ELF>@@+*   !"HHH5H81Hff.AUAATL%UHSH(dH%(HD$1HD$HD$L9gHT$H5HHL9eHT$H5HHAAtEH|$HtNH/tXHcHT$dH+%(H([]A\A]H;H0H|$HuH|$HtH/u롐H_L9ePHEAiH;H0aHHlHH5H81LfDUHHHtH]UHHHtH]UHHHtH]UHHHtH]HtSHo[1ff.fHtSHo[1ff.fHt'SHoHSHP[1ff.fATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(u[HHL]A\fHT$H|$HIHtAo$HHIff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(u[HHL]A\fHT$H|$HIHtAo$HHIff.ATUH-HHdH%(HD$81HFHt$Hl$D$ HD$$HD$tUH|$E1H|$HtH/tHD$8dH+%(ugHHL]A\fHT$H|$HIHtAo$HHID$HFIyfUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uFH@]@H|$HT$H5|$HtHHuHff.@ATUHHdH%(HD$81HHt$HD$HFHD$$D$ D$ wcLd$HT$ H5L|$ Ht#D$ 9D$(|Vt$ HHHtU1HT$8dH+%(uMHH]A\H|$f.Ht$ LuDHfATUHHHdH%(HD$81HtHH,HEǃtpt4H51HT$8dH+%(HH]A\f.HHD$8dH+%(HHH=]A\@Hl$HHl$HL%HD$(Ld$HD$ cHt$HN~D$LH$)HD$8dH+%(u5HHH1]A\7HH5H81ff.ATUHHHdH%(HD$81HtHH,HEǃtpt4H51HT$8dH+%(HH]A\f.HHD$8dH+%(HHH=]A\@Hl$HHl$HL%HD$(Ld$HD$ cHt$HN~D$LH$)HD$8dH+%(u5HHH1]A\gHH5H81ff.ATUHHXdH%(HD$H1HtHHLHEǃtpt4H51HT$HdH+%(/HX]A\f.HHD$HdH+%(HXH=]A\@Hl$ Hl$ Ht$HL%HD$8Ld$(HD$0aHt$HLHt$H7~D$LHD$HD$HFfDHD$HdH+%(u5HXH1]A\HH5H81ff.USHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tH@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐHuHHff.@H8fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u>H(HtD$9D$t;H111HT$(dH+%(u9H8HHuҐHuHHff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDHHuӐHHuHff.@UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDHHuӐHHuHff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHohHuH@HH8H;tHUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uVH0]fDHHuӐtHopHuH@HH@H;tHUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$|$HtHHuHHff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$|$HtHHuHHff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$|$HtHHuHHff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.HHuϐHt$H|$tHt$HHuHH@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.HHuϐHt$H|$tHt$HHHuH@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$|$HtHHu@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$|$HtHHu@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u_H@]f.HHuϐH5HT$H|$|$HtHHu@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.HHuϐHt$H|$tHt$HHHuH@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uWH@]f.HHuϐHt$H|$tHt$HHHuH@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(D$Ht!D$ +D$$tAH|$1HT$8dH+%(uRH@]DHHuԐHt$H|$tt$HHHuH@ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(uyHH]A\fDHHuѐLd$Ht$LtHT$H5L|$HtHt$HHuHHwAWAVAUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ Ho(Ht!D$ +D$$t:H|$1HT$8dH+%(H@]A\A]A^A_fL|$Ll$L5LLL|$ItLLL|$HtLHHuHHvf.HH/TDUHPfnFdH%(HD$H1HHt$ HD$(HGfnȉD$8fbfD$0utHD$Ho(HtsD$0+D$4tmH|$ 1H|$HtH/tHT$HdH+%(u{HP]ÐHD$HD$HH{1H5HT$H|$ HHtHHHpHeATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(ukHH]A\fDHHuѐLd$HLtHt$LtHT$H4$HHHuHff.ATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(upHH]A\fDHHuѐLd$HLtHt$LtHT$H4$HHHuHfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;ulH=tLH=u)HeHcZfDLLH=tL븐HЉfATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfAVAUATUHfnFdH%(HD$x1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lg(HH|$@4AHcH|$@H|$Mt+D$0+D$4HH|$@E1HtHD$HH9tHD$xdH+%(HĈL]A\A]A^fHHPH|$ H|$@4HcfDHt$HoLt$HLWHt$DH?Ht$HL$LLHtTHt*H|$@E1HL%I$HT$DHfHT$HHff.AVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHcLl$0EulMD$ +D$$HH|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fDHH>H|$E1H|$04HcH|$0IsLE1hHHMHt$H8DLH"E~YIEH9AD$D1HfATHH9uDAt ADHT$H4$LLE~KIc1 @HH9t7ADf.ztHuDLHf.H|$0E1HRL%I$AfD1ADHH9uJHff.fATUHHdH%(HD$8HFLd$Ht$HHD$HHT$ LH5D$(HD$ D$ |$ Ht9D$ 9D$(}Ht$ Ltt$ HHHtmD1HT$8dH+%(u`HH]A\fDHD$8dH+%(uBHHHH]H=A\H5HAUATUHHNdH%(H$1HGfnAH%HfnfbA)tDAH5D1H$dH+%(+HĐ]A\A]DL H4$LL$L$D$D$HH(HteD$9D$thH111H H4$HL$D$fD$HUHo(HtD$+D$tWH1=fDHHuHHH5HLd$ ILLtfoT$ fo\$0LHfod$@)T$P)\$`)d$pD$ f.D$PD$Xf.D$(D$0f.D$`D$hf.D$8~u|D$@f.D$pznulD$Hf.D$xz^u\HHHfDHH1HH<1HuL1Lf.AU1ATUHpHNdH%(HD$h1HGAfnH%fnA)fbAtBAH5D1HT$hdH+%(Hp]A\A]fL Ht$0LL$8L$@T$DT$HHHo(HtwD$@+D$DttH|$01@H Ht$0HL$8T$HfD$@H<Ho(Ht!D$@+D$DtvH|$01,Ht$(H|$0tHt$(HHHuHHH5HfDLd$0Ht$(LtLl$PLLkf(D$P\$`LHHt$(fD$)$\$f($f.D$PzturT$f.T$Xzdub\$f.\$`zTuRHHH%@HH1 HHE1HuLLfAU1ATUHĀHNdH%(HD$x1HGAfnH%fnA)fbAtBAH5D1HT$xdH+%(H]A\A]fL Ht$@LL$HL$PT$TT$XH*Ho(Ht{D$P+D$Tt|H|$@1@H Ht$@HL$HT$XfD$PHHo(Ht%D$P+D$TH|$@1(Ld$@Ht$8LtLl$`LLtf(D$`t$pLHHt$8fD$)$t$f($f.D$`D>l$f.l$h,&t$f.t$pHBHHaLd$@Ht$ LHt$(LHt$0LHt$8LL$(D$0D$TT$8f(Ht$ f؅HT$`HL$`D$hT$p2HH;1HH1qHLLHT$`H)\$`T$pff.AU1ATUHHNdH%(H$1HGAfnH%fnA)fbAtDAH5D1H$dH+%(HĐ]A\A]DL Ht$PLL$XL$`T$dT$hHrHo(Ht{D$`+D$dt|H|$P1@H Ht$PHL$XT$hfD$`HHo(Ht%D$`+D$dH|$P1&Ld$PHt$@LtHt$HLtLl$pLLtHT$HHt$@LH$f(D$pt$fD$)$f($f.D$pz)u'l$f.l$xzut$f.$zHLLfDLd$PHt$(LHt$0LHt$8LHt$@LHt$HLL$8D$@D$dT$Hf(HT$0Ht$(f؅HL$pHL$pD$x$HDHHafHH1GHH}1'HL$pH)\$p$fDATL%11H5LuLLA\fATL%H H(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuHH@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u|H@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHu@@Hff.@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(u|H@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHu@@Hff.@UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHuHH@HUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHuHH@HUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHuHH@HUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fDHHuӐu$HHHuH@HfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHuHH@HUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uNH0]fDHHuӐu$HHHuH@HfUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uzH@]f.HHuϐH5HT$H|$|$HtD$$u(HEHHuHH@HATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(HH]A\fHHuѐLd$Ht$LtHT$H5L|$HtD$$Ht$u/HEHHtHHf@HAT1UHXHNdH%(HD$H1HGAfnH%fnA)fbAtH(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuHH@HGhHGpthis class cannot be instantiatedthis function takes no keyword argumentsvtkEdgeBase - no description provided. vtkOutEdgeType - no description provided. Superclass: vtkEdgeBase vtkOutEdgeType() vtkOutEdgeType(vtkIdType t, vtkIdType id) vtkOutEdgeType(const &vtkOutEdgeType) vtkInEdgeType - no description provided. Superclass: vtkEdgeBase vtkInEdgeType() vtkInEdgeType(vtkIdType s, vtkIdType id) vtkInEdgeType(const &vtkInEdgeType) vtkEdgeType - no description provided. Superclass: vtkEdgeBase vtkEdgeType() vtkEdgeType(vtkIdType s, vtkIdType t, vtkIdType id) vtkEdgeType(const &vtkEdgeType) vtkGraph - Base class for graph data types. Superclass: vtkDataObject vtkGraph is the abstract base class that provides all read-only API for graph data types. A graph consists of a collection of vertices and a collection of edges connecting pairs of vertices. The vtkDirectedGraph subclass represents a graph whose edges have inherent order from source vertex to target vertex, while vtkUndirectedGraph is a graph whose edges have no inherent ordering. Graph vertices may be traversed in two ways. In the current implementation, all vertices are assigned consecutive ids starting at zero, so they may be traversed in a simple for loop from 0 to graph->GetNumberOfVertices() - 1. You may alternately create a vtkVertexListIterator and call graph->GetVertices(it). it->Next() will return the id of the next vertex, while it->HasNext() indicates whether there are more vertices in the graph. This is the preferred method, since in the future graphs may support filtering or subsetting where the vertex ids may not be contiguous. Graph edges must be traversed through iterators. To traverse all edges in a graph, create an instance of vtkEdgeListIterator and call graph->GetEdges(it). it->Next() returns lightweight vtkEdgeType structures, which contain the public fields Id, Source and Target. Id is the identifier for the edge, which may be used to look up values in assiciated edge data arrays. Source and Target store the ids of the source and target vertices of the edge. Note that the edge list iterator DOES NOT necessarily iterate over edges in order of ascending id. To traverse edges from wrapper code (Python, Tcl, Java), use it->NextGraphEdge() instead of it->Next(). This will return a heavyweight, wrappable vtkGraphEdge object, which has the same fields as vtkEdgeType accessible through getter methods. To traverse all edges outgoing from a vertex, create a vtkOutEdgeIterator and call graph->GetOutEdges(v, it). it->Next() returns a lightweight vtkOutEdgeType containing the fields Id and Target. The source of the edge is always the vertex that was passed as an argument to GetOutEdges(). Incoming edges may be similarly traversed with vtkInEdgeIterator, which returns vtkInEdgeType structures with Id and Source fields. Both vtkOutEdgeIterator and vtkInEdgeIterator also provide the wrapper functions NextGraphEdge() which return vtkGraphEdge objects. An additional iterator, vtkAdjacentVertexIterator can traverse outgoing vertices directly, instead needing to parse through edges. Initialize the iterator by calling graph->GetAdjacentVertices(v, it). vtkGraph has two instances of vtkDataSetAttributes for associated vertex and edge data. It also has a vtkPoints instance which may store x,y,z locations for each vertex. This is populated by filters such as vtkGraphLayout and vtkAssignCoordinates. All graph types share the same implementation, so the structure of one may be shared among multiple graphs, even graphs of different types. Structures from vtkUndirectedGraph and vtkMutableUndirectedGraph may be shared directly. Structures from vtkDirectedGraph, vtkMutableDirectedGraph, and vtkTree may be shared directly with the exception that setting a structure to a tree requires that a "is a tree" test passes. For graph types that are known to be compatible, calling ShallowCopy() or DeepCopy() will work as expected. When the outcome of a conversion is unknown (i.e. setting a graph to a tree), CheckedShallowCopy() and CheckedDeepCopy() exist which are identical to ShallowCopy() and DeepCopy(), except that instead of emitting an error for an incompatible structure, the function returns false. This allows you to programmatically check structure compatibility without causing error messages. To construct a graph, use vtkMutableDirectedGraph or vtkMutableUndirectedGraph. You may then use CheckedShallowCopy to set the contents of a mutable graph type into one of the non-mutable types vtkDirectedGraph, vtkUndirectedGraph. To construct a tree, use vtkMutableDirectedGraph, with directed edges which point from the parent to the child, then use CheckedShallowCopy to set the structure to a vtkTree. @warning All copy operations implement copy-on-write. The structures are initially shared, but if one of the graphs is modified, the structure is copied so that to