ELF>H@@43*+UH@dH%(HD$81HHt$HD$HFHD$$D$ t0H|$1HT$8dH+%(uhH@]@HT$H|$H5|$HtHt+HH5HPtHuH1Huff.fUSHHdH%(HD$81HHt$HD$HFHD$$D$ HD$t6H|$1HT$8dH+%(HH[]DHt$H|$tHl$H=HtHH=uHuHc@HH=tHH=tHSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u7H0[fDHHuӐHuUH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u8H0]fDHHuӐHHuHff.@SH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHhH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐ*tHuHcH*HH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fSH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(uZH0[fDHHuӐtHuHcHHH;tЉff.fAUATUH`fnFdH%(HD$X1HHt$ HD$(HGfnD$8fbfD$0uPHo(Ht!D$0+D$4tRH|$ 1HT$XdH+%()H`]A\A]fDHHufLd$@Ll$ LLtD$4L$HD$@T$PtXHf(1HD$P)\$@f.D$@uf.L$Hzwuuf.T$PzmukH?Hc4HEHXH;tT$HLD$L$T$D$L$|fHuL1Ltf.AUATUHpfnFdH%(HD$h1HHt$0HD$8HGfnЉD$HfbfD$@uPHo(Ht!D$@+D$DtRH|$01HT$hdH+%(Hp]A\A]fDHHufLl$PLd$0LLtHt$(Ltf(L$Pd$`HLD$(fL$) $d$f( $f.L$PzEuC\$f.\$Xz5u3d$f.d$`z%u#H'HcHuӹL1Lff.fAUATUH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lg(HH|$04AHcH|$0H|$Mt+D$ +D$$HH|$0E1HtHD$8H9tHD$XdH+%(H`L]A\A]@HHSH|$H|$04HcfDHt$HrHt$DHZD$$uI$t$HH;uSHt)H|$0E1H"L%I$fHT$DHfHT$LHAUATUH`fnFdH%(HD$X1HHt$HD$HGfnȉD$(fbfD$ Hl$Lg(HH|$04AHcH|$0H|$Mt+D$ +D$$HH|$0E1HtHD$8H9tHD$XdH+%(H`L]A\A]@HHSH|$H|$04HcfDHt$HrHt$DHZD$$uI$t$HH;uSHt)H|$0E1H"L%I$fHT$DHfHT$LHATH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$uDH(HtD$9D$tIH11E1HD$(dH+%(H0LA\@HHufHHRxH;IMtoI$H5LPtZHuLIHoHbL1HHP@L8fE1H"DIjfATUSH@fnFdH%(HD$81HHt$HD$HGfnȉD$(fbfD$ uYHD$Ho(Ht!\$ +\$$tJH|$1HT$8dH+%(H@[]A\HHuːHt$H|$tD$$Ld$u`HELH@H;H=tLH=u-HaHcVf.LLH=tLH=tLfDHЉfATL%H LHH5LuLHLA\ATIUHHt HH5LHtHmtH]A\HH]A\UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐuH(HtD$9D$t;H111HT$(dH+%(uLH8HHuҐu$HHuHH@ff.UH0fnFdH%(HD$(1HH4$HD$HGfnȉD$fbfD$u=H(HtD$9D$t:H111HT$(dH+%(u|H0]fDHHuӐu int C++: static vtkTypeBool IsTypeOf(const char *type) Standard new methods. V.IsA(string) -> int C++: vtkTypeBool IsA(const char *type) override; Standard new methods. V.SafeDownCast(vtkObjectBase) -> vtkPolyhedron C++: static vtkPolyhedron *SafeDownCast(vtkObjectBase *o) Standard new methods. V.NewInstance() -> vtkPolyhedron C++: vtkPolyhedron *NewInstance() Standard new methods. V.GetEdgePoints(int, [int, ...]) C++: void GetEdgePoints(int edgeId, int *&pts) override; See vtkCell3D API for description of these methods. V.GetFacePoints(int, [int, ...]) C++: void GetFacePoints(int faceId, int *&pts) override; Get the list of vertices that define a face. The list is terminated with a negative number. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The faceId must range between 0<=faceIdGetNumberOfFaces(). V.GetParametricCoords() -> (float, ...) C++: double *GetParametricCoords() override; Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-nullptr pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell. V.GetCellType() -> int C++: int GetCellType() override; See the vtkCell API for descriptions of these methods. V.RequiresInitialization() -> int C++: int RequiresInitialization() override; This cell requires that it be initialized prior to access. V.Initialize() C++: void Initialize() override; V.GetNumberOfEdges() -> int C++: int GetNumberOfEdges() override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.GetEdge(int) -> vtkCell C++: vtkCell *GetEdge(int) override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.GetNumberOfFaces() -> int C++: int GetNumberOfFaces() override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.GetFace(int) -> vtkCell C++: vtkCell *GetFace(int faceId) override; A polyhedron is represented internally by a set of polygonal faces. These faces can be processed to explicitly determine edges. V.Contour(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkCellArray, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData) C++: void Contour(double value, vtkDataArray *scalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override; Satisfy the vtkCell API. This method contours the input polyhedron and outputs a polygon. When the result polygon is not planar, it will be triangulated. The current implementation assumes water-tight polyhedron cells. V.Clip(float, vtkDataArray, vtkIncrementalPointLocator, vtkCellArray, vtkPointData, vtkPointData, vtkCellData, int, vtkCellData, int) C++: void Clip(double value, vtkDataArray *scalars, vtkIncrementalPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override; Satisfy the vtkCell API. This method clips the input polyhedron and outputs a new polyhedron. The face information of the output polyhedron is encoded in the output vtkCellArray using a special format: CellLength [nCellFaces, nFace0Pts, i, j, k, nFace1Pts, i, j, k, ...]. Use the static method vtkUnstructuredGrid::DecomposePolyhedronCellArray to convert it into a standard format. Note: the algorithm assumes water-tight polyhedron cells. V.EvaluatePosition([float, float, float], [float, ...], int, [float, float, float], float, [float, ...]) -> int C++: int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override; Satisfy the vtkCell API. The subId is ignored and zero is always returned. The parametric coordinates pcoords are normalized values in the bounding box of the polyhedron. The weights are determined by evaluating the MVC coordinates. The dist is always zero if the point x[3] is inside the polyhedron; otherwise it's the distance to the surface. V.EvaluateLocation(int, [float, float, float], [float, float, float], [float, ...]) C++: void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override; The inverse of EvaluatePosition. Note the weights should be the MVC weights. V.IntersectWithLine([float, float, float], [float, float, float], float, float, [float, float, float], [float, float, float], int) -> int C++: int IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override; Intersect the line (p1,p2) with a given tolerance tol to determine a point of intersection x[3] with parametric coordinate t along the line. The parametric coordinates are returned as well (subId can be ignored). Returns the number of intersection points. V.Triangulate(int, vtkIdList, vtkPoints) -> int C++: int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override; Use vtkOrderedTriangulator to tetrahedralize the polyhedron mesh. This method works well for a convex polyhedron but may return wrong result in a concave case. Once triangulation has been performed, the results are saved in ptIds and pts. The ptIds is a vtkIdList with 4xn number of ids (n is the number of result tetrahedrons). The first 4 represent the point ids of the first