ELF>@@65,-UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(ugH@]@Ht$ H|$tы|$ HHuHt"HH5HfHHff.AUATUSHdH%(H$1HHt$ HD$(HFHD$4D$0tEH|$ 1H$dH+%(IHĸ[]A\A]f.Ll$@Ld$ LLtHl$`$LHtH$$Hf(D$@HT$PHHLfD$)$T$f($f.D$@zgueL$f.L$HzWuUT$f.T$PzGuE1Df.z[uYHH= uHHHHuL1Lf.Hu$HLf.AUATUH0dH%(H$(1HHt$ HD$(HFHD$4D$0t>H|$ 1H$(dH+%(H0]A\A]@Ld$@Hl$ LHtLl$` HLtL$PLLf(D$@fo$foT$pfo$L$foL$`fo$fD$fo$)$)$)$)$)$)$)$f($f.D$@|$f.|$H{L$f.L$PicD$`f.$vp$f.D$h[U$f.D$p@:D$xf.$%$f.$$f.$$f.$$f.$$f.$$f.$zuus$f.$z_u]$f.$zIuGHHHqHL1HxHu LHfUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tHH=tHUH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(ugH@]@Ht$ H|$tы|$ HHuHt"HH5HfHHff.SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fAUATUH`fnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLtD$4L$HD$@T$PtXHf(1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukH?Hc4HEHXH;tT$HLD$L$T$D$L$|fHuL1Ltf.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H;H=tLH=u-HaHcVf.LLH=tLH=tLfDHЉfAWAVAUATUSH(fnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(H([]A\A]A^A_HHu뾐Ll$0Ld$LLtLt$P LLtT$8\$@fod$Pfol$`fot$pfH~fI~fo$fo$D$$)$fo$D$0)$)$)$)$)$uHEHxH;LLD$D$f.D$0fHnf.d$8~xfInf.l$@gaD$Pf.$tn$f.D$XYS$f.D$`>8D$hf.$#D$pf.$D$xf.$$f.$$f.$$f.$$f.$zyuw$f.$zcua$f.$zMuKHJHH<DHL1LzHu LLD$LLHD$AWAVAUATUSHfnFdH%(H$1HHt$HD$HGfnȉD$(fbfD$ u]Ho(Ht!D$ +D$$tWH|$1H$dH+%(HĨ[]A\A]A^A_HHu뾐Lt$0Ll$LLtLd$P$LLtT$8D$$LH$p\$@$HD$0HfI~$uHEHH;LLD$D$f.D$0zhuffInf.d$8zYuW,$f.l$@zJuH1fDAf.zSuQHH= uHHHHuL1LfHu$LLD$LLHD$,ATL%H lHH5LuLHLA\ATIUHHt HH5LHtHmtH]A\HH]A\UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐu int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkHexagonalPrism C++: static vtkHexagonalPrism *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHexagonalPrism C++: vtkHexagonalPrism *NewInstance() V.GetEdgePoints(int, [int, ...]) C++: void GetEdgePoints(int edgeId, int *&pts) override; See vtkCell3D API for description of these methods. V.GetFacePoints(int, [int, ...]) C++: void GetFacePoints(int faceId, int *&pts) override; See vtkCell3D API for description of these methods. V.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. V.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell API for descriptions of these methods. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; See the vtkCell API for descriptions of these methods. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell API for descriptions of these methods. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition p1[3], p2[3] and tolerance tol. The method returns non-zero value if intersection occurs. A parametric distance t between 0 and 1 along the ray representing the intersection point, the point coordinates x[3] in data coordinates and also pcoords[3] in parametric coordinates. subId is the index within the cell if a composed cell like a triangle strip. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the wedge in parametric coordinates. V.InterpolationFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationFunctions(double pcoords[3], double weights[12]) @deprecated Replaced by vtkHexagonalPrism::InterpolateFunctions as of VTK 5.2 V.InterpolationDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: static void InterpolationDerivs(double pcoords[3], double derivs[36]) @deprecated Replaced by vtkHexagonalPrism::InterpolateDerivs as of VTK 5.2 V.InterpolateFunctions([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateFunctions(double pcoords[3], double