the user they function as if they were deep copied. This means that care must be taken if different threads are accessing different graph instances that share the same structure. Race conditions may develop if one thread is modifying the graph at the same time that another graph is copying the structure. @par Vertex pedigree IDs: The vertices in a vtkGraph can be associated with pedigree IDs through GetVertexData()->SetPedigreeIds. In this case, there is a 1-1 mapping between pedigree Ids and vertices. One can query the vertex ID based on the pedigree ID using FindVertex, add new vertices by pedigree ID with AddVertex, and add edges based on the pedigree IDs of the source and target vertices. For example, AddEdge("Here", "There") will find (or add) vertices with pedigree ID "Here" and "There" and then introduce an edge from "Here" to "There". @par Vertex pedigree IDs: To configure the vtkGraph with a pedigree ID mapping, create a vtkDataArray that will store the pedigree IDs and set that array as the pedigree ID array for the vertices via GetVertexData()->SetPedigreeIds(). @par Distributed graphs: vtkGraph instances can be distributed across multiple machines, to allow the construction and manipulation of graphs larger than a single machine could handle. A distributed graph will typically be distributed across many different nodes within a cluster, using the Message Passing Interface (MPI) to allow those cluster nodes to communicate. @par Distributed graphs: An empty vtkGraph can be made into a distributed graph by attaching an instance of a vtkDistributedGraphHelper via the SetDistributedGraphHelper() method. To determine whether a graph is distributed or not, call GetDistributedGraphHelper() and check whether the result is non-nullptr. For a distributed graph, the number of processors across which the graph is distributed can be retrieved by extracting the value for the DATA_NUMBER_OF_PIECES key in the vtkInformation object (retrieved by GetInformation()) associated with the graph. Similarly, the value corresponding to the DATA_PIECE_NUMBER key of the vtkInformation object describes which piece of the data this graph instance provides. @par Distributed graphs: Distributed graphs behave somewhat differently from non-distributed graphs, and will require special care. In a distributed graph, each of the processors will contain a subset of the vertices in the graph. That subset of vertices can be accessed via the vtkVertexListIterator produced by GetVertices(). GetNumberOfVertices(), therefore, returns the number of vertices stored locally: it does not account for vertices stored on other processors. A vertex (or edge) is identified by both the rank of its owning processor and by its index within that processor, both of which are encoded within the vtkIdType value that describes that vertex (or edge). The owning processor is a value between 0 and P-1, where P is the number of processors across which the vtkGraph has been distributed. The local index will be a value between 0 and GetNumberOfVertices(), for vertices, or GetNumberOfEdges(), for edges, and can be used to access the local parts of distributed data arrays. When given a vtkIdType identifying a vertex, one can determine the owner of the vertex with vtkDistributedGraphHelper::GetVertexOwner() and the local index with vtkDistributedGraphHelper::GetVertexIndex(). With edges, the appropriate methods are vtkDistributedGraphHelper::GetEdgeOwner() and vtkDistributedGraphHelper::GetEdgeIndex(), respectively. To construct a vtkIdType representing either a vertex or edge given only its owner and local index, use vtkDistributedGraphHelper::MakeDistributedId(). @par Distributed graphs: The edges in a distributed graph are always stored on the processors that own the vertices named by the edge. For example, given a directed edge (u, v), the edge will be stored in the out-edges list for vertex u on the processor that owns u, and in the in-edges list for vertex v on the processor that owns v. This "row-wise" decomposition of the graph means that, for any vertex that is local to a processor, that processor can look at all of the incoming and outgoing edges of the graph. Processors cannot, however, access the incoming or outgoing edge lists of vertex owned by other processors. Vertices owned by other processors will not be encountered when traversing the vertex list via GetVertices(), but may be encountered by traversing the in- and out-edge lists of local vertices or the edge list. @par Distributed graphs: Distributed graphs can have pedigree IDs for the vertices in the same way that non-distributed graphs can. In this case, the distribution of the vertices in the graph is based on pedigree ID. For example, a vertex with the pedigree ID "Here" might land on processor 0 while a vertex pedigree ID "There" would end up on processor 3. By default, the pedigree IDs themselves are hashed to give a random (and, hopefully, even) distribution of the vertices. However, one can provide a different vertex distribution function by calling vtkDistributedGraphHelper::SetVertexPedigreeIdDistribution. Once a distributed graph has pedigree IDs, the no-argument AddVertex() method can no longer be used. Additionally, once a vertex has a pedigree ID, that