ELF>+@@54 +,AWAVAUATUSHdH%(H$1HHt$PHD$XHFHD$dD$`tAH|$P1H$dH+%(Hĸ[]A\A]A^A_fLd$HHl$PL-LHL|$HItLLH|$HItLHtLl$pHLfL$HLFf(L$pLLL$D$HL$fL$($$)L$|$8T$ \$d$0f(L$f.L$pzu}t$(f.t$xzoum|$8f.$z\uZl$f.$zquoD$ f.$z^u\t$0f.$zKuIHfHc[fDHuLHHuLHfUHAWAVAUATS1HdH%(HE1HHHHFHDžHHHxHP4AHcLPEtIcIHx4H}AHcHDžpL}EtIcIHp+ttHxE1H}HEH9t HtHPHtHXH9tHEdH+%(HeL[A\A]A^A_]fHxHtHxDLqHHxHHhGHxH,HxDLHHxHH`HxHHHxHHXE~eIFH9^AD$PDHx1HfA  HH9uDHxAt Afofofo) )0)@E~mAEHpIGH9DHx1HffAHH9uDHxAtAHpHXML(HL`8Hh0P@$HxX1ZIcE7fDHH9Af.ztHxH f.(f.0f.8f.{@f.e_f.HICIc1E~FHpHxDHH9 Af.ztHxHHf. (f.8f.Pf.zLuJ0f.z8u6@f.z$u"HHc$I HuHXHxHx!Hx HHhHxH#H`HxHpHxD1AHH9uHxHxD1AHH9uHxHxDL5HxDLHHAWAVAUATUS1HXdH%(H$H1HHl$PHt$PHD$XHFHHD$dD$`H$4AHcL$EtIcI\D$`+D$dtjHE1H$H$H9t HtH$HdH+%(HXL[]A\A]A^A_f.Lt$pHLtHt$LHzDLHdL$HLDH$HHH$ T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0l$f.l$pD$8t$f.t$x|$f.$Ic1E (HH9tADf.ztH$f.$ $f.$$f.$$f.$$f.$$f.$z~u||$ f.$zIuGt$(f.$z6u4T$0f.$z#u!HD$8IHuH$HHvLH\HnL1HWD1ADHH9ujDLHMHDAWAVAUATUS1HXdH%(H$H1HHl$PHt$PHD$XHFHHD$dD$`H$4AHcL$EtIcI\D$`+D$dtjHE1H$H$H9t HtH$HdH+%(HXL[]A\A]A^A_f.Lt$pHLtHt$LHzDLHdL$HLDH$HHH$ T$x\$p$T$\$d$E~XAD$IEH9D1HfDfAL HH9uDAt ADfo$L$LLfo$t$LLfo$$)$$)$$)$T$(\$ d$0l$f.l$pD$<t$f.t$x|$f.$Ic1E*HH9tADf.ztH$f.$ $f.$$f.$$f.$$f.$$f.$z}u{|$ f.$zHuFt$(f.$z5u3T$0f.$z"u HHc|$<IHuH$HHwLH]HmL1HVD1ADHH9urDLHUHff.fAWAVAUATUS1HdH%(H$1HHl$ Ht$ HD$(HFHHD$4D$0H|$`4AHcLl$`EtIcI\D$0+D$4t`HE1H|$`HtHD$hH9tH$dH+%(HĨL[]A\A]A^A_fDHt$HtDLHtLt$@HLrE~WIEH9>AD$0D1HDfAL HH9uDAt ADT$H|$LL\$@d$P$fI~d$Ic1EGHH9t7ADf.ztHuDLHf.fInf.l$@z@u>4$f.t$Hz1u/|$f.|$Pz!uHVL%I$HHu׹LHfD1ADHH9uHff.fAVAUATUHxdH%(HD$h1HHt$0HD$8HFHD$DD$@t:H|$01HT$hdH+%(Hx]A\A]A^@Ld$/Ll$0LH5L|$/HtLH5L|$/ItLt$PLL{f(D$PLLHT$`fD$)$T$f($f.D$PzJuHL$f.L$Xz:u8T$f.T$`z*u(HHHf.HuιLLf.UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fAWAVAUATUSHdH%(H$HF4HHl$0Ht$01HD$8HHD$HHD$@H|$p4AHcLl$pED$@+D$DH1H|$pHtHT$xH9tH$H$@H$dH+%(vHĸ[]A\A]A^A_Ll$,Hl$0Ht$0HLH5HHD$8HD$HHD$@|$,I1zf.H51[IcI\D$@+D$DHT$+H5H|$+IHt$,HDLHL|$PHLE~YIEH9AD$D1Hf.Ao\HH9uDAt ITHd$Xt$,LLl$Pt$`Ld$,$t$AIc1E%HH9tH I9LtH<$f.|$P.(|$f.|$Xd$f.d$`HALH5H|$,ILl$pHLf(D$pLLLH$fD$)$f($f.D$pAzEuCL$f.L$xz5u3fHnf.$z#u!HADHuչLHHLHD1ITHHH9uDLHeHfAVAUATUSHĀdH%(HD$xHF]AHt$ HT$HHD$(HH|$ H5D$8HD$0|$tHHp1HT$xdH+%(qH[]A\A]A^DOHHl$ Ht$ 1HD$(HHD$8HD$0H|$@4AHcLl$@EtIcI\D$0+D$4`H1H|$@H@HT$HH92HD$HD$@Ll$Hl$ Ht$ HLH5HHD$(HD$8HD$0|$IH5LH|$HLH@H5Dl@HHt$ HD$(HGD$0D$4D$8@H(H#HxfHT$H5H|$IHt$H{DLHeE~WIEH9AD$D1HAoDHH9uDAt ITHËt$LLAIc1E+fHH9tH I9LtH}HAfHHx(HD$49D$0H|$ 111D1DITHHH9u:DLHkHAWAVAUATUSHdH%(H$HF4t?H51H$dH+%(Hĸ[]A\A]A^A_fDHl$0Ht$0HHD$8HHT$,HH5D$HHD$@|$,ItLl$pHLjf(D$pLLH$fD$)$f($f.D$pT$f.T$xfHnf.$HHHHHl$0Ht$01HD$8HHD$HHD$@H|$p4AHcLl$pEtIcI\D$@+D$DH1H|$pHPHT$xH9BH$H$0H$dH+%( HĸHH[H=]A\A]A^A_fDHT$+H5H|$+IgHt$,HRDLH int C++: static vtkTypeBool IsTypeOf(const char *type) Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. V.SafeDownCast(vtkObjectBase) -> vtkPolygon C++: static vtkPolygon *SafeDownCast(vtkObjectBase *o) V.NewInstance() -> vtkPolygon C++: vtkPolygon *NewInstance() V.