weights[12]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.InterpolateDerivs([float, float, float], [float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float, float]) C++: void InterpolateDerivs(double pcoords[3], double derivs[36]) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) V.GetEdgeArray(int) -> (int, ...) C++: static int *GetEdgeArray(int edgeId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. V.GetFaceArray(int) -> (int, ...) C++: static int *GetFaceArray(int faceId) Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). Ids are related to the cell, not to the dataset. HHH$H$H9t HtH$HtH$H9tHH$H$H9t HtHH}HEH9t HtHPHXH9t HtHH|$0HtHD$8H9tHH|$0HtHD$8H9tH{   Az 8 " 7m0m0HD??GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D X l  EDPa AE 8FBA A(Gn (A ABBK 00>FBA Gn  ABBE dEDPa AE bEY B }(EAD`n AAF EDPa AE ED@ AG ED@ AG @ED@ AG dED@ AG 0FBA D  ABBG gFD@ EE 0FAA D`  AABH HFBB B(A0A8G 8A0A(B BBBI H`IFBB B(A0A8G 8A0A(B BBBI MFF0OFDD n ABA DDB ED@ AG zPLRx P$FBB B(A0D8Gq 8D0A(B BBBJ xF8tFBB A(Dp (A BBBG l$FBB B(A0A8G 8A0A(B BBBD GUArJTALHFBB B(A0A8G 8D0A(B BBBE '@DEC P G e...R. < @TFBB A(A0D 0A(A BBBI  EDP AK  EDP AK 4FBA D  DBBE !4FBA D  DBBE @!  % W  >  , ^    1 j `g  ` 0I5'S)` t  $ 0& $F? Ptp $ %$F' )DN$m< 1 2  4  5H$! 7$!')++ ( ?LZl# )/u5;AGMSY_ek q w,}8BL^o" " " ;" f""  % L [      " 1 Q s "   A "b` g      % ; O  Ml {    O    !,' H h o     Cf*Kl(4GXk_ZL29PyvtkHexagonalPrism_StaticNewv_ZL32PyvtkHexagonalPrism_GetFaceArrayP7_objectS0__ZL39PyvtkHexagonalPrism_InterpolationDerivsP7_objectS0__ZL42PyvtkHexagonalPrism_InterpolationFunctionsP7_objectS0__ZL32PyvtkHexagonalPrism_SafeDownCastP7_objectS0__ZL28PyvtkHexagonalPrism_IsTypeOfP7_objectS0__ZL32PyvtkHexagonalPrism_GetEdgeArrayP7_objectS0__ZL31PyvtkHexagonalPrism_GetCellTypeP7_objectS0__ZL36PyvtkHexagonalPrism_GetCellDimensionP7_objectS0__ZL36PyvtkHexagonalPrism_GetNumberOfFacesP7_objectS0__ZL36PyvtkHexagonalPrism_GetNumberOfEdgesP7_objectS0__ZL39PyvtkHexagonalPrism_GetParametricCenterP7_objectS0__ZL31PyvtkHexagonalPrism_NewInstanceP7_objectS0__ZL23PyvtkHexagonalPrism_IsAP7_objectS0__ZL40PyvtkHexagonalPrism_InterpolateFunctionsP7_objectS0__ZL37PyvtkHexagonalPrism_InterpolateDerivsP7_objectS0__ZL24PyvtkHexagonalPrism_Type_ZL27PyvtkHexagonalPrism_Methods_GLOBAL__sub_I_vtkHexagonalPrismPython.cxx_ZL39PyvtkHexagonalPrism_GetParametricCoordsP7_objectS0__ZL31PyvtkHexagonalPrism_DerivativesP7_objectS0__ZL31PyvtkHexagonalPrism_DerivativesP7_objectS0_.cold_ZL31PyvtkHexagonalPrism_TriangulateP7_objectS0__ZL37PyvtkHexagonalPrism_IntersectWithLineP7_objectS0__ZL36PyvtkHexagonalPrism_EvaluateLocationP7_objectS0__ZL36PyvtkHexagonalPrism_EvaluateLocationP7_objectS0_.cold_ZL36PyvtkHexagonalPrism_EvaluatePositionP7_objectS0__ZL36PyvtkHexagonalPrism_EvaluatePositionP7_objectS0_.cold_ZL32PyvtkHexagonalPrism_CellBoundaryP7_objectS0__ZL27PyvtkHexagonalPrism_GetFaceP7_objectS0__ZL27PyvtkHexagonalPrism_GetEdgeP7_objectS0__ZL33PyvtkHexagonalPrism_GetFacePointsP7_objectS0__ZL33PyvtkHexagonalPrism_GetFacePointsP7_objectS0_.cold_ZL33PyvtkHexagonalPrism_GetEdgePointsP7_objectS0__ZL33PyvtkHexagonalPrism_GetEdgePointsP7_objectS0_.cold.LC1.LC0.LC2.LC3.LC4.LC5.LC6.LC7.LC8.LC12.LC9.LC10.LC11.LC13.LC14.LC15.LC16.LC17.LC18.LC19.LC20.LC21.LC22.LC24.LC25.LC27.LC28.LC29.LC30.LC31.LC33.LC35.LC36.LC37.LC38.LC40.LC23_ZN17vtkHexagonalPrism11GetCellTypeEv_ZN17vtkHexagonalPrism16GetCellDimensionEv_ZN17vtkHexagonalPrism16GetNumberOfEdgesEv_ZN17vtkHexagonalPrism16GetNumberOfFacesEv_ZN17vtkHexagonalPrism19GetParametricCenterEPd_ZN17vtkHexagonalPrism3NewEv_ZNK17vtkHexagonalPrism19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs8GetValueERi_ZN17vtkHexagonalPrism12GetFaceArrayEiPyErr_Occurred_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromString_GLOBAL_OFFSET_TABLE__Py_NoneStruct__stack_chk_fail_ZN17vtkHexagonalPrism17InterpolateDerivsEPdS0__ZN17vtkHexagonalPrism19InterpolationDerivsEPdS0__ZN13vtkPythonArgs8GetArrayEPdi_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN17vtkHexagonalPrism20InterpolateFunctionsEPdS0__ZN17vtkHexagonalPrism22InterpolationFunctionsEPdS0__ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN17vtkHexagonalPrism3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN17vtkHexagonalPrism12GetEdgeArrayEi_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1_PyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyvtkHexagonalPrism_ClassNewPyVTKClass_AddPyvtkCell3D_ClassNewPyType_ReadyPyVTKAddFile_vtkHexagonalPrismPyDict_SetItemString_Py_Dealloc_ZN17vtkHexagonalPrism19GetParametricCoordsEvDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN17vtkHexagonalPrism11DerivativesEiPdS0_iS0__Unwind_Resume_ZN17vtkHexagonalPrism11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkPythonArgs8GetValueERd_ZN17vtkHexagonalPrism17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs11SetArgValueEii_ZN17vtkHexagonalPrism16EvaluateLocationERiPdS1_S1__ZN17vtkHexagonalPrism16EvaluatePositionEPdS0_RiS0_RdS0__ZN17vtkHexagonalPrism12CellBoundaryEiPdP9vtkIdList_ZN17vtkHexagonalPrism7GetFaceEi_ZN17vtkHexagonalPrism7GetEdgeEi_ZN13vtkPythonArgs5ArrayIiEC1El_ZN13vtkPythonArgs8GetArrayEPii_ZN17vtkHexagonalPrism13GetFacePointsEiRPi_ZN13vtkPythonArgs11SetArgValueEiPKii_ZN17vtkHexagonalPrism13GetEdgePointsEiRPiPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del,8`bcde9fg*ij:KbmmlDeT*iienenj;b^mwmpe*ienenj<Pb}=q>erej?:bmv}>t@tewAtBtuj C@bkcxxe9fg*ijD> ba yz e w *[ j E. bQ yj ew w *\ j F bA yZ eg w *^ j G b1 yJ eW wr *] j H b9 yf m 6 7 e w *_1eHnRjIby*a%`8>GeTrhzx{|ejJVbyv*s>t@tewA#t1B6tBuZjKb!yFm_m*o pe*ienen%j`Lbym/m*kle*ie(n1eKnuj4>5~44}>AMbye9fg*i!jcNSbxycm1mFc\me)e7eR*iwennn)jwObcP)q=QEqsewyj Rn b y m m !$nH$eh$nr$e$n$e$n$$$j0%S{%%%b%1&yO&d&&c&m&m&m'e(e(e(*i) )e,)n6)eV)n))n)j)TW*l***+b$+A+q+y+m+m+c,m(,>,mr.e.e.e3/eA/eV/wy/e/n/e/n 0_0y00n0n0j81U1b1y1c1m2P2q2e2w22e2n2j3Vj3b3y3c3e3r33j!4Wz4b4y4c4e4r45j55X~555b5 6y$646I6ca66e6e6*i666j%7Yn777b77y8$898cQ8|8e8e8*i888j`5#A#)#B0#1#i6#8#67` l p>t&@+t9A>tLBQt^uZ4 :Bai0X8@ l  (8@ ?HX` h`x 7 5h   p    ( 8p@ H4X` h2xp  1  o)  ^% L ,P   (08@ H X` h x (P  `h  0! u#  (8H$ 4H\p   4h  D h  ``d0  CX0a%#% P |%%(#F%B)%J4#m=%kX1245%s#%%<7E%t#}%.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN17vtkHexagonalPrism11GetCellTypeEv.text._ZN17vtkHexagonalPrism16GetCellDimensionEv.text._ZN17vtkHexagonalPrism16GetNumberOfEdgesEv.text._ZN17vtkHexagonalPrism16GetNumberOfFacesEv.rela.text._ZN17vtkHexagonalPrism19GetParametricCenterEPd.rela.text._ZNK17vtkHexagonalPrism19NewInstanceInternalEv.rodata.str1.1.rela.text._ZN17vtkHexagonalPrism17InterpolateDerivsEPdS0_.rela.text._ZN17vtkHexagonalPrism20InterpolateFunctionsEPdS0_.rodata._ZN17vtkHexagonalPrism3IsAEPKc.str1.1.rela.text._ZN17vtkHexagonalPrism3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.text.unlikely.gcc_except_table.rela.data.rel.rela.data.rel.local.rodata.cst16.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group;@3[;H3\;P3];X3^;` 3_;l 3a;x 3k; 3o; 3s; 3 8@#3 &9,919 ]9 9 9 9@03/: *@ 3d2 :x;s@83;@P32;<b@h3D2x<%XaS@@03 kaf@p3"|aw@ 3$b`c @ 3'e` @ȷP3)`hph@3,0xh, hh 1h,@0(31Xp4[ XB