pedigree ID should not be changed unless the user can guarantee that the vertex distribution will still map that vertex to the same processor where it already resides. @sa vtkDirectedGraph vtkUndirectedGraph vtkMutableDirectedGraph vtkMutableUndirectedGraph vtkTree vtkDistributedGraphHelper @par Thanks: Thanks to Brian Wylie, Timothy Shead, Ken Moreland of Sandia National Laboratories and Douglas Gregor of Indiana University for designing these classes. vtkCommonDataModelPython.vtkGraphV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkGraph C++: static vtkGraph *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkGraph C++: vtkGraph *NewInstance() V.GetVertexData() -> vtkDataSetAttributes C++: virtual vtkDataSetAttributes *GetVertexData() Get the vertex or edge data. V.GetEdgeData() -> vtkDataSetAttributes C++: virtual vtkDataSetAttributes *GetEdgeData() Get the vertex or edge data. V.GetDataObjectType() -> int C++: int GetDataObjectType() override; Return what type of dataset this is. V.Initialize() C++: void Initialize() override; Initialize to an empty graph. V.GetPoint(int) -> (float, ...) C++: double *GetPoint(vtkIdType ptId) V.GetPoint(int, [float, float, float]) C++: void GetPoint(vtkIdType ptId, double x[3]) These methods return the point (0,0,0) until the points structure is created, when it returns the actual point position. In a distributed graph, only the points for local vertices can be retrieved. V.GetPoints() -> vtkPoints C++: vtkPoints *GetPoints() Returns the points array for this graph. If points is not yet constructed, generates and returns a new points array filled with (0,0,0) coordinates. In a distributed graph, only the points for local vertices can be retrieved or modified. V.SetPoints(vtkPoints) C++: virtual void SetPoints(vtkPoints *points) Returns the points array for this graph. If points is not yet constructed, generates and returns a new points array filled with (0,0,0) coordinates. In a distributed graph, only the points for local vertices can be retrieved or modified. V.ComputeBounds() C++: void ComputeBounds() Compute the bounds of the graph. In a distributed graph, this computes the bounds around the local part of the graph. V.GetBounds() -> (float, ...) C++: double *GetBounds() V.GetBounds([float, float, float, float, float, float]) C++: void GetBounds(double bounds[6]) Return a pointer to the geometry bounding box in the form (xmin,xmax, ymin,ymax, zmin,zmax). In a distributed graph, this computes the bounds around the local part of the graph. V.GetMTime() -> int C++: vtkMTimeType GetMTime() override; The modified time of the graph. V.GetOutEdges(int, vtkOutEdgeIterator) C++: virtual void GetOutEdges(vtkIdType v, vtkOutEdgeIterator *it) Initializes the out edge iterator to iterate over all outgoing edges of vertex v. For an undirected graph, returns all incident edges. In a distributed graph, the vertex v must be local to this processor. V.GetDegree(int) -> int C++: virtual vtkIdType GetDegree(vtkIdType v) The total of all incoming and outgoing vertices for vertex v. For undirected graphs, this is simply the number of edges incident to v. In a distributed graph, the vertex v must be local to this processor. V.GetOutDegree(int) -> int C++: virtual vtkIdType GetOutDegree(vtkIdType v) The number of outgoing edges from vertex v. For undirected graphs, returns the same as GetDegree(). In a distributed graph, the vertex v must be local to this processor. V.GetOutEdge(int, int) -> vtkOutEdgeType C++: virtual vtkOutEdgeType GetOutEdge(vtkIdType v, vtkIdType index) V.GetOutEdge(int, int, vtkGraphEdge) C++: virtual void GetOutEdge(vtkIdType v, vtkIdType index, vtkGraphEdge *e) Random-access method for retrieving outgoing edges from vertex v. V.GetInEdges(int, vtkInEdgeIterator) C++: virtual void GetInEdges(vtkIdType v, vtkInEdgeIterator *it) Initializes the in edge iterator to iterate over all incoming edges to vertex v. For an undirected graph, returns all incident edges. In a distributed graph, the vertex v must be local to this processor. V.GetInDegree(int) -> int C++: virtual vtkIdType GetInDegree(vtkIdType v) The number of incoming edges to vertex v. For undirected graphs, returns the same as GetDegree(). In a distributed graph, the vertex v must be local to this processor. V.GetInEdge(int, int) -> vtkInEdgeType C++: virtual vtkInEdgeType GetInEdge(vtkIdType v, vtkIdType index) V.GetInEdge(int, int, vtkGraphEdge) C++: virtual void GetInEdge(vtkIdType v, vtkIdType index, vtkGraphEdge *e) Random-access method for retrieving incoming edges to vertex v. V.GetAdjacentVertices(int, vtkAdjacentVertexIterator) C++: virtual void GetAdjacentVertices(vtkIdType v, vtkAdjacentVertexIterator *it) Initializes the adjacent vertex iterator to iterate over all outgoing vertices from vertex v. For an undirected graph, returns all adjacent vertices. In a distributed graph, the vertex v must be local to this processor. V.GetEdges(vtkEdgeListIterator) C++: virtual void GetEdges(vtkEdgeListIterator *it) Initializes the edge list iterator to iterate over all edges in the graph. Edges may not be traversed in order of increasing edge id. In a distributed graph, this returns edges that are stored locally. V.GetNumberOfEdges() -> int C++: virtual vtkIdType