tetrahedron, the second 4 represents the point ids of the second tetrahedron and so on. The point ids represent global dataset ids. The points of result tetrahedons are stored in pts. Note that there are 4xm output points (m is the number of points in the original polyhedron). A point may be stored multiple times when it is shared by more than one tetrahedrons. The points stored in pts are ordered the same as they are listed in ptIds. V.Derivatives(int, [float, float, float], [float, ...], int, [float, ...]) C++: void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override; Computes derivatives at the point specified by the parameter coordinate. Current implementation uses all vertices and subId is not used. To accelerate the speed, the future implementation can triangulate and extract the local tetrahedron from subId and pcoords, then evaluate derivatives on the local tetrahedron. V.CellBoundary(int, [float, float, float], vtkIdList) -> int C++: int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override; Find the boundary face closest to the point defined by the pcoords[3] and subId of the cell (subId can be ignored). V.GetParametricCenter([float, float, float]) -> int C++: int GetParametricCenter(double pcoords[3]) override; Return the center of the cell in parametric coordinates. In this cell, the center of the bounding box is returned. V.IsPrimaryCell() -> int C++: int IsPrimaryCell() override; A polyhedron is a full-fledged primary cell. V.InterpolateFunctions([float, float, float], [float, ...]) C++: void InterpolateFunctions(double x[3], double *sf) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives). Here we use the MVC calculation process to compute the interpolation functions. V.InterpolateDerivs([float, float, float], [float, ...]) C++: void InterpolateDerivs(double x[3], double *derivs) override; Compute the interpolation functions/derivatives (aka shape functions/derivatives). Here we use the MVC calculation process to compute the interpolation functions. V.RequiresExplicitFaceRepresentation() -> int C++: int RequiresExplicitFaceRepresentation() override; Methods supporting the definition of faces. Note that the GetFaces() returns a list of faces in vtkCellArray form; use the method GetNumberOfFaces() to determine the number of faces in the list. The SetFaces() method is also in vtkCellArray form, except that it begins with a leading count indicating the total number of faces in the list. V.SetFaces([int, ...]) C++: void SetFaces(vtkIdType *faces) override; Methods supporting the definition of faces. Note that the GetFaces() returns a list of faces in vtkCellArray form; use the method GetNumberOfFaces() to determine the number of faces in the list. The SetFaces() method is also in vtkCellArray form, except that it begins with a leading count indicating the total number of faces in the list. V.GetFaces() -> (int, ...) C++: vtkIdType *GetFaces() override; Methods supporting the definition of faces. Note that the GetFaces() returns a list of faces in vtkCellArray form; use the method GetNumberOfFaces() to determine the number of faces in the list. The SetFaces() method is also in vtkCellArray form, except that it begins with a leading count indicating the total number of faces in