ELF>@@0/&'UHPdH%(HD$H1HHt$ HD$(HFHD$4D$0t0H|$ 1HT$HdH+%(uuHP]@Hl$ Ht$HtHt$HtHt$HtD$Ht$H|$fH~HufHn{UHPdH%(HD$H1HHt$ HD$(HFHD$4D$0t0H|$ 1HT$HdH+%(uuHP]@Hl$ Ht$HtHt$HtHt$HtD$Ht$H|$fH~HufHn{AUATUHpdH%(HD$h1HHl$Ht$HD$HFH1HD$$D$ H|$0HcID$ +D$$Ll$0tPHE1H|$0HD$8H9t HtHD$hdH+%(u_HpL]A\A]DDLHtHt$HtHt$LHHuHIxHfAUATUS1HxdH%(HD$h1HHl$Ht$HD$HFHHD$$D$ H|$04AHcLl$0EtIcI\D$ +D$$tZHE1H|$0HtHD$8H9tHD$hdH+%(GHxL[]A\A]f.HHtDLHtHt$HtE~RIEH9AD$D1HAoDHH9uDAt ITHHT$H<$LIc1EBf.HH9t/H I9LtHuDLHHL%I$fD1ITHHH9uZHAUATUS1HxdH%(HD$h1HHl$Ht$HD$HFH1HD$$D$ H|$04AHcLl$0EtIcI\D$ +D$$tUHE1H|$0HD$8H9t HtHD$hdH+%(/HxL[]A\A]DDLHtHt$HtE~\IEH9AD$D1Hf.fAL HH9uDAt ADHt$LIc1E&HH9tADf.ztHtGHL%I$fDD1ADHH9uzDL1HHff.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fH8dH%(HD$(1HH4$HD$HFHD$D$t#H111HT$(dH+%(uH8Hu߿DH8dH%(HD$(1HH4$HD$HFHD$D$t#H111HT$(dH+%(uH8Hu߿DUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tHH=tHUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=HG(HtL$9L$t:H111HT$(dH+%(u7H0]fDHHuӐHHuHUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDHHuӐHHuHff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐEtHuHcHEHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(Ht\$9\$t:H111HT$(dH+%(uUH0[fDHHuӐt1HuHcfDHHH;tЉfSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fATUHHfnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uJHo(Ht!D$ +D$$tDH|$1HT$8dH+%(u|HH]A\fDHHuѐHt$ H|$tD$$E1uHEHH;uHuLf.t$ HIff.fAVAUATUHhfnFdH%(HD$X1HH4$HD$HGfnȉD$fbfD$ILo(1LH|$ HcIHl$ Mt(D$+D$LHl$ E1HtHD$(H9tHHD$XdH+%(HhL]A\A]A^HH\H1E1H|$ HcHl$ fDDHLmHLIHl$ HQLHl$ I?Hff.ATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H;H=tLH=u-HaHcVf.LLH=tLH=tLfDHЉfAVAUATUSHpfnFdH%(HD$h1HHt$HD$HGfnȉD$(fbfD$ Hl$Lw(1HH|$04AHcLl$0EulMD$ +D$$HH|$0E1HtHD$8H9tHD$hdH+%(HpL[]A\A]A^IcI\fDHH>H|$E1H|$04HcH|$0IsLE1hHt$HKDLH5E~YIEH9AD$D1Hf.AoTHH9uDAt ITHHt$LLE~(Ic1 HH9tH I9LtHt'H|$0E1HL%I${DLHfDD1ITHHH9ubHATL%H \HH5LuLHLA\ATIUHHtHH5LHu7HHtHH5LHmt$H]A\@HmuHHH]A\AWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$`4AHcLl$`EutMD$0+D$4HH|$`E1HtHD$hH9tH$dH+%(WHĨL[]A\A]A^A_IcI\fDHH6H|$ E1H|$`4HcH|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztHt'H|$`E1HL%I$DLHĐHL1HmLLLDD1ADHH9uHff.fAWAVAUATUSHfnFdH%(H$1HHt$ HD$(HGfnȉD$8fbfD$0Hl$ Lw(1HH|$`4AHcLl$`EutMD$0+D$4HH|$`E1HtHD$hH9tH$dH+%(WHĨL[]A\A]A^A_IcI\fDHH6H|$ E1H|$`4HcH|$`IkLE1`L|$@HL;DLH%\$Hd$@l$P\$d$l$E~XIEH9WAD$ID1HfDfATHH9uDAt ADËD$4ILLLxt$f.t$@|$f.|$H~|$f.|$PzpunE~,Ic1 fHH9tADf.ztHt'H|$`E1HL%I$DLHĐHL1HmLLLDD1ADHH9uHff.fAVAUATUSHPfnFdH%(HD$H1HHt$HD$HGfnЉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%(HP[]A\A]A^HHuƐLd$0Ll$LLt\$8d$@D$$L$0fH~fI~unHEL$HL`L$fH~f.L$0zeucfHnf.l$8zVuTfInf.t$@zGuEH,fHnHLL$L$fH~fHuL1Lff.fAVAUATUSHPfnFdH%(HD$H1HHt$HD$HGfnȉD$(fbfD$ uUHo(Ht!D$ +D$$tOH|$1HT$HdH+%( HP[]A\A]A^HHuƐLl$0Ld$LLtT$8\$@D$$D$0fH~fI~ޅufHED$HLXD$f.D$0z`u^fHnf.d$8zQuOfInf.l$@zBu@H/Hc$DHLD$D$DHuL1LDUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐuH(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuHH@ff.UH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uLHo(Ht!D$ +D$$tFH|$1HT$8dH+%(uuH@]f.HHuϐHt$ H|$tD$$t$ u)HEHHHuHDHHE11d_etaetaIndexBarycentricIndexComputeParametricCoordsSafeDownCastvtkObjectBasevtkLagrangeTriangleMaximumOrderMaximumNumberOfPointsIsTypeOfGetOrderComputeOrderGetCellTypeGetNumberOfFacesGetNumberOfEdgesRequiresInitializationGetCellDimensionGetFaceToIndexNewInstanceIsAToBarycentricIndexInterpolateDerivsInterpolateFunctionsGetParametricDistanceGetParametricCenterGetParametricCoordsp_voidDerivativesTriangulatevtkIdListvtkPointsIntersectWithLineClipvtkDataArrayvtkIncrementalPointLocatorvtkCellArrayvtkPointDatavtkCellDataContourEvaluateLocationEvaluatePositionCellBoundaryInitializeGetEdgeH|$0HtHD$8H9tHH|$0HD$8H9t HtHH|$0HD$8H9t HtHH|$ HD$(H9t HtHH|$0HD$8H9t HtHH|$`HtHD$hH9tHH|$`HtHD$hH9tHH$H$H9t HtH$HtH$H9tHH$H$H9t HtHH}HEH9t HtHPHXH9t HtH I} O Li+6r5z5z5{   Az 8 " 7vtkNonLinearCellvtkCellvtkObjectUH=Hu]ÐHH=tHH=tHH=tH]VTK_LAGRANGE_TRIANGLE_MAX_ORDERvtkLagrangeTriangle Superclass: vtkNonLinearCell See Also: vtkCommonDataModelPython.vtkLagrangeTriangleV.IsTypeOf(string) -> int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkLagrangeTriangle C++: static vtkLagrangeTriangle *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkLagrangeTriangle C++: vtkLagrangeTriangle *NewInstance() V.GetCellType() -> int C++: int GetCellType() override; Return the type of cell. V.GetCellDimension() -> int C++: int GetCellDimension() override; Return the topological dimensional of the cell (0,1,2, or 3). V.RequiresInitialization() -> int C++: int RequiresInitialization() override; Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; Return the number of edges in the cell. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; Return the number of faces in the cell. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; Return the edge cell from the edgeId of the cell. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; Return the face cell from the faceId of the cell. V.Initialize() C++: void Initialize() override; V.MaximumOrder() -> int C++: static int MaximumOrder() V.MaximumNumberOfPoints() -> int C++: static int MaximumNumberOfPoints() V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.) V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is nullptr, then no interpolation is performed. Also, if the output cell data is non-nullptr, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-nullptr, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.) V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition p1[3], p2[3] and tolerance tol. The method returns non-zero value if intersection occurs. A parametric distance t between 0 and 1 along the ray representing the intersection point, the point coordinates x[3] in data coordinates and also pcoords[3] in parametric coordinates. subId is the index within the cell if a composed cell like a triangle strip. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)). V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. V.ComputeParametricCoords([float, ...], int) C++: static void ComputeParametricCoords(double *, vtkIdType) V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return center of the cell in parametric coordinates. Note that the parametric center is not always located at (0.5,0.5,0.5). The return value is the subId that the center is in (if a composite cell). If you want the center in x-y-z space, invoke the EvaluateLocation() method. V.GetParametricDistance([float, float, float]) -> float C++: double GetParametricDistance(double pcoords[3]) override; Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.) V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double pcoords[3], double *weights) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. Typically overridden in subclasses. V.InterpolateDerivs([float, float, float], [float, ...]) C++: void InterpolateDerivs(double pcoords[3], double *derivs) override; V.GetOrder() -> int C++: vtkIdType GetOrder() V.ComputeOrder() -> int C++: vtkIdType ComputeOrder() V.ToBarycentricIndex(int, [int, ...]) C++: void ToBarycentricIndex(vtkIdType index, vtkIdType *bindex) V.ToIndex((int, ...)) -> int C++: vtkIdType ToIndex(const vtkIdType *bindex) V.BarycentricIndex(int, [int, ...], int) C++: static void BarycentricIndex(vtkIdType index, vtkIdType *bindex, vtkIdType order) V.Index((int, ...), int) -> int C++: static vtkIdType Index(const vtkIdType *bindex, vtkIdType order) V.eta(int, int, float) -> float C++: static double eta(vtkIdType n, vtkIdType chi, double sigma) V.d_eta(int, int, float) -> float C++: static double d_eta(vtkIdType n, vtkIdType chi, double sigma) HHHDGCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D X l  ED`a AE ED`a AE zPLRx 4$FBA D  DBBF \!<| FBA A(F (D ABBK !<FBA A(F (D ABBF ! <EDPa AE `{H@W A |{H@W A bEY B }(EAD`n AAF ED@ AG ED@ AG ,ED@ AG PED@ AG tED@ AG ED@ AG ED@ AG (FAD` ABG < FBB A(D (D BBBD L! lgFD@ EE 0FAA D`  AABH DFBB A(A0D 0D(A BBBA !0MFF0LFDD R ABE \DBLcFBB B(A0A8G 8D0A(B BBBA !LcFBB B(A0A8G 8D0A(B BBBA X!@|FBB A(A0D 0A(A BBBI @FBB A(A0D 0A(A BBBI ED@ AG P(FBB B(A0D8Gq 8D0A(B BBBJ |F8tFBB A(Dp (A BBBG l$FBB B(A0A8G 8A0A(B BBBD GUArJTAtLFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAILLFBB B(A0A8G 8D0A(B BBBE '@DEC P G e...R.  < @( FBB A(A0D 0A(A BBBI l H@ I EDP AK   ' T  !  !!S B!   {> {{     B z p  ` P( @W `c! g ` R!"$ pc:!x c! P 2 "m # $F )tF p+$ 0 `36 6 -'O  `;D T<  B  D*  pE "$Y ^ c  h m !r 9w F| T h u                   3 E Z p    $ * 0 6 < B H  N T $Z 0` 8f Il Zr gx r~  " " " " 9 "f "  "   < _ n    !&  7[ o~5k"b$+Kk 5Iz M EzL}>F|7CVgz_ZL31PyvtkLagrangeTriangle_StaticNewv_ZL27PyvtkLagrangeTriangle_d_etaP7_objectS0__ZL25PyvtkLagrangeTriangle_etaP7_objectS0__ZL27PyvtkLagrangeTriangle_IndexP7_objectS0__ZL27PyvtkLagrangeTriangle_IndexP7_objectS0_.cold_ZL38PyvtkLagrangeTriangle_BarycentricIndexP7_objectS0__ZL38PyvtkLagrangeTriangle_BarycentricIndexP7_objectS0_.cold_ZL45PyvtkLagrangeTriangle_ComputeParametricCoordsP7_objectS0__ZL45PyvtkLagrangeTriangle_ComputeParametricCoordsP7_objectS0_.cold_ZL34PyvtkLagrangeTriangle_SafeDownCastP7_objectS0__ZL34PyvtkLagrangeTriangle_MaximumOrderP7_objectS0__ZL43PyvtkLagrangeTriangle_MaximumNumberOfPointsP7_objectS0__ZL30PyvtkLagrangeTriangle_IsTypeOfP7_objectS0__ZL30PyvtkLagrangeTriangle_GetOrderP7_objectS0__ZL34PyvtkLagrangeTriangle_ComputeOrderP7_objectS0__ZL33PyvtkLagrangeTriangle_GetCellTypeP7_objectS0__ZL38PyvtkLagrangeTriangle_GetNumberOfFacesP7_objectS0__ZL38PyvtkLagrangeTriangle_GetNumberOfEdgesP7_objectS0__ZL44PyvtkLagrangeTriangle_RequiresInitializationP7_objectS0__ZL38PyvtkLagrangeTriangle_GetCellDimensionP7_objectS0__ZL29PyvtkLagrangeTriangle_GetFaceP7_objectS0__ZL29PyvtkLagrangeTriangle_ToIndexP7_objectS0__ZL29PyvtkLagrangeTriangle_ToIndexP7_objectS0_.cold_ZL33PyvtkLagrangeTriangle_NewInstanceP7_objectS0__ZL25PyvtkLagrangeTriangle_IsAP7_objectS0__ZL40PyvtkLagrangeTriangle_ToBarycentricIndexP7_objectS0__ZL40PyvtkLagrangeTriangle_ToBarycentricIndexP7_objectS0_.cold_ZL26PyvtkLagrangeTriangle_Type_ZL29PyvtkLagrangeTriangle_Methods_GLOBAL__sub_I_vtkLagrangeTrianglePython.cxx_ZL39PyvtkLagrangeTriangle_InterpolateDerivsP7_objectS0__ZL39PyvtkLagrangeTriangle_InterpolateDerivsP7_objectS0_.cold_ZL42PyvtkLagrangeTriangle_InterpolateFunctionsP7_objectS0__ZL42PyvtkLagrangeTriangle_InterpolateFunctionsP7_objectS0_.cold_ZL43PyvtkLagrangeTriangle_GetParametricDistanceP7_objectS0__ZL41PyvtkLagrangeTriangle_GetParametricCenterP7_objectS0__ZL41PyvtkLagrangeTriangle_GetParametricCoordsP7_objectS0__ZL33PyvtkLagrangeTriangle_DerivativesP7_objectS0__ZL33PyvtkLagrangeTriangle_DerivativesP7_objectS0_.cold_ZL33PyvtkLagrangeTriangle_TriangulateP7_objectS0__ZL39PyvtkLagrangeTriangle_IntersectWithLineP7_objectS0__ZL26PyvtkLagrangeTriangle_ClipP7_objectS0__ZL29PyvtkLagrangeTriangle_ContourP7_objectS0__ZL38PyvtkLagrangeTriangle_EvaluateLocationP7_objectS0__ZL38PyvtkLagrangeTriangle_EvaluateLocationP7_objectS0_.cold_ZL38PyvtkLagrangeTriangle_EvaluatePositionP7_objectS0__ZL38PyvtkLagrangeTriangle_EvaluatePositionP7_objectS0_.cold_ZL34PyvtkLagrangeTriangle_CellBoundaryP7_objectS0__ZL32PyvtkLagrangeTriangle_InitializeP7_objectS0__ZL29PyvtkLagrangeTriangle_GetEdgeP7_objectS0_.LC0.LC1.LC2.LC4.LC6.LC8.LC9.LC10.LC11.LC12.LC16.LC13.LC14.LC15.LC17.LC18.LC19.LC20.LC21.LC22.LC23.LC24.LC25.LC27.LC28.LC29.LC31.LC33.LC35.LC37.LC38.LC39.LC40.LC41.LC43.LC44.LC45.LC46.LC47.LC48.LC49.LC50.LC51.LC52.LC53.LC54.LC56.LC58.LC59.LC60.LC32_ZN19vtkLagrangeTriangle11GetCellTypeEv_ZN19vtkLagrangeTriangle16GetCellDimensionEv_ZN19vtkLagrangeTriangle22RequiresInitializationEv_ZN19vtkLagrangeTriangle16GetNumberOfEdgesEv_ZN19vtkLagrangeTriangle16GetNumberOfFacesEv_ZN19vtkLagrangeTriangle7GetFaceEi_ZN19vtkLagrangeTriangle3NewEv_ZNK19vtkLagrangeTriangle19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs8GetValueERx_ZN13vtkPythonArgs8GetValueERd_ZN19vtkLagrangeTriangle5d_etaExxdPyErr_OccurredPyFloat_FromDouble__stack_chk_fail_ZN19vtkLagrangeTriangle3etaExxdDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIxEC1El_ZdaPv_ZN13vtkPythonArgs8GetArrayEPxi_ZN19vtkLagrangeTriangle5IndexEPKxxPyLong_FromLongLong_Unwind_Resume_ZN19vtkLagrangeTriangle16BarycentricIndexExPxx_ZN13vtkPythonArgs8SetArrayEiPKxi_GLOBAL_OFFSET_TABLE__Py_NoneStruct_ZN13vtkPythonArgs5ArrayIdEC1El_ZN13vtkPythonArgs8GetArrayEPdi_ZN19vtkLagrangeTriangle23ComputeParametricCoordsEPdx_