GetNumberOfEdges() The number of edges in the graph. In a distributed graph, this returns the number of edges stored locally. V.GetVertices(vtkVertexListIterator) C++: virtual void GetVertices(vtkVertexListIterator *it) Initializes the vertex list iterator to iterate over all vertices in the graph. In a distributed graph, the iterator traverses all local vertices. V.GetNumberOfVertices() -> int C++: virtual vtkIdType GetNumberOfVertices() The number of vertices in the graph. In a distributed graph, returns the number of local vertices in the graph. V.SetDistributedGraphHelper(vtkDistributedGraphHelper) C++: void SetDistributedGraphHelper( vtkDistributedGraphHelper *helper) Sets the distributed graph helper of this graph, turning it into a distributed graph. This operation can only be executed on an empty graph. V.GetDistributedGraphHelper() -> vtkDistributedGraphHelper C++: vtkDistributedGraphHelper *GetDistributedGraphHelper() Retrieves the distributed graph helper for this graph V.FindVertex(vtkVariant) -> int C++: vtkIdType FindVertex(const vtkVariant &pedigreeID) Retrieve the vertex with the given pedigree ID. If successful, returns the ID of the vertex. Otherwise, either the vertex data does not have a pedigree ID array or there is no vertex with the given pedigree ID, so this function returns -1. If the graph is a distributed graph, this method will return the Distributed-ID of the vertex. V.ShallowCopy(vtkDataObject) C++: void ShallowCopy(vtkDataObject *obj) override; Shallow copies the data object into this graph. If it is an incompatible graph, reports an error. V.DeepCopy(vtkDataObject) C++: void DeepCopy(vtkDataObject *obj) override; Deep copies the data object into this graph. If it is an incompatible graph, reports an error. V.CopyStructure(vtkGraph) C++: virtual void CopyStructure(vtkGraph *g) Does a shallow copy of the topological information, but not the associated attributes. V.CheckedShallowCopy(vtkGraph) -> bool C++: virtual bool CheckedShallowCopy(vtkGraph *g) Performs the same operation as ShallowCopy(), but instead of reporting an error for an incompatible graph, returns false. V.CheckedDeepCopy(vtkGraph) -> bool C++: virtual bool CheckedDeepCopy(vtkGraph *g) Performs the same operation as DeepCopy(), but instead of reporting an error for an incompatible graph, returns false. V.Squeeze() C++: virtual void Squeeze() Reclaim unused memory. V.GetData(vtkInformation) -> vtkGraph C++: static vtkGraph *GetData(vtkInformation *info) V.GetData(vtkInformationVector, int) -> vtkGraph C++: static vtkGraph *GetData(vtkInformationVector *v, int i=0) Retrieve a graph from an information vector. V.ReorderOutVertices(int, vtkIdTypeArray) C++: void ReorderOutVertices(vtkIdType v, vtkIdTypeArray *vertices) Reorder the outgoing vertices of a vertex. The vertex list must have the same elements as the current out edge list, just in a different order. This method does not change the topology of the graph. In a distributed graph, the vertex v must be local. V.IsSameStructure(vtkGraph) -> bool C++: bool IsSameStructure(vtkGraph *other) Returns true if both graphs point to the same adjacency structure. Can be used to test the copy-on-write feature of the graph. V.GetSourceVertex(int) -> int C++: vtkIdType GetSourceVertex(vtkIdType e) Retrieve the source and target vertices for an edge id. NOTE: The first time this is called, the graph will build a mapping array from edge id to source/target that is the same size as the number of edges in the graph. If you have access to a vtkOutEdgeType, vtkInEdgeType, vtkEdgeType, or vtkGraphEdge, you should directly use these structures to look up the source or target instead of this method. V.GetTargetVertex(int) -> int C++: vtkIdType GetTargetVertex(vtkIdType e) Retrieve the source and target vertices for an edge id. NOTE: The first time this is called, the graph will build a mapping array from edge id to source/target that is the same size as the number of edges in the graph. If you have access to a vtkOutEdgeType, vtkInEdgeType, vtkEdgeType, or vtkGraphEdge, you should directly use these structures to look up the source or target instead of this method. V.SetEdgePoints(int, int, [float, ...]) C++: void SetEdgePoints(vtkIdType e, vtkIdType npts, double *pts) Get/Set the internal edge control points associated with each edge. The size of the pts array is 3*npts, and holds the x,y,z location of each edge control point. V.GetEdgePoints(int, int, [float, ...]) C++: void GetEdgePoints(vtkIdType e, vtkIdType &npts, double *&pts) Get/Set the internal edge control points associated with each edge. The size of the pts array is 3*npts, and holds the x,y,z location of each edge control point. V.GetNumberOfEdgePoints(int) -> int C++: vtkIdType GetNumberOfEdgePoints(vtkIdType e) Get the number of edge points associated with an edge. V.GetEdgePoint(int, int) -> (float, float, float) C++: double *GetEdgePoint(vtkIdType e, vtkIdType i) Get the x,y,z location of a point along edge e. V.ClearEdgePoints(int) C++: void ClearEdgePoints(vtkIdType e) Clear all points associated with an edge. V.SetEdgePoint(int, int, [float, float, float]) C++: void SetEdgePoint(vtkIdType e, vtkIdType i, double x[3]) V.SetEdgePoint(int, int, float, float, float) C++: void SetEdgePoint(vtkIdType