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. V.GetCellDimension() -> int C++: int GetCellDimension() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; See the vtkCell API for descriptions of these methods. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; See the vtkCell API for descriptions of these methods. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int edgeId) override; See the vtkCell API for descriptions of these methods. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int) override; See the vtkCell API for descriptions of these methods. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; See the vtkCell API for descriptions of these methods. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; See the vtkCell API for descriptions of these methods. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tris, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; See the vtkCell API for descriptions of these methods. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; See the vtkCell API for descriptions of these methods. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; See the vtkCell API for descriptions of these methods. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; See the vtkCell API for descriptions of these methods. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; V.Triangulate(vtkIdList) -> int C++: int Triangulate(vtkIdList *outTris) See the vtkCell API for descriptions of these methods. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; See the vtkCell API for descriptions of these methods. V.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; See the vtkCell API for descriptions of these methods. V.ComputeArea() -> float C++: double ComputeArea() V.ComputeArea(vtkPoints, int, [int, ...], [float, float, float]) -> float C++: static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts, double normal[3]) Compute the area of a polygon. This is a convenience function which simply calls static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts, double normal[3]); with the appropriate parameters from the instantiated vtkPolygon. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double x[3], double *sf) override; Compute the interpolation functions/derivatives. (aka shape functions/derivatives) Two interpolation algorithms are available: 1/r^2 and Mean Value Coordinate. The former is used by default. To use the second algorithm, set UseMVCInterpolation to be true. The function assumes the input point lies on the polygon plane without checking that. V.ComputeNormal(vtkPoints, int, [int, ...], [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]) V.ComputeNormal(vtkPoints, [float, float, float]) C++: static void ComputeNormal(vtkPoints *p, double n[3]) V.ComputeNormal(vtkIdTypeArray, vtkPoints, [float, float, float]) C++: static void ComputeNormal(vtkIdTypeArray *ids, vtkPoints *pts, double n[3]) V.ComputeNormal(int, [float, ...], [float, float, float]) C++: static void ComputeNormal(int numPts, double *pts, double n[3]) Computes the unit normal to the polygon. If pts=nullptr, point indexing is assummed to be {0, 1, ..., numPts-1}. V.IsConvex() -> bool C++: bool IsConvex() V.IsConvex(vtkPoints, int, [int, ...]) -> bool C++: static bool IsConvex(vtkPoints *p, int numPts, vtkIdType *pts) V.IsConvex(vtkIdTypeArray, vtkPoints) -> bool C++: static bool IsConvex(vtkIdTypeArray *ids, vtkPoints *p) V.IsConvex(vtkPoints) -> bool C++: static bool IsConvex(vtkPoints *p) Determine whether or not a polygon is convex. This is a convenience function that simply calls static bool IsConvex(int numPts, vtkIdType *pts, vtkPoints *p) with the appropriate parameters from the instantiated vtkPolygon. V.ComputeCentroid(vtkPoints, int, [int, ...], [float, float, float]) -> bool C++: static bool ComputeCentroid(vtkPoints *p, int numPts, vtkIdType *pts, double centroid[3]) V.ComputeCentroid(vtkIdTypeArray, vtkPoints, [float, float, float]) -> bool C++: static bool ComputeCentroid(vtkIdTypeArray *ids, vtkPoints *pts, double centroid[3]) Compute the centroid of a set of points. Returns false if the computation is invalid (this occurs when numPts=0 or when ids is empty). V.ParameterizePolygon([float, float, float], [float, float, float], float, [float, float, float], float, [float, float, float]) -> int C++: int ParameterizePolygon(double p0[3], double p10[3], double &l10, double p20[3], double &l20, double n[3]) Create a local s-t coordinate system for a polygon. The point p0 is the origin of the local system, p10 is s-axis vector, and p20 is the t-axis vector. (These are expressed in the modeling coordinate system and are vectors of dimension [3].) The values l20 and l20 are the lengths of the vectors p10 and p20, and n is the polygon normal. V.PointInPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> int C++: static int PointInPolygon(double x[3], int numPts, double *pts, double bounds[6], double n[3]) Determine whether point is inside polygon. Function uses ray-casting to determine if point is inside polygon. Works for arbitrary polygon shape (e.g., non-convex). Returns 0 if point is not in polygon; 1 if it is. Can also return -1 to indicate degenerate polygon. V.NonDegenerateTriangulate(vtkIdList) -> int C++: int NonDegenerateTriangulate(vtkIdList *outTris) Same as Triangulate(vtkIdList *outTris) but with a first pass to split the polygon into non-degenerate polygons. V.BoundedTriangulate(vtkIdList, float) -> int C++: int BoundedTriangulate(vtkIdList *outTris, double tol) Triangulate polygon and enforce that the ratio of the smallest triangle area to the polygon area is greater than a user-defined tolerance. The user must provide the vtkIdList outTris. On output, the outTris list contains the ids of the points defining the triangulation. The ids are ordered into groups of three: each three-group defines one triangle. V.DistanceToPolygon([float, float, float], int, [float, ...], [float, float, float, float, float, float], [float, float, float]) -> float C++: static double DistanceToPolygon(double x[3], int numPts, double *pts, double bounds[6], double closest[3]) Compute the distance of a point to a polygon. The closest point on the polygon is also returned. The bounds should be provided to accelerate the computation. V.IntersectPolygonWithPolygon(int, [float, ...], [float, float, float, float, float, float], int, [float, ...], [float, float, float], float, [float, float, float]) -> int C++: static int IntersectPolygonWithPolygon(int npts, double *pts, double bounds[6], int npts2, double *pts2, double bounds2[3], double tol, double x[3]) Method intersects two polygons. You must supply the number of points and point coordinates (npts, *pts) and the bounding box (bounds) of the two polygons. Also supply a tolerance squared for controlling error. The method returns 1 if there is an intersection, and 0 if not. A single point of intersection x[3] is also returned if there is an intersection. V.IntersectConvex2DCells(vtkCell, vtkCell, float, [float, float, float], [float, float, float]) -> int C++: static int IntersectConvex2DCells(vtkCell *cell1, vtkCell *cell2, double tol, double p0[3], double p1[3]) Intersect two convex 2D polygons to produce a line segment as output. The return status of the methods indicated no intersection (returns 0); a single point of intersection (returns 1); or a line segment (i.e., two points of intersection, returns 2). The points of intersection are returned in the arrays p0 and p1. If less than two points of intersection are generated then p1 and/or p0 may be indeterminiate. Finally, if the two convex polygons are parallel, then "0" is returned (i.e., no intersection) even if the triangles lie on one another. V.GetUseMVCInterpolation() -> bool C++: virtual bool GetUseMVCInterpolation() Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to false by default. V.SetUseMVCInterpolation(bool) C++: virtual void SetUseMVCInterpolation(bool _arg) Set/Get the flag indicating whether to use Mean Value Coordinate for the interpolation. If true, InterpolateFunctions() uses the Mean Value Coordinate to compute weights. Otherwise, the conventional 1/r^2 method is used. The UseMVCInterpolation parameter is set to false by default. VVP *vtkIdTypeArray *vtkPoints *dHHHD!!GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx  0 D Xl !  