the list. V.IsInside([float, float, float], float) -> int C++: int IsInside(double x[3], double tolerance) A method particular to vtkPolyhedron. It determines whether a point x[3] is inside the polyhedron or not (returns 1 is the point is inside, 0 otherwise). The tolerance is expressed in normalized space; i.e., a fraction of the size of the bounding box. V.IsConvex() -> bool C++: bool IsConvex() Determine whether or not a polyhedron is convex. This method is adapted from Devillers et al., "Checking the Convexity of Polytopes and the Planarity of Subdivisions", Computational Geometry, Volume 11, Issues 3 - 4, December 1998, Pages 187 - 208. V.GetPolyData() -> vtkPolyData C++: vtkPolyData *GetPolyData() Construct polydata if no one exist, then return this->PolyData H|$0HtHD$8H9tHH|$0HtHD$8H9tHH|$ HD$(H9t HtHH|$`HtHD$hH9tHH|$`HtHD$hH9tHH$H$H9t HtH$HtH$H9tHH$H$H9t HtHH}HEH9t HtHPHXH9t HtHm0m0l0z5z5{   Az 8 " 7HHHD??GCC: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0GNUzRx 0D X l    EDPa AE bEY B }(EAD`n AAF @ED@ AG dED@ AG ED@ AG ED@ AG ED@ AG ED@ AG 0FBA D  ABBG 0LFBA D  ABBG zPLRx 4$FBA D  DBBE \!4|FBA D  DBBE ! PgFD@ EE 0tFAA D`  AABH MFF0OFDD n ABA DDB ED@ AG DFBB A(A0D 0D(A BBBG !L cFBB B(A0A8G 8D0A(B BBBA p!LcFBB B(A0A8G 8D0A(B BBBA !@FBB A(A0D 0A(A BBBI PLFBB B(A0D8Gq 8D0A(B BBBJ F8@tFBB A(Dp (A BBBG l|$FBB B(A0A8G 8A0A(B BBBD GUArJTALpFBB B(A0A8G 8D0A(B BBBE '@DEC P G e...R. (< tFBB B(A0A8D 8A0A(B BBBA HDAKEKAAI@6FBB B(A0A8G 8A0A(B BBBK KDDBAKKGDDBAI  EDP AK ED@ AG  EDP AK 4 ED@ AG X H@ I $t ED@ AG e  ! O y    , pd ` P   6!j !! g %9' !V!} @ PB! c3c!k `c!   7Fi #t P%$ *'2 @/Dd< 6 P96 <  =E > n ? p@ PA%'))  )$ ).23;9G?UEaKQxW]ciou{$0:L]ns   ( "> "e " " " "  "< U "     + "bF M m      " 8 X z   !*    < \ k        M & OAVb?_M/NJg)<M`x_ZL25PyvtkPolyhedron_StaticNewv_ZL28PyvtkPolyhedron_SafeDownCastP7_objectS0__ZL24PyvtkPolyhedron_IsTypeOfP7_objectS0__ZL24PyvtkPolyhedron_IsConvexP7_objectS0__ZL27PyvtkPolyhedron_GetPolyDataP7_objectS0__ZL29PyvtkPolyhedron_IsPrimaryCellP7_objectS0__ZL27PyvtkPolyhedron_GetCellTypeP7_objectS0__ZL38PyvtkPolyhedron_RequiresInitializationP7_objectS0__ZL50PyvtkPolyhedron_RequiresExplicitFaceRepresentationP7_objectS0__ZL35PyvtkPolyhedron_GetParametricCenterP7_objectS0__ZL24PyvtkPolyhedron_IsInsideP7_objectS0__ZL29PyvtkPolyhedron_GetFacePointsP7_objectS0__ZL29PyvtkPolyhedron_GetFacePointsP7_objectS0_.cold_ZL29PyvtkPolyhedron_GetEdgePointsP7_objectS0__ZL29PyvtkPolyhedron_GetEdgePointsP7_objectS0_.cold_ZL27PyvtkPolyhedron_NewInstanceP7_objectS0__ZL19PyvtkPolyhedron_IsAP7_objectS0__ZL20PyvtkPolyhedron_Type_ZL23PyvtkPolyhedron_Methods_GLOBAL__sub_I_vtkPolyhedronPython.cxx_ZL24PyvtkPolyhedron_GetFacesP7_objectS0__ZL24PyvtkPolyhedron_SetFacesP7_objectS0__ZL24PyvtkPolyhedron_SetFacesP7_objectS0_.cold_ZL33PyvtkPolyhedron_InterpolateDerivsP7_objectS0__ZL33PyvtkPolyhedron_InterpolateDerivsP7_objectS0_.cold_ZL36PyvtkPolyhedron_InterpolateFunctionsP7_objectS0__ZL36PyvtkPolyhedron_InterpolateFunctionsP7_objectS0_.cold_ZL28PyvtkPolyhedron_CellBoundaryP7_objectS0__ZL27PyvtkPolyhedron_DerivativesP7_objectS0__ZL27PyvtkPolyhedron_DerivativesP7_objectS0_.cold_ZL27PyvtkPolyhedron_TriangulateP7_objectS0__ZL33PyvtkPolyhedron_IntersectWithLineP7_objectS0__ZL32PyvtkPolyhedron_EvaluateLocationP7_objectS