e, vtkIdType i, double x, double y, double z) Set an x,y,z location of a point along an edge. This assumes there is already a point at location i, and simply overwrites it. V.AddEdgePoint(int, [float, float, float]) C++: void AddEdgePoint(vtkIdType e, double x[3]) V.AddEdgePoint(int, float, float, float) C++: void AddEdgePoint(vtkIdType e, double x, double y, double z) Adds a point to the end of the list of edge points for a certain edge. V.ShallowCopyEdgePoints(vtkGraph) C++: void ShallowCopyEdgePoints(vtkGraph *g) Copy the internal edge point data from another graph into this graph. Both graphs must have the same number of edges. V.DeepCopyEdgePoints(vtkGraph) C++: void DeepCopyEdgePoints(vtkGraph *g) Copy the internal edge point data from another graph into this graph. Both graphs must have the same number of edges. V.GetGraphInternals(bool) -> vtkGraphInternals C++: vtkGraphInternals *GetGraphInternals(bool modifying) Returns the internal representation of the graph. If modifying is true, then the returned vtkGraphInternals object will be unique to this vtkGraph object. V.GetInducedEdges(vtkIdTypeArray, vtkIdTypeArray) C++: void GetInducedEdges(vtkIdTypeArray *verts, vtkIdTypeArray *edges) Fills a list of edge indices with the edges contained in the induced subgraph formed by the vertices in the vertex list. V.GetAttributesAsFieldData(int) -> vtkFieldData C++: vtkFieldData *GetAttributesAsFieldData(int type) override; Returns the attributes of the data object as a vtkFieldData. This returns non-null values in all the same cases as GetAttributes, in addition to the case of FIELD, which will return the field data for any vtkDataObject subclass. V.GetNumberOfElements(int) -> int C++: vtkIdType GetNumberOfElements(int type) override; Get the number of elements for a specific attribute type (VERTEX, EDGE, etc.). V.Dump() C++: void Dump() Dump the contents of the graph to standard output. V.GetEdgeId(int, int) -> int C++: vtkIdType GetEdgeId(vtkIdType a, vtkIdType b) Returns the Id of the edge between vertex a and vertex b. This is independent of directionality of the edge, that is, if edge A->B exists or if edge B->A exists, this function will return its Id. If multiple edges exist between a and b, here is no guarantee about which one will be returned. Returns -1 if no edge exists between a and b. V.ToDirectedGraph(vtkDirectedGraph) -> bool C++: bool ToDirectedGraph(vtkDirectedGraph *g) Convert the graph to a directed graph. V.ToUndirectedGraph(vtkUndirectedGraph) -> bool C++: bool ToUndirectedGraph(vtkUndirectedGraph *g) Convert the graph to an undirected graph. vtkCommonDataModelPython.vtkEdgeTypevtkCommonDataModelPython.vtkInEdgeTypevtkCommonDataModelPython.vtkOutEdgeTypevtkCommonDataModelPython.vtkEdgeBasevtkEdgeBaseoperation not availablevtkOutEdgeTypevtkInEdgeTypevtkEdgeTypeSafeDownCastvtkObjectBasevtkGraphGetDatavtkInformationvtkInformationVectorIsTypeOfComputeBoundsDumpGetPointsGetDistributedGraphHelperGetDataObjectTypeGetVertexDataGetEdgeDataSetDistributedGraphHelpervtkDistributedGraphHelperShallowCopyEdgePointsDeepCopyEdgePointsClearEdgePointsGetNumberOfEdgePointsToUndirectedGraphvtkUndirectedGraphToDirectedGraphvtkDirectedGraphIsSameStructureGetSourceVertexGetTargetVertexGetGraphInternalsReorderOutVerticesvtkIdTypeArrayGetInducedEdgesFindVertexvtkVariantGetEdgeIdGetEdgePointIsANewInstanceGetEdgePointsSetEdgePointsGetBoundsp_voidGetPointAddEdgePointSetEdgePointGetNumberOfElementsGetAttributesAsFieldDataSqueezeCheckedDeepCopyCheckedShallowCopyCopyStructureDeepCopyShallowCopyGetNumberOfVerticesGetVerticesvtkVertexListIteratorGetNumberOfEdgesGetEdgesvtkEdgeListIteratorGetAdjacentVerticesvtkAdjacentVertexIteratorGetInEdgevtkGraphEdgeGetInDegreeGetInEdgesvtkInEdgeIteratorGetOutEdgeGetOutDegreeGetDegreeGetOutEdgesvtkOutEdgeIteratorGetMTimeSetPointsvtkPointsInitializeV *vtkInformationV|i *vtkInformationVector@W vtkEdgeType@W vtkInEdgeType@W vtkOutEdgeTypevtkDataObjectvtkObjectUH=Hu]ÐHH=tHH=tH]H|$@HtHD$HH9tHH|$0HD$8H9t HtHHH$HHD$HH;<$uyHLHHD$HHCH\$@Ll@HHHH$LH|$ L9tLHH|$ L9tr0r5$b$HHHHHHHHHHHD((((!!GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D X%H\8pzFEH D(DP (A ABBA EUEUEUEU 0#JUAL#JUAh3J]I(FAK`t DBD (FAK`t DBD (FAK`t DBD EDPa AE ,EDPa AE (PFAD` ABD | @FAG`d ABK e HBI  FBL    @FAG`d ABK e HBI  FBL @TFAGpd ABK e HBI  FBL OEY B j(EAD`n AAF H@ I H@ I ED@ AG @ED@ AG dED@ AG ED@ AG ED@ AG EDP AK EDP AK EDP AK <EDP AK `EDP AK EDP AK EDP AK EDP AK EDP AK EDP AK 8EDP AF (\FAD` ABG @;FBB B(A0Dp 0A(B BBBC )ED` AB (FAD` ABG (FAD` ABG 0HnFAA D`  AABH |gFD@ EE zPLRx <$FBB A(G (D BBBC d!DFBB A(A0D 0D(A BBBA !4/FAD` ABG T GIL 0FBA G}  ABBF 0FDA Dr  ABBJ 0, BFDA Dr  ABBJ 0` jFDA G{  ABBF  7Fp MFF MFF MFF HFA4 OFAG  ABE lDBPFBB B(D0A8Gy 8D0A(B BBBB  K EDP AK  EDP AK , H@ I H EDP AK l EDP AK EDP AK EDP AK EDP AK ED@ AG EDP AK D ED@ AG h EDP AK ( /FAD` ABC ( FCDpr ABF EDP AK ( /FAD` ABC (4 FCDpr ABF ` EDP AK EDP AK ( /FAD` ABC ED@ AG EDP AK H@ I I     %20z^v0 (@#Gp#e3>ePP   ( [ P P "X`@@@@o@0  ' S  ;4@!)[p"#$n&gp'!K)u!!`,/@`- P03 2B\ @6j  `   @  @  @ @K  h  @   @ < B: K\ ?  @  A B C@ Dj E F H H I< Ja K/ M O  P/R-T VU |V/ XY Z  %$*3/A4M9Z>hCqHyNT Z(` flrx~ #=Sfv'6FQ\f s&w,28>DJPV\bhnt+z9BNbn +8BNajt~ X0"(" F" b"  +?Kdu|  L[ " .GSz"O:Xg{+Pp4TtD^|!!9@`\u=]97s9M@:M:M:H0;O.C)n5FY-Df! T u    !