 V.SetRelativeGeometricTolerance(float, vtkGenericDataSet) C++: void SetRelativeGeometricTolerance(double value, vtkGenericDataSet *ds) Set the geometric accuracy with a value relative to the length of the bounding box of the dataset. Internally compute the absolute tolerance. For instance 0.01 will give better result than 0.1. \pre valid_range_value: value>0 && value<1 \pre ds_exists: ds!=0 V.RequiresEdgeSubdivision([float, ...], [float, ...], [float, ...], float) -> int C++: int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint, double alpha) override; Does the edge need to be subdivided according to the distance between the line passing through its endpoints and the mid point? The edge is defined by its `leftPoint' and its `rightPoint'. `leftPoint', `midPoint' and `rightPoint' have to be initialized before calling RequiresEdgeSubdivision(). Their format is global coordinates, parametric coordinates and point centered attributes: xyx rst abc de... `alpha' is the normalized abscissa of the midpoint along the edge. (close to 0 means close to the left point, close to 1 means close to the right point) \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 V.GetError([float, ...], [float, ...], [float, ...], float) -> float C++: double GetError(double *leftPoint, double *midPoint, double *rightPoint, double alpha) override; Return the error at the mid-point. It will return an error relative to the bounding box size if GetRelative() is true, a square absolute error otherwise. See RequiresEdgeSubdivision() for a description of the arguments. \pre leftPoint_exists: leftPoint!=0 \pre midPoint_exists: midPoint!=0 \pre rightPoint_exists: rightPoint!=0 \pre clamped_alpha: alpha>0 && alpha<1 \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 \post positive_result: result>=0 V.GetRelative() -> int C++: int GetRelative() Return the type of output of GetError() HHH$H$H9t HtH$HtH$H9tH|$pHD$xH9t HtHH$H$H9t HtH$HtH$H9tH|$pHD$xH9t HtH"x    Z"x    ZHDGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D XEDPa AE |OEY B j(EAD`n AAF ED@ AG ED@ AG EDP AK (4FAD` ABG 0`nFAA D`  AABH gFD@ EE MFF0OFDD n ABA DDBzPLRx P$FBB B(A0D8G 8D0A(B BBBI x_PFBB B(A0D8G 8D0A(B BBBI _i    +c`n0g3`Z@ _0;__    3  < H f      " :" o "O?Ff  ?}M=LxO!(/O  3 K c x    _ZL35PyvtkGeometricErrorMetric_StaticNewv_ZL38PyvtkGeometricErrorMetric_SafeDownCastP7_objectS0__ZL34PyvtkGeometricErrorMetric_IsTypeOfP7_objectS0__ZL37PyvtkGeometricErrorMetric_GetRelativeP7_objectS0__ZL55PyvtkGeometricErrorMetric_GetAbsoluteGeometricToleranceP7_objectS0__ZL55PyvtkGeometricErrorMetric_SetAbsoluteGeometricToleranceP7_objectS0__ZL55PyvtkGeometricErrorMetric_SetRelativeGeometricToleranceP7_objectS0__ZL29PyvtkGeometricErrorMetric_IsAP7_objectS0__ZL37PyvtkGeometricErrorMetric_NewInstanceP7_objectS0__ZL30PyvtkGeometricErrorMetric_Type_ZL33PyvtkGeometricErrorMetric_Methods_GLOBAL__sub_I_vtkGeometricErrorMetricPython.cxx_ZL34PyvtkGeometricErrorMetric_GetErrorP7_objectS0__ZL34PyvtkGeometricErrorMetric_GetErrorP7_objectS0_.cold_ZL49PyvtkGeometricErrorMetric_RequiresEdgeSubdivisionP7_objectS0__ZL49PyvtkGeometricErrorMetric_RequiresEdgeSubdivisionP7_objectS0_.cold.LC0.LC1.LC2.LC5.LC3.LC4.LC6.LC7.LC8.LC9.LC10.LC11.LC12.LC14.LC16.LC13_ZN23vtkGeometricErrorMetric29GetAbsoluteGeometricToleranceEv_ZN23vtkGeometricErrorMetric3NewEv_ZNK23vtkGeometricErrorMetric19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZN23vtkGeometricErrorMetric3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN23vtkGeometricErrorMetric11GetRelativeEvPyFloat_FromDouble_GLOBAL_OFFSET_TABLE__ZN13vtkPythonArgs8GetValueERd_ZN23vtkGeometricErrorMetric29SetAbsoluteGeometricToleranceEd_Py_NoneStruct_ZN23vtkGeometricErrorMetric29SetRelativeGeometricToleranceEdP17vtkGenericDataSetPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyvtkGeometricErrorMetric_ClassNewPyVTKClass_AddPyvtkGenericSubdivisionErrorMetric_ClassNewPyType_ReadyPyVTKAddFile_vtkGeometricErrorMetricPyDict_SetItemString_Py_DeallocDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN13vtkPythonArgs8GetArrayEPdi_ZN23vtkGeometricErrorMetric8GetErrorEPdS0_S0_d_ZN13vtkPythonArgs8SetArrayEiPKdi_Unwind_Resume_ZN23vtkGeometricErrorMetric23RequiresEdgeSubdivisionEPdS0_S0_dPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del,`012324  J0}86!629"674#^0:;294$0A:_2n<*-4%*0Q:k>}?2*@4&0A:^>i'v1A2*@4(F0q:8*56!629" 67*4R)0:*/.2$38BHCeDt24FGHE  Js * M N M NG M] N 0 O O OA :l P P P >b 2 2 2 2 <1QRRR4c+MNMN7MMN0OOO1:\PtPP>R22229!URRR4.; K: [z.6&!+69">6K7,O:OSO[TzOOOTV@0WXXYZ[\]^8_@`3x (8@HX``h0xHfp00@  <(8S 4H\8d0 +L@@ I&0. _T.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN23vtkGeometricErrorMetric29GetAbsoluteGeometricToleranceEv.rela.text._ZNK23vtkGeometricErrorMetric19NewInstanceInternalEv.rodata.str1.1.rodata._ZN23vtkGeometricErrorMetric3IsAEPKc.str1.8.rodata._ZN23vtkGeometricErrorMetric3IsAEPKc.str1.1.rela.text._ZN23vtkGeometricErrorMetric3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.text.unlikely.gcc_except_table.rela.data.rel.rela.data.rel.local.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.groupE@$-EH $/ET $5E` $L p@@X$&,1 z u@O$ 22!2 1O,@(O$\2p &k@O0$8&~@P$@&@P$&\`' @P $)` @Q$`*@T$ 0h*,*#* ;*(6@T@$"- %- 6  WL