H^FBB B(A0A8Gn 8A0A(B BBBC zPLRx 8$PEC IL C .I. `< LFBB B(A0A8I 8D0A(B BBBK 'LFBB B(A0A8I 8D0A(B BBBK H'LlFBB B(A0A8I 8D0A(B BBBG !8 FBB A(De (A BBBE HEDPa AE L@~FBB B(A0A8G 8A0A(B BBBH !D8FBB A(A0D 0A(A BBBF !h pFBB B(A0A8GZ 8A0A(B BBBG  8G0H(B BBBK !OEY B j(EAD`n AAF (ED@ AG LED@ AG pED@ AG ED@ AG ED@ AG ED@ AG (FAD` ABG ,EDP AK 8P(FBB A(Dp (A BBBK LEDP AB 0nFAA D`  AABH gFD@ EE \FBB B(A0A8G 8A0A(B BBBD IAL<FBB B(A0A8GP 8A0A(B BBBA !MFF0OFDD n ABA DDB,LcFBB B(A0A8G 8D0A(B BBBA d!PFBB B(A0D8Gq 8D0A(B BBBJ F8, gFDB A(Dp (A BBBH lh $FBB B(A0A8G 8A0A(B BBBD GUArJTALFBB B(A0A8G 8D0A(B BBBE '@ DEC P G e...R. d < t FBB B(A0A8D 8A0A(B BBBA HDAKEKAAI, 6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI@ FBB A(A0D 0A(A BBBI EDP AK    ^S pP< <'1 ^c' `! " M ~{! 8! P!p-(@`U! % & ' (5 )a `* @+ , @-" @.(S p/L 0n 02g 3 P80!_&v(@!"" <c/! `@IPFx Eg G$ M'5 QDd< 0Y [6 0_  a &(2 7 < A ;F MK \P jV y\ b h n t *z *  * *         / 7 P Z m           " ( '. B4 O: \@ hF pL }R !X " w " " " " " " H "!r  "    @ {     !+  * 1 P      4JY8jz7RzJ"Obi/AWk0 P<MFUhu <O+` 9S_r_ZL22PyvtkPolygon_StaticNewv_ZL35PyvtkPolygon_IntersectConvex2DCellsP7_objectS0__ZL40PyvtkPolygon_IntersectPolygonWithPolygonP7_objectS0__ZL40PyvtkPolygon_IntersectPolygonWithPolygonP7_objectS0_.cold_ZL30PyvtkPolygon_DistanceToPolygonP7_objectS0__ZL30PyvtkPolygon_DistanceToPolygonP7_objectS0_.cold_ZL27PyvtkPolygon_PointInPolygonP7_objectS0__ZL27PyvtkPolygon_PointInPolygonP7_objectS0_.cold_ZL29PyvtkPolygon_ComputeNormal_s4P7_objectS0__ZL29PyvtkPolygon_ComputeNormal_s4P7_objectS0_.cold_ZL29PyvtkPolygon_ComputeNormal_s3P7_objectS0__ZL25PyvtkPolygon_SafeDownCastP7_objectS0__ZL28PyvtkPolygon_ComputeCentroidP7_objectS0__ZL28PyvtkPolygon_ComputeCentroidP7_objectS0_.cold_ZL21PyvtkPolygon_IsConvexP7_objectS0__ZL21PyvtkPolygon_IsConvexP7_objectS0_.cold_ZL26PyvtkPolygon_ComputeNormalP7_objectS0__ZL34PyvtkPolygon_ComputeNormal_Methods_ZL26PyvtkPolygon_ComputeNormalP7_objectS0_.cold_ZL21PyvtkPolygon_IsTypeOfP7_objectS0__ZL29PyvtkPolygon_GetCellDimensionP7_objectS0__ZL24PyvtkPolygon_GetCellTypeP7_objectS0__ZL29PyvtkPolygon_GetNumberOfFacesP7_objectS0__ZL26PyvtkPolygon_IsPrimaryCellP7_objectS0__ZL35PyvtkPolygon_GetUseMVCInterpolationP7_objectS0__ZL29PyvtkPolygon_GetNumberOfEdgesP7_objectS0__ZL20PyvtkPolygon_GetFaceP7_objectS0__ZL37PyvtkPolygon_NonDegenerateTriangulateP7_objectS0__ZL31PyvtkPolygon_BoundedTriangulateP7_objectS0__ZL35PyvtkPolygon_SetUseMVCInterpolationP7_objectS0__ZL16PyvtkPolygon_IsAP7_objectS0__ZL24PyvtkPolygon_NewInstanceP7_objectS0__ZL32PyvtkPolygon_ParameterizePolygonP7_objectS0__ZL24PyvtkPolygon_ComputeAreaP7_objectS0__ZL24PyvtkPolygon_ComputeAreaP7_objectS0_.cold_ZL17PyvtkPolygon_Type_ZL20PyvtkPolygon_Methods_GLOBAL__sub_I_vtkPolygonPython.cxx_ZL33PyvtkPolygon_InterpolateFunctionsP7_objectS0__