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBasePyLong_FromLong_ZN19vtkLagrangeTriangle3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPc_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN19vtkLagrangeTriangle12ComputeOrderEv_ZN13vtkPythonArgs8GetValueERi_ZN19vtkLagrangeTriangle7ToIndexEPKxPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlag_ZN19vtkLagrangeTriangle18ToBarycentricIndexExPxPyvtkLagrangeTriangle_ClassNewPyVTKClass_AddPyvtkNonLinearCell_ClassNewPyType_ReadyPyVTKAddFile_vtkLagrangeTrianglePyDict_SetItemString_Py_Dealloc_ZN19vtkLagrangeTriangle17InterpolateDerivsEPdS0__ZN19vtkLagrangeTriangle20InterpolateFunctionsEPdS0__ZN19vtkLagrangeTriangle21GetParametricDistanceEPd_ZN19vtkLagrangeTriangle19GetParametricCenterEPd_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromString_ZN19vtkLagrangeTriangle19GetParametricCoordsEv_ZN19vtkLagrangeTriangle11DerivativesEiPdS0_iS0__ZN19vtkLagrangeTriangle11TriangulateEiP9vtkIdListP9vtkPoints_ZN19vtkLagrangeTriangle17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs11SetArgValueEii_ZN19vtkLagrangeTriangle4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN19vtkLagrangeTriangle7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN19vtkLagrangeTriangle16EvaluateLocationERiPdS1_S1__ZN19vtkLagrangeTriangle16EvaluatePositionEPdS0_RiS0_RdS0__ZN19vtkLagrangeTriangle12CellBoundaryEiPdP9vtkIdList_ZN19vtkLagrangeTriangle10InitializeEv_ZN19vtkLagrangeTriangle7GetEdgeEiPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del,D` E@nF*NjG@Sf*3H]pu*<IpJKLEapwM NZ   K  O    P  Q   1 R~      S> a q y    T 1 J W r *w  U ! 7 D ] *{j  V 'B*zOW 2*y?qX"*x/cY*|#0OZ&Qjw[_*~}K%4S\+N*[K`nOs|PQ]cv1Yo /*LxBKCBBK )^1S_4P$<*Ya|`[n1aw* 3 x a !&!!!!!!!8"b"""Y#j######c.$Q$q$$d$$$$*$%eL%b%%%%&7&q&&&&&&((((*)!)A))))*ft***g**h*+$+1+W+`++i,A,l,,,,,,-.a/o//////0000:0U0p0000j'1^1n1ky11l11m11n112o212A2ot222 3*!3O3Z33p3.4>4kN4g4lo44m4444n5(5Q5os555o5*6:6*Q6666q717j77778<8]888|9R:`:{:*:::::,;D;N;;r; <><P<<<<=J=`=====@ @@@@@A;AXAwAAABfB~BBBs1CaC~CCCgC0DADWDfDDDDtD!E>EJE*YE`EEuEF+FPF]FlFvF} >_k? ))Z;)BgBP}6>W_x!)HPgK&O+9P>LQQ^vB,+`0X8@  +  (`8+@ 9H X+` hx+  +` P+ `+@ p +   +  r(pE8+@ H@X+` ghDx+ h+0 u+p ZB+ I`;+  86+  0(`38+@ H0X+` hp+x+ )+ $+ #+H" !+X$ p"+$  Z(P 8+P&@ EHX+'` 3hpx+)  +)  +) +* `+p* +*  (8+H+@ HX++` hx+ , 4H\p (1`i!%- B)<@ d   0 T xp `P@`DPcY]p`e4P,p \eP "#,$5)p+P0`3P 6Y  -   `;  T 6, Bp D pE.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN19vtkLagrangeTriangle11GetCellTypeEv.text._ZN19vtkLagrangeTriangle16GetCellDimensionEv.text._ZN19vtkLagrangeTriangle22RequiresInitializationEv.text._ZN19vtkLagrangeTriangle16GetNumberOfEdgesEv.text._ZN19vtkLagrangeTriangle16GetNumberOfFacesEv.text._ZN19vtkLagrangeTriangle7GetFaceEi.rela.text._ZNK19vtkLagrangeTriangle19NewInstanceInternalEv.rodata.str1.1.rela.text.unlikely.gcc_except_table.rodata._ZN19vtkLagrangeTriangle3IsAEPKc.str1.1.rela.text._ZN19vtkLagrangeTriangle3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@-wH-xP-yX-z`-{h-|p -~| - - zF@ .- &G,G1 G _0G @G PG `G1pG_G Z@-2GzJ@-K>2L#Mb@-'2hM,;y6@0-NzI@- _ z Z@ -"n{ i@ -$`~@0-&0h,  @Hh-+` .w