0__ZL32PyvtkPolyhedron_EvaluateLocationP7_objectS0_.cold_ZL32PyvtkPolyhedron_EvaluatePositionP7_objectS0__ZL32PyvtkPolyhedron_EvaluatePositionP7_objectS0_.cold_ZL20PyvtkPolyhedron_ClipP7_objectS0__ZL23PyvtkPolyhedron_ContourP7_objectS0__ZL23PyvtkPolyhedron_GetFaceP7_objectS0__ZL32PyvtkPolyhedron_GetNumberOfFacesP7_objectS0__ZL23PyvtkPolyhedron_GetEdgeP7_objectS0__ZL32PyvtkPolyhedron_GetNumberOfEdgesP7_objectS0__ZL26PyvtkPolyhedron_InitializeP7_objectS0__ZL35PyvtkPolyhedron_GetParametricCoordsP7_objectS0_.LC0.LC1.LC2.LC3.LC4.LC8.LC5.LC6.LC7.LC9.LC10.LC11.LC12.LC13.LC14.LC15.LC16.LC17.LC19.LC21.LC22.LC24.LC25.LC26.LC28.LC30.LC32.LC33.LC34.LC36.LC37.LC38.LC39.LC41.LC43.LC44.LC45.LC46.LC47.LC48.LC49.LC50.LC51.LC52.LC53.LC54.LC55.LC23_ZN13vtkPolyhedron13GetEdgePointsEiRPi_ZN13vtkPolyhedron13GetFacePointsEiRPi_ZN13vtkPolyhedron11GetCellTypeEv_ZN13vtkPolyhedron22RequiresInitializationEv_ZN13vtkPolyhedron13IsPrimaryCellEv_ZN13vtkPolyhedron34RequiresExplicitFaceRepresentationEv_ZN13vtkPolyhedron19GetParametricCenterEPd_ZN13vtkPolyhedron3NewEv_ZNK13vtkPolyhedron19NewInstanceInternalEv_ZN13vtkPythonArgs13ArgCountErrorEii_ZN13vtkPythonArgs17GetArgAsVTKObjectEPKcRbPyErr_Occurred_ZN13vtkPythonUtil20GetObjectFromPointerEP13vtkObjectBase__stack_chk_fail_ZN13vtkPolyhedron3IsAEPKcstrcmp_ZN13vtkObjectBase8IsTypeOfEPKc_ZN13vtkPythonArgs8GetValueERPcPyLong_FromLong_ZN13vtkPythonArgs19GetSelfFromFirstArgEP7_objectS1__ZN13vtkPolyhedron8IsConvexEvPyBool_FromLong_ZN13vtkPolyhedron11GetPolyDataEv_GLOBAL_OFFSET_TABLE__ZN13vtkPythonArgs8GetArrayEPdi_ZN13vtkPythonArgs8SetArrayEiPKdi_ZN13vtkPythonArgs8GetValueERd_ZN13vtkPolyhedron8IsInsideEPddDW.ref.__gxx_personality_v0_ZN13vtkPythonArgs10GetArgSizeEi_ZN13vtkPythonArgs5ArrayIiEC1El_ZdaPv_ZN13vtkPythonArgs8GetValueERi_ZN13vtkPythonArgs8GetArrayEPii_Py_NoneStruct_ZN13vtkPythonArgs11SetArgValueEiPKii_Unwind_ResumePyVTKObject_CheckPyVTKObject_GetObjectPyVTKObject_SetFlagPyvtkPolyhedron_ClassNewPyVTKClass_AddPyvtkCell3D_ClassNewPyType_ReadyPyVTKAddFile_vtkPolyhedronPyDict_SetItemString_Py_Dealloc_ZN13vtkPythonUtil13ManglePointerEPKvPKcPyUnicode_FromString_ZN13vtkPolyhedron8GetFacesEv_ZN13vtkPythonArgs5ArrayIxEC1El_ZN13vtkPythonArgs8GetArrayEPxi_ZN13vtkPolyhedron8SetFacesEPx_ZN13vtkPythonArgs8SetArrayEiPKxi_ZN13vtkPythonArgs5ArrayIdEC1El_ZN13vtkPolyhedron17InterpolateDerivsEPdS0__ZN13vtkPolyhedron20InterpolateFunctionsEPdS0__ZN13vtkPolyhedron12CellBoundaryEiPdP9vtkIdList_ZN13vtkPolyhedron11DerivativesEiPdS0_iS0__ZN13vtkPolyhedron11TriangulateEiP9vtkIdListP9vtkPoints_ZN13vtkPolyhedron17IntersectWithLineEPdS0_dRdS0_S0_Ri_ZN13vtkPythonArgs11SetArgValueEid_ZN13vtkPythonArgs11SetArgValueEii_ZN13vtkPolyhedron16EvaluateLocationERiPdS1_S1__ZN13vtkPolyhedron16EvaluatePositionEPdS0_RiS0_RdS0__ZN13vtkPythonArgs8GetValueERx_ZN13vtkPolyhedron4ClipEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayP12vtkPointDataS7_P11vtkCellDataxS9_i_ZN13vtkPolyhedron7ContourEdP12vtkDataArrayP26vtkIncrementalPointLocatorP12vtkCellArrayS5_S5_P12vtkPointDataS7_P11vtkCellDataxS9__ZN13vtkPolyhedron7GetFaceEi_ZN13vtkPolyhedron16GetNumberOfFacesEv_ZN13vtkPolyhedron7GetEdgeEi_ZN13vtkPolyhedron16GetNumberOfEdgesEv_ZN13vtkPolyhedron10InitializeEv_ZN13vtkPolyhedron19GetParametricCoordsEvPyType_TypePyVTKObject_DeletePyVTKObject_