ZL33PyvtkPolygon_InterpolateFunctionsP7_objectS0_.cold_ZL24PyvtkPolygon_DerivativesP7_objectS0__ZL24PyvtkPolygon_DerivativesP7_objectS0_.cold_ZL24PyvtkPolygon_TriangulateP7_objectS0__ZL30PyvtkPolygon_IntersectWithLineP7_objectS0__ZL29PyvtkPolygon_EvaluateLocationP7_objectS0__ZL29PyvtkPolygon_EvaluateLocationP7_objectS0_.cold_ZL29PyvtkPolygon_EvaluatePositionP7_objectS0__ZL29PyvtkPolygon_EvaluatePositionP7_objectS0_.cold_ZL17PyvtkPolygon_ClipP7_objectS0__ZL20PyvtkPolygon_ContourP7_objectS0__ZL25PyvtkPolygon_CellBoundaryP7_objectS0__ZL20PyvtkPolygon_GetEdgeP7_objectS0_.LC0.LC1.LC2.LC4.LC6.LC8.LC10.LC11.LC12.LC13.LC14.LC15.LC16.LC17.LC19.LC21.LC20.LC25.LC24.LC26.LC27.LC28.LC29.LC30.LC31.LC32.LC33.LC34.LC35.LC36.LC37.LC38.LC39.LC40.LC43.LC45.LC47.LC48.LC49.LC51.LC53.LC54.LC55.LC56.LC57.LC58.LC59.LC60.LC61.LC42_ZN10vtkPolygon11GetCellTypeEv_ZN10vtkPolygon16GetCellDimensionEv_ZN10vtkPolygon16GetNumberOfEdgesEv_ZN10vtkPolygon16GetNumberOfFacesEv_ZN10vtkPolygon7GetFaceEi_ZN10vtkPolygon13IsPrimaryCellEv_ZN10vtkPolygon22GetUseMVCInterpolationEv_ZN10vtkPolygon22SetUseMVCInterpolationEb_ZN10vtkPolygon3NewEv_ZNK10vtkPolygon19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRb_ZN13vtkPythonArgs8GetValueERd_ZN13vtkPythonArgs8GetArrayEPdi_ZN10vtkPolygon22IntersectConvex2DCellsEP7vtkCellS1_dPdS2_PyErr_OccurredPyLong_FromLong_ZN13vtkPythonArgs8SetArrayEiPKdi__stack_chk_failDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIdEC1El_ZdaPv_ZN13vtkPythonArgs8GetValueERi_ZN10vtkPolygon27IntersectPolygonWithPolygonEiPdS0_iS0_S0_dS0__Unwind_Resume_ZN10vtkPolygon17DistanceToPolygonEPdiS0_S0_S0_PyFloat_FromDouble_ZN10vtkPolygon14PointInPolygonEPdiS0_S0_S0__ZN10vtkPolygon13ComputeNormalEiPdS0__GLOBAL_OFFSET_TABLE__Py_NoneStruct_ZN10vtkPolygon13ComputeNormalEP14vtkIdTypeArrayP9vtkPointsPd_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase_ZN13vtkPythonArgs5ArrayIxEC1El_ZN13vtkPythonArgs13ArgCountErrorEiPKc_ZN13vtkPythonArgs8GetArrayEPxi_ZN10vtkPolygon15ComputeCentroidEP9vtkPointsiPxPdPyBool_FromLong_ZN10vtkPolygon15ComputeCentroidEP14vtkIdTypeArrayP9vtkPointsPd_ZN13vtkPythonArgs8SetArrayEiPKxi_ZN10vtkPolygon8IsConvexEP9vtkPoints_ZN10vtkPolygon8IsConvexEP14vtkIdTypeArrayP9vtkPoints_ZN10vtkPolygon8IsConvexEv_ZN10vtkPolygon8IsConvexEP9vtkPointsiPx_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN10vtkPolygon13ComputeNormalEP9vtkPointsPd_ZN17vtkPythonOverload10CallMethodEP11PyMethodDefP7_objectS3__ZN10vtkPolygon13ComputeNormalEP9vtkPointsiPxPd_ZN10vtkPolygon3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPc_ZN10vtkPolygon24NonDegenerateTriangulateEP9vtkIdList_ZN10vtkPolygon18BoundedTriangulateEP9vtkIdListd_ZN13vtkPythonArgs8GetValueERbPyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlag_ZN10vtkPolygon19ParameterizePolygonEPdS0_RdS0_S1_S0__ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs8GetValueERx_ZN10vtkPolygon11ComputeAreaEP9vtkPointsxPxPd_ZN10vtkPolygon11ComputeAreaEvPyvtkPolygon_ClassNewPyVTKClass_AddPyvtkCell_ClassNewPyType_ReadyPyVTKAddFile_vtkPolygonPyDict_SetItemString_Py_Dealloc_ZN10vtkPolygon20InterpolateFunctionsEPdS0__ZN10vtkPolygon11DerivativesEiPdS0_iS0__ZN10vtkPolygon11TriangulateEP9vtkIdList_ZN10vtkPolygon11TriangulateEiP9vtkIdListP9vtkPoints_ZN10vtkPolygon17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs11SetArgValueEii_ZN10vtkPolygon16EvaluateLocationERiPdS1_S1__ZN10vtkPolygon16EvaluatePositionEPdS0_RiS0_RdS0__ZN10vtkPolygon4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN10vtkPolygon7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN10vtkPolygon12CellBoundaryEiPdP9vtkIdList_ZN10vtkPolygon7GetEdgeEiPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del;HoI!!;IcjJ%n:T~kJ_l l    K 0 d      < >       3q{L4V }9CMYkJb*BMvNO%Yi*P-Q2KRZgsSTEdSNUS 9OA\r*UO'`rbVnWzOVU)^VNXO #3V;KVOd      .!8!!M!!M!X!O ")"T"""*"M"T"#=#d##G<#O###$$$%"%*0%N%X%r%%%%Y&M&]&Re&s&Ix&&&&Z&&&&[.'Q'j'w''*{''\(A(Z(g((*z((])1)G)T)m)*}z))^)*'*4*M**Z**_** ++-+*:+a+`++++ ,*|,C,a,,,,*~--/-a-b---c...(./.g.d../c/-/B/I/Z/d//e/0+0^0j0*0*00fF1q111*1R11I1112Z 22*2R2g222*23R3$383H3e3t333h>4q44444 5.5 667]7n7x77777778868@88i88i9i39TE9X9999O99:+:::K;^;q;{;;;;;;6<@<Y<Fg<Rn<Gv<|<F<<F<<<R< =jk=~===>/>A>q>>???*???@C@@k@@A5AAAAB)BKBaBvBB DYDgDD*DDD7EOEYEEl(F3Fl;FkFlFFFcFGG G>GRGc]GuGO}GGGG HmHHHII7I\I|IIAKKKL#LDL^LhLLLLLLLMMPMnMMM NQNoNNNNOOOPPP*#Q-QLQVQvQQQQRowRRRR'SDSaSSSST'THT^TVVWSWaWvWWWWW-XXXXXYZYpYYYq ZZr%Z9ZsAZSZteZZZuZZZu[>[[[*[[[\vz\\\q\\r\]s']J]m]]t]]]u^A^H^u`^^^*^_"_X_w___`'`c/`````aa1axaaaaa bb  8O_ D!#%L< <O@+eEkqELQY Y08W_~ #+DLkR&I+9Z>KyF65`0X8@ %5  (085@ HX5` h02x5 '50 &5 @+5( (5 }a5(  /( ,85@ pH0_X5 ` hh[x5 0Y5  Q5   M5  G5  E58  (`@85@@ H)X58` hP8x5 <5 \P!5` 5 50 35   M(85x@ 7H@-X5 ` Zh@.x5X! ; 5(# p5$ 5' `*5* mp/5,H X5x-h`x  4H\p   ?Tp] < ,(14xcC`KZ Lpyb,5PP!Y"%,&P't()`*@+ ,0@-T@.p/002 3lP8uP<<06D<M/*`@2 P R0 El G  M Z, 5 tP QY |   0Y0 [ 0_ a.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN10vtkPolygon11GetCellTypeEv.text._ZN10vtkPolygon16GetCellDimensionEv.text._ZN10vtkPolygon16GetNumberOfEdgesEv.text._ZN10vtkPolygon16GetNumberOfFacesEv.text._ZN10vtkPolygon7GetFaceEi.text._ZN10vtkPolygon13IsPrimaryCellEv.text._ZN10vtkPolygon22GetUseMVCInterpolationEv.text._ZN10vtkPolygon22SetUseMVCInterpolationEb.rela.text._ZNK10vtkPolygon19NewInstanceInternalEv.rodata.str1.1.rela.text.unlikely.gcc_except_table.rodata._ZN10vtkPolygon3IsAEPKc.str1.1.rela.text._ZN10vtkPolygon3IsAEPKc.rodata.str1.8.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rodata.cst8.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@2zH2{P2|X2}`2~h2p2x2 2 2 2 b@<2 &b,b1b Vb b cc c0c K@c!pc {@(22ycf@@2h2i iO @2-2j-A<@p02"TO@2$e `@ 2&t` o@ 2(  @ 2+0(,TX x @ 20X3z #(