@!\!!!!!"9"Q"i"""""""##/#D#W#g#w#_ZL17PyvtkEdgeBase_NewP11_typeobjectP7_objectS2__ZL25PyvtkEdgeBase_RichCompareP7_objectS0_i_ZL18PyvtkEdgeBase_Type_ZL20PyvtkEdgeBase_DeleteP7_object_ZL23PyvtkOutEdgeType_DeleteP7_object_ZL22PyvtkInEdgeType_DeleteP7_object_ZL20PyvtkEdgeType_DeleteP7_object_ZL18PyvtkEdgeBase_HashP7_object_ZL22PyvtkOutEdgeType_CCopyPKv_ZL21PyvtkInEdgeType_CCopyPKv_ZL19PyvtkEdgeType_CCopyPKv_ZL34PyvtkOutEdgeType_vtkOutEdgeType_s3P7_objectS0__ZL32PyvtkInEdgeType_vtkInEdgeType_s3P7_objectS0__ZL28PyvtkEdgeType_vtkEdgeType_s3P7_objectS0__ZL23PyvtkGraph_SafeDownCastP7_objectS0__ZL21PyvtkGraph_GetData_s1P7_objectS0__ZL21PyvtkGraph_GetData_s2P7_objectS0__ZL20PyvtkOutEdgeType_NewP11_typeobjectP7_objectS2__ZL18PyvtkEdgeType_HashP7_object_ZL21PyvtkOutEdgeType_HashP7_object_ZL20PyvtkInEdgeType_HashP7_object_ZL19PyvtkInEdgeType_NewP11_typeobjectP7_objectS2__ZL17PyvtkEdgeType_NewP11_typeobjectP7_objectS2__ZL19PyvtkGraph_IsTypeOfP7_objectS0__ZL24PyvtkGraph_ComputeBoundsP7_objectS0__ZL15PyvtkGraph_DumpP7_objectS0__ZL20PyvtkGraph_GetPointsP7_objectS0__ZL36PyvtkGraph_GetDistributedGraphHelperP7_objectS0__ZL28PyvtkGraph_GetDataObjectTypeP7_objectS0__ZL24PyvtkGraph_GetVertexDataP7_objectS0__ZL22PyvtkGraph_GetEdgeDataP7_objectS0__ZL36PyvtkGraph_SetDistributedGraphHelperP7_objectS0__ZL32PyvtkGraph_ShallowCopyEdgePointsP7_objectS0__ZL29PyvtkGraph_DeepCopyEdgePointsP7_objectS0__ZL26PyvtkGraph_ClearEdgePointsP7_objectS0__ZL32PyvtkGraph_GetNumberOfEdgePointsP7_objectS0__ZL28PyvtkGraph_ToUndirectedGraphP7_objectS0__ZL26PyvtkGraph_ToDirectedGraphP7_objectS0__ZL26PyvtkGraph_IsSameStructureP7_objectS0__ZL26PyvtkGraph_GetSourceVertexP7_objectS0__ZL26PyvtkGraph_GetTargetVertexP7_objectS0__ZL28PyvtkGraph_GetGraphInternalsP7_objectS0__ZL29PyvtkGraph_ReorderOutVerticesP7_objectS0__ZL26PyvtkGraph_GetInducedEdgesP7_objectS0__ZL21PyvtkGraph_FindVertexP7_objectS0__ZL20PyvtkGraph_GetEdgeIdP7_objectS0__ZL23PyvtkGraph_GetEdgePointP7_objectS0__ZL14PyvtkGraph_IsAP7_objectS0__ZL22PyvtkGraph_NewInstanceP7_objectS0__ZL24PyvtkGraph_GetEdgePointsP7_objectS0__ZL24PyvtkGraph_GetEdgePointsP7_objectS0_.cold_ZL24PyvtkGraph_SetEdgePointsP7_objectS0__ZL24PyvtkGraph_SetEdgePointsP7_objectS0_.cold_ZL18PyvtkGraph_GetDataP7_objectS0__ZL26PyvtkGraph_GetData_Methods_ZL20PyvtkGraph_GetBoundsP7_objectS0__ZL19PyvtkGraph_GetPointP7_objectS0__ZL23PyvtkGraph_AddEdgePointP7_objectS0__ZL23PyvtkGraph_SetEdgePointP7_objectS0__ZL21PyvtkEdgeBase_Methods_ZL21PyvtkOutEdgeType_Type_ZL39PyvtkOutEdgeType_vtkOutEdgeType_Methods_ZL24PyvtkOutEdgeType_Methods_ZL20PyvtkInEdgeType_Type_ZL37PyvtkInEdgeType_vtkInEdgeType_Methods_ZL23PyvtkInEdgeType_Methods_ZL18PyvtkEdgeType_Type_ZL33PyvtkEdgeType_vtkEdgeType_Methods_ZL21PyvtkEdgeType_Methods_ZL15PyvtkGraph_Type_ZL18PyvtkGraph_Methods_ZL20PyvtkEdgeBase_StringP7_object_ZL20PyvtkEdgeBase_StringP7_object.cold_GLOBAL__sub_I_vtkGraphPython.cxx_ZL30PyvtkGraph_GetNumberOfElementsP7_objectS0__ZL35PyvtkGraph_GetAttributesAsFieldDataP7_objectS0__ZL18PyvtkGraph_SqueezeP7_objectS0__ZL26PyvtkGraph_CheckedDeepCopyP7_objectS0__ZL29PyvtkGraph_CheckedShallowCopyP7_objectS0__ZL24PyvtkGraph_CopyStructureP7_objectS0__ZL19PyvtkGraph_DeepCopyP7_objectS0__ZL22PyvtkGraph_ShallowCopyP7_objectS0__ZL30PyvtkGraph_GetNumberOfVerticesP7_objectS0__ZL22PyvtkGraph_GetVerticesP7_objectS0__ZL27PyvtkGraph_GetNumberOfEdgesP7_objectS0__ZL19PyvtkGraph_GetEdgesP7_objectS0__ZL30PyvtkGraph_GetAdjacentVerticesP7_objectS0__ZL20PyvtkGraph_GetInEdgeP7_objectS0__ZL22PyvtkGraph_GetInDegreeP7_objectS0__ZL21PyvtkGraph_GetInEdgesP7_objectS0__ZL21PyvtkGraph_GetOutEdgeP7_objectS0__ZL23PyvtkGraph_GetOutDegreeP7_objectS0__ZL20PyvtkGraph_GetDegreeP7_objectS0__ZL22PyvtkGraph_GetOutEdgesP7_objectS0__ZL19PyvtkGraph_GetMTimeP7_objectS0__ZL20PyvtkGraph_SetPointsP7_objectS0__ZL21PyvtkGraph_InitializeP7_objectS0_.LC0.LC1.LC2.LC3.LC4.LC5.LC6.LC7.LC8.LC9.LC10.LC11.LC13.LC12.LC14.LC17.LC15.LC16.LC18.LC19.LC20.LC21.LC22.LC23.LC24.LC25.LC26.LC27.LC28.LC29.LC30.LC31.LC32.LC33.LC34.LC35.LC36.LC37.LC38.LC39.LC40.LC41.LC42.LC43.LC44.LC45.LC46.LC47.LC48.LC50.LC52.LC53.LC54.LC55.LC56.LC63.LC64.LC65.LC66.LC67.LC68.LC69.LC70.LC71.LC72.LC73.LC74.LC75.LC76.LC77.LC78.LC79.LC80.LC81.LC82.LC83.LC84.LC85.LC86.LC87.LC88.LC89.LC90.LC91.LC92.LC58.LC59.LC60.LC61.LC62_ZN8vtkGraph13GetVertexDataEv_ZN8vtkGraph11GetEdgeDataEv_ZN8vtkGraph17GetDataObjectTypeEv_GLOBAL_OFFSET_TABLE_PyExc_TypeErrorPyErr_SetString_ZN13vtkPythonUtil27GetPointerFromSpecialObjectEP7_objectPKcPS1_PyBool_FromLong_Zne11vtkEdgeBaseS__Py_Dealloc_Zeq11vtkEdgeBaseS_PyErr_Clear_Py_NotImplementedStruct__stack_chk_fail_ZdlPvPyObject_FreePyObject_HashNotImplemented_Znwm_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs21GetArgAsSpecialObjectEPKcPP7_objectPyVTKSpecialObject_New_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN8vtkGraph7GetDataEP14vtkInformation_ZN8vtkGraph7GetDataEP20vtkInformationVectori_ZN13vtkPythonArgs8GetValueERi_ZNK8vtkGraph19NewInstanceInternalEv_ZN13vtkDataObject3NewEvPyDict_Size_ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN13vtkPythonArgs8GetValueERx_ZN8vtkGraph3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN8vtkGraph13ComputeBoundsEv_Py_NoneStruct_ZN8vtkGraph4DumpEv_ZN8vtkGraph9GetPointsEv_ZN8vtkGraph25GetDistributedGraphHelperEv_ZN8vtkGraph25SetDistributedGraphHelperEP25vtkDistributedGraphHelper_ZN8vtkGraph21ShallowCopyEdgePointsEPS__ZN8vtkGraph18DeepCopyEdgePointsEPS__ZN8vtkGraph15ClearEdgePointsEx_ZN8vtkGraph21GetNumberOfEdgePointsExPyLong_FromLongLong_ZN8vtkGraph17ToUndirectedGraphEP18vtkUndirectedGraph_ZN8vtkGraph15ToDirectedGraphEP16vtkDirectedGraph_ZN8vtkGraph15IsSameStructureEPS__ZN8vtkGraph15GetSourceVertexEx_ZN8vtkGraph15GetTargetVertexEx_ZN13vtkPythonArgs8GetValueERb_ZN8vtkGraph17GetGraphInternalsEb_ZN8vtkGraph18ReorderOutVerticesExP14vtkIdTypeArray_ZN8vtkGraph15GetInducedEdgesEP14vtkIdTypeArrayS1__ZN8vtkGraph10FindVertexERK10vtkVariant_ZN8vtkGraph9GetEdgeIdExx_ZN8vtkGraph12GetEdgePointExx_ZN13vtkPythonArgs10BuildTupleEPKdiPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN13vtkPythonArgs8GetArrayEPdi_ZN8vtkGraph13GetEdgePointsExRxRPd_ZN13vtkPythonArgs11SetArgValueEiPKdi_ZN13vtkPythonArgs11SetArgValueEix_Unwind_Resume_ZN8vtkGraph13SetEdgePointsExxPd_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN8vtkGraph9GetBoundsEv_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromString_ZN8vtkGraph9GetBoundsEPd_ZN8vtkGraph8GetPointEx_ZN8vtkGraph8GetPointExPd_ZN8vtkGraph12AddEdgePointExPd_ZN13vtkPythonArgs8GetValueERd_ZN8vtkGraph12SetEdgePointExxPdPyvtkEdgeBase_TypeNewPyVTKSpecialType_AddPyType_ReadyPyvtkOutEdgeType_TypeNewPyvtkInEdgeType_TypeNewPyvtkEdgeType_TypeNewPyvtkGraph_ClassNewPyVTKClass_AddPyvtkDataObject_ClassNewPyVTKAddFile_vtkGraphPyDict_SetItemString_ZTVNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEEE_ZTVSt15basic_streambufIcSt11char_traitsIcEE_ZNSt8ios_baseC2Ev_ZTVSt9basic_iosIcSt11char_traitsIcEE_ZTTNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEEE_ZNSt9basic_iosIcSt11char_traitsIcEE4initEPSt15basic_streambufIcS1_E_ZNSt6localeC1Ev_ZTVNSt7__cxx1115basic_stringbufIcSt11char_traitsIcESaIcEEE_ZlsRSo11vtkEdgeBase_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE10_M_replaceEmmPKcmPyUnicode_FromStringAndSize_ZNSt6localeD1Ev_ZNSt8ios_baseD2Ev_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_M_assignERKS4__ZNSt7__cxx1119basic_ostringstreamIcSt11char_traitsIcESaIcEED1Ev_ZN8vtkGraph19GetNumberOfElementsEi_ZN8vtkGraph24GetAttributesAsFieldDataEi_ZN8vtkGraph7SqueezeEv_ZN8vtkGraph15CheckedDeepCopyEPS__ZN8vtkGraph18CheckedShallowCopyEPS__ZN8vtkGraph13CopyStructureEPS__ZN8vtkGraph8DeepCopyEP13vtkDataObject_ZN8vtkGraph11ShallowCopyEP13vtkDataObject_ZN8vtkGraph19GetNumberOfVerticesEv_ZN8vtkGraph11GetVerticesEP21vtkVertexListIterator_ZN8vtkGraph16GetNumberOfEdgesEv_ZN8vtkGraph8GetEdgesEP19vtkEdgeListIterator_ZN8vtkGraph19GetAdjacentVerticesExP25vtkAdjacentVertexIteratorPyVTKSpecialObject_CopyNew_ZN8vtkGraph9GetInEdgeExx_ZN8vtkGraph9GetInEdgeExxP12vtkGraphEdge_ZN8vtkGraph11GetInDegreeEx_ZN8vtkGraph10GetInEdgesExP17vtkInEdgeIterator_ZN8vtkGraph10GetOutEdgeExx_ZN8vtkGraph10GetOutEdgeExxP12vtkGraphEdge_ZN8vtkGraph12GetOutDegreeEx_ZN8vtkGraph9GetDegreeEx_ZN8vtkGraph11GetOutEdgesExP18vtkOutEdgeIterator_ZN8vtkGraph8GetMTimeEvPyLong_FromUnsignedLong_ZN8vtkGraph9SetPointsEP9vtkPoints_ZN8vtkGraph10InitializeEvPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_DelPyVTKSpecialObject_Repr *q>o|rr9cqx**s"St>qu.a~vQnw-x2KyZgsz {!)6=nz|)<Cwtt } t9 N ` x  * ~  7 _ ud   u } u   8 s *z ~    v & H vj q v     # ** ~2 > m    y .3?Hp* @*^.Qaiv}!:Gb*o)6M*[ -*;a%*0ay%*0ay%*0a *(QA A Ay A1!l*)        !*!!7!a!!! "#"2"B"J"["e"""#,#=#R#Z#g#n###!$<$M$b$j$|$$$%A%[%~%*%y%%%%%%%%%"&o&&&*&&y&&' ' 5' D'c''' '((D(q(( ((((() ))/)*Q)n)u))* *L*h*** ** +"+++++ ,*C,,z,},|,,- -V-p<k-zr-----+.h.s......./D///*/0!080B0000,1;1111111112C2w22*22222K3S3333&4F4_4444*5#5 85 M5 55556$6.6666$737~77778!;8Y8v888 8 8 $9!19A9*Q9q99!99o|9\9#9o$9$9o:p:<:#:o$:".:o3:$I:o<W:p^:f:#l:ot:"~:o<:$:o:p::#:oD:":o:$:o:y:p;);o;*;o;$?;"N;rY;,f;%x;t;,;&;u;,;';v;,;(;y;,<+<G<_<<*-<*.</<*0!=*1I=2P=*-=3=*4=2=5A>6P>7Z>*4>>*->>*.>8>*0>99?:C?? @1@K@p@}@@<@@AAA[AAAA=AABAB^BjB*yB>BB C1CCCyRCxCCC?CC*DQDcDyrDDDD@DDJEqEEyEEE*EAEFZFFFFFF*FBFGjGGGGGG*GCG!HnHHHHHDHIZIIIIII*IEIJ^JJJJJFJJJKqKKKKK*KGKL\LLLLLLL*MH MiMqMMMMBN\NqNNNuNINN OOFOVO*iOOOJOKOOJPqPPPPPLPQ\QQQQQQQ*RM RiRqRRRRBS\SqSSStSISS TTFTVT*iTTTNTOTTJUqUUUUUPUVZVVVVVVQVWlWWWWWWW*XRXAXXXXXXSYTY1YYYYYYZ*ZUZ@ZZZZZ*ZVZ +5     P )<O,<]-{<O?<[?<g?<s?<>?<y&+9>K6>E*4c*.t8*09;o,o#*o18oL?FoVW)0XXYZ[\]^_8`@aW^b 0[ HWX^pb [x W^8bX p[P W_b0<[H0 P )  s($8*@ MHX+` wh&xX, , `- - ~ Z. P0P.  (8/@ jHYX0` hPx2 -2 a X4 BVp4 8U5 +T6  (R87@ HPX8` hOx(: M ; K@< J= I> bH?  N(H8@@ H@X@A` hxXB F@!C BFD 9EpE +D F CF  (B8G@ HAXhH` qh`,xH I   K  K M )O  (p'8P@ vH0XQ` fh#xhR f@S @6pS 2T =@U S@V  (8W@ 6H XX` h@xY ?Z  [ \p"[  ]  ^HX hPx   (8  4H\t0 04@Ppl 0TPP    X !P P  Dh`@@@@@d0    <` @!p" #L$& p'>< >$)->"l<!u><`,-P00 2d @6 9 9 @: : :$ 0;\ <e >D <B >l V ? @0 AL Bp C D E F H$ HH Il J K M O P8 Rd T U V  X Y  Z.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN8vtkGraph13GetVertexDataEv.text._ZN8vtkGraph11GetEdgeDataEv.text._ZN8vtkGraph17GetDataObjectTypeEv.rodata.str1.8.rodata.str1.1.rela.text._ZNK8vtkGraph19NewInstanceInternalEv.rodata._ZN8vtkGraph3IsAEPKc.str1.1.rela.text._ZN8vtkGraph3IsAEPKc.rela.text.unlikely.gcc_except_table.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rodata.cst8.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@(H(P(X (d (p (  Z@&K(&t[,[ 1[ U[ w[ 2[=_2 @q(2O@q(6_1@rh(E?t\KW@s(oj@t(  {@tP(@` @@y(@8(!0, 8 @Px (&@H!) #ȓ