ELF>|@@  UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fATH@dH%(HD$81HHt$HD$HFHD$$D$ t?H|$E1HD$8dH+%(H@LA\f.Ld$Ht$LtHt$ Ltt$ |$IHuLIHtHwL1HHP@LMHGI~H)ǃuHH=LHH51HÐUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(utHH[]fHt$H|$tHl$H=HtHH=uHuHc@HATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfH8VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u4H(HttOH111HT$(dH+%(uQH8@HtHx(HtҋD$t2H1HHuHHT$DUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u_H0[f.HtHx(HtˋD$t9H1fHHuHcT$qUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfUH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u`H0]f.HtHx(HtˋD$t:H1fHHHuHT$pfSH0VdH%(HD$(1HH4$HD$HGfnfnȉD$fbfD$u;H(Htt^H111HT$(dH+%(u^H0[f.HtHx(HtˋD$t8H1fHHuT$r@UH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(uuH@]HtHh(HtՋD$$tYH|$1Ht$H|$tHEHt$H HuHH{T$ RUH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(u}H@]HtHh(HtՋD$$taH|$1H5HT$H|$|$HtHEHHuHHsT$ Jff.UH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(uxH@]HtHh(HtՋD$$t\H|$1Ht$ H|$tHEHt$ fH~HufHnxT$ OUH@VdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ u:Ho(Htt\H|$1HT$8dH+%(uuH@]HtHh(HtՋD$$tYH|$1Ht$H|$tHEHHt$0HHuH{T$ RATUHHVdH%(HD$81HHt$HD$HGfnfnȉD$(fbfD$ uHHo(HttjH|$1HT$8dH+%(HH]A\HtHh(HtNjD$$tsH|$1Ld$HLtHt$LtHEHT$HH4$(HaHHST$ *fAUATUH`VdH%(HD$X1HHt$ HD$(HGfnfnȉD$8fbfD$0uFHo(HtthH|$ 1HT$XdH+%(H`]A\A]@HtHh(HtɋD$4H|$ 1Ld$@Ll$ LLtf(D$@HELH\$PfD$)$\$f($f.D$@zIuGT$f.T$Hz9u7\$f.\$Pz)u'H%HHfHuϹL1LT$0@AUATUH`VdH%(HD$X1HHt$ HD$(HGfnfnȉD$8fbfD$0uFHo(HtthH|$ 1HT$XdH+%(H`]A\A]@HtHh(HtɋD$4H|$ 1Ld$@Ll$ LLtf(D$@HELH\$PfD$)$\$f($f.D$@zIuGT$f.T$Hz9u7\$f.\$Pz)u'H%HHfHuϹL1LT$0@ATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$uXHELH@H;u\H=tLH=u)HeHcZfDLL@HЉfATL%1HH5LuLHLA\ATIUHHt HH5LHtHmtH]A\HH]A\AVAUATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uVHo(Ht!D$ +D$$tPH|$1HT$8dH+%(HH]A\A]A^f.HHuŐLd$Ht$LtLl$LLtLt$LLtD$$t$uFHELLHHtQHt/HEHH7LLHT$L@HT$Lff.@AUATUH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uPHo(Ht!D$ +D$$tRH|$1HT$8dH+%(H@]A\A]fDHHufLd$Ll$LLtD$$u?HELHHt5HyHHkLHHT$1LSafeDownCastvtkObjectBasevtkHyperTreeCreateInstanceGetScaleIsTypeOfNewInstanceInitializeGetNumberOfLevelsGetNumberOfVerticesGetNumberOfNodesGetNumberOfLeavesGetBranchFactorGetDimensionGetNumberOfChildrenNewCursorGetActualMemorySizeSetGlobalIndexStartSubdivideLeafvtkHyperTreeCursorGetGlobalIndexFromLocalSetGlobalIndexFromLocalSetScaleIsAFindChildParametersFindParentIndex@P *d@IvtkObjectUH=Hu]ÐHH=tH]vtkHyperTree - An object structured as a tree where each node has exactly either 2^d or 3^d children. Superclass: vtkObject An hypertree is a dataset where each node has either exactly f^d children or no child at all if the node is a leaf, where f in {2,3} is the branching factor of the tree and d in {1,2,3} is the dimension of the dataset. Such trees have particular names when f=2: bintree (d=1), quadtree (d=2), and octree (d=2). When f=3, we respectively call them 3-tree, 9-tree, and 27-tree. The original octree class name came from the following paper: @ARTICLE{yau-srihari-1983, author={Mann-May Yau and Sargur N. Srihari}, title={A Hierarchical Data Structure for Multidimensional Digital Images}, journal={Communications of the ACM}, month={July}, year={1983}, volume={26}, number={7}, pages={504--515} } Each node is a cell. Attributes are associated with cells, not with points. The geometry is implicitly given by the size of the root node on each axis and position of the center and the orientation. (TODO: review center position and orientation). The geometry is then not limited to an hybercube but can have a rectangular shape. Attributes are associated with leaves. For LOD (Level-Of-Detail) purpose, attributes can be computed on none-leaf nodes by computing the average values from its children (which can be leaves or not). By construction, an hypertree is efficient in memory usage when the geometry is sparse. The LOD feature allows for quick culling of part of the dataset. This is an abstract class used as a superclass by a templated compact class. All methods are pure virtual. This is done to hide templates. @par Case with f=2: * d=3 case (octree) for each node, each child index (from 0 to 7) is encoded in the following orientation. It is easy to access each child as a cell of a grid. Note also that the binary representation is relevant, each bit code a side: bit 0 encodes -x side (0) or +x side (1) bit 1 encodes -y side (0) or +y side (1) bit 2 encodes -z side (0) or +z side (2) -z side is first, in counter-clockwise order: 0: -y -x sides 1: -y +x sides 2: +y -x sides 3: +y +x sides +y +-+-+ ^ |2|3| | +-+-+ O +z +-> +x |0|1| +-+-+ @par Case with f=2: +z side is last, in counter-clockwise order: 4: -y -x sides 5: -y +x sides 6: +y -x sides 7: +y +x sides +y +-+-+ ^ |6|7| | +-+-+ O +z +-> +x |4|5| +-+-+ @par Case with f=2: The cases with fewer dimensions are consistent with the octree case: @par Case with f=2: * d=2 case (quadtree): in counter-clockwise order: 0: -y -x edges 1: -y +x edges 2: +y -x edges 3: +y +x edges +y +-+-+ ^ |2|3| | +-+-+ O+-> +x |0|1| +-+-+ @par Case with f=2: * d=1 case (bintree): +0+1+ O+-> +x @warning It is not a spatial search object. If you are looking for this kind of octree see vtkCellLocator instead. @par Thanks: This class was written by Philippe Pebay, Joachim Pouderoux, and Charles Law, Kitware 2013 This class was modified by Guenole Harel and Jacques-Bernard Lekien 2014 This class was modified by Philippe Pebay, 2016 This work was supported by Commissariat a l'Energie Atomique (CEA/DIF) vtkCommonDataModelPython.vtkHyperTreeV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkHyperTree C++: static vtkHyperTree *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkHyperTree C++: vtkHyperTree *NewInstance() V.Initialize() C++: virtual void Initialize() Restore the initial state: only one node and one leaf: the root. V.GetNumberOfLevels() -> int C++: virtual vtkIdType GetNumberOfLevels() Return the number of levels. V.GetNumberOfVertices() -> int C++: virtual vtkIdType GetNumberOfVertices() Return the number of vertices in the tree. V.GetNumberOfNodes() -> int C++: virtual vtkIdType GetNumberOfNodes() Return the number of nodes (non-leaf vertices) in the tree. V.GetNumberOfLeaves() -> int C++: virtual vtkIdType GetNumberOfLeaves() Return the number of leaf vertices in the tree. V.GetBranchFactor() -> int C++: virtual int GetBranchFactor() Return the branch factor of the tree. V.GetDimension() -> int C++: virtual int GetDimension() Return the dimension of the tree. V.GetNumberOfChildren() -> int C++: virtual vtkIdType GetNumberOfChildren() Return the number of children per node of the tree. V.SetScale([float, float, float]) C++: virtual void SetScale(double[3]) Set/Get scale of the tree in each direction. V.GetScale([float, float, float]) C++: virtual void GetScale(double[3]) V.GetScale(int) -> float C++: virtual double GetScale(unsigned int) Set/Get scale of the tree in each direction. V.CreateInstance(int, int) -> vtkHyperTree C++: static vtkHyperTree *CreateInstance( unsigned int branchFactor, unsigned int dimension) Return an instance of a templated hypertree for given branch factor and dimension. This is done to hide templates. V.FindParentIndex(int) C++: virtual void FindParentIndex(vtkIdType &) Find the Index of the parent of a vertex in the hypertree. This is done to hide templates. V.FindChildParameters(int, int, bool) C++: virtual void FindChildParameters(int, vtkIdType &, bool &) Find the Index, Parent Index and IsLeaf() parameters of the child of a node in the hypertree. This is done to hide templates. V.NewCursor() -> vtkHyperTreeCursor C++: virtual vtkHyperTreeCursor *NewCursor() Return pointer to new instance of hyper tree cursor V.SubdivideLeaf(vtkHyperTreeCursor) C++: virtual void SubdivideLeaf(vtkHyperTreeCursor *leaf) Subdivide node pointed by cursor, only if its a leaf. At the end, cursor points on the node that used to be leaf. \pre leaf_exists: leaf!=0 \pre is_a_leaf: leaf->CurrentIsLeaf() V.GetActualMemorySize() -> int C++: virtual unsigned int GetActualMemorySize() Return memory used in kibibytes (1024 bytes). NB: Ignore the attribute array because its size is added by the data set. V.SetGlobalIndexStart(int) C++: virtual void SetGlobalIndexStart(vtkIdType) Set the start global index for the current tree. The global index of a node will be this index + the node index. V.SetGlobalIndexFromLocal(int, int) C++: virtual void SetGlobalIndexFromLocal(vtkIdType local, vtkIdType global) Set the mapping between local & global Ids used by HyperTreeGrids. V.GetGlobalIndexFromLocal(int) -> int C++: virtual vtkIdType GetGlobalIndexFromLocal(vtkIdType local) Get the global id of a local node. Use the mapping function if available or the start global index. HHHDGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  EDPa AE @FDPf EK d xO|R<EY B W(EAD`j AAJ gFD@ EE H@{ E ED@{ AK @ED@{ AK dED@{ AK ED@{ AK ED@{ AK ED@{ AK ED@{ AK ED@{ AK <ED@{ AK ` EDP AA EDP AA EDP AA  EDP AA (7FAD` ABI 0FBA D  ABBE 0PFBA D  ABBE 0^FAA D`  AABH HFA0OFDD n ABA DDB8FBB A(Dp (A BBBK 0XFFBA D`  ABBG .]O` @0g+]p`P@ $0 Q    E q0 @7  6^Zs `F #((-72@7 <IAUF`KrQW]ciou{ -E]fj~ Qb"  ^" <+Ahw H & ; H pOb w      4 Z f y         _ZL27PyvtkHyperTree_SafeDownCastP7_objectS0__ZL29PyvtkHyperTree_CreateInstanceP7_objectS0__ZL23PyvtkHyperTree_GetScaleP7_objectS0__ZL31PyvtkHyperTree_GetScale_Methods_ZL23PyvtkHyperTree_IsTypeOfP7_objectS0__ZL26PyvtkHyperTree_NewInstanceP7_objectS0__ZL25PyvtkHyperTree_InitializeP7_objectS0__ZL32PyvtkHyperTree_GetNumberOfLevelsP7_objectS0__ZL34PyvtkHyperTree_GetNumberOfVerticesP7_objectS0__ZL31PyvtkHyperTree_GetNumberOfNodesP7_objectS0__ZL32PyvtkHyperTree_GetNumberOfLeavesP7_objectS0__ZL30PyvtkHyperTree_GetBranchFactorP7_objectS0__ZL27PyvtkHyperTree_GetDimensionP7_objectS0__ZL34PyvtkHyperTree_GetNumberOfChildrenP7_objectS0__ZL24PyvtkHyperTree_NewCursorP7_objectS0__ZL34PyvtkHyperTree_GetActualMemorySizeP7_objectS0__ZL34PyvtkHyperTree_SetGlobalIndexStartP7_objectS0__ZL28PyvtkHyperTree_SubdivideLeafP7_objectS0__ZL26PyvtkHyperTree_GetScale_s2P7_objectS0__ZL38PyvtkHyperTree_GetGlobalIndexFromLocalP7_objectS0__ZL38PyvtkHyperTree_SetGlobalIndexFromLocalP7_objectS0__ZL23PyvtkHyperTree_SetScaleP7_objectS0__ZL26PyvtkHyperTree_GetScale_s1P7_objectS0__ZL18PyvtkHyperTree_IsAP7_objectS0__ZL19PyvtkHyperTree_Type_ZL22PyvtkHyperTree_Methods_GLOBAL__sub_I_vtkHyperTreePython.cxx_ZL34PyvtkHyperTree_FindChildParametersP7_objectS0__ZL30PyvtkHyperTree_FindParentIndexP7_objectS0_.LC0.LC1.LC2.LC3.LC4.LC6.LC5.LC7.LC8.LC9.LC10.LC11.LC12.LC13.LC14.LC15.LC16.LC17.LC18.LC19.LC20.LC21.LC22.LC23.LC24.LC26.LC27.LC25_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZN13vtkPythonArgs8GetValueERj_ZN12vtkHyperTree14CreateInstanceEjjPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlag_ZNK12vtkHyperTree19NewInstanceInternalEv_ZN9vtkObject3NewEv_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN12vtkHyperTree3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__GLOBAL_OFFSET_TABLE__ZN13vtkPythonArgs16PureVirtualErrorEv_Py_NoneStructPyLong_FromLongLong_ZN13vtkPythonArgs8GetValueERxPyFloat_FromDouble_ZN13vtkPythonArgs8GetArrayEPdi_ZN13vtkPythonArgs8SetArrayEiPKdiPyvtkHyperTree_ClassNewPyVTKClass_AddPyvtkObject_ClassNewPyType_ReadyPyVTKAddFile_vtkHyperTreePyDict_SetItemString_Py_Dealloc_ZN13vtkPythonArgs8GetValueERi_ZN13vtkPythonArgs8GetValueERb_ZN12vtkHyperTree19FindChildParametersEiRxRb_ZN13vtkPythonArgs11SetArgValueEib_ZN13vtkPythonArgs11SetArgValueEix_ZN12vtkHyperTree15FindParentIndexERxPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del'PC}(D)EFEG*1CnHHIEFJKLG&/+4P],CT)R-REUS%GR.CV*MN)E$F8JHKeLtEG/ C)VGXZEf*YqG0CV/XMEZZaG1CVX=EJZQG2CVX-E:ZAGo3CVX E* Z1 G_ 4 C V X E U GO 5 C V X E U G? 6 C V X E Z G/ 7z C V X E F G 8j C V X E U G9dCVX[E*YG:tCVX;DE*YG?+CVXH E\#GO<CVX[E&Z0Ga=CVX[-[LE\*YjG>C!VEXf]E*YE^GC+CVX]jEz*YE^G?FCqVT*Q)R-REUSG)%2)9&A`G%OaY%^b_)d@@CqVf[gEEE*Yh.iFjMGAC V1[RE\El*YkjGOeN)R&-+R8SB%!l 0mXnopqrst8u@v@@ f(8 @HX `Ih0x 8U ` rp `` P h (@ 8 @H0 X P`h x ] 87 ( p~` xj  ( 8 @ HX `h x   xE@ 8-0  ( 8 Dh| @0 Dph`P@ 0   @ d  0@ T  p ! \`.symtab.strtab.shstrtab.rela.text.data.bss.rodata.str1.1.rela.text._ZNK12vtkHyperTree19NewInstanceInternalEv.rodata._ZN12vtkHyperTree3IsAEPKc.str1.1.rela.text._ZN12vtkHyperTree3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.groupU@ MUL Q `@0Zx&,12E @@ou2 <@ox 29@8p09@hp: @p  ;` @q0?,#,?30? KP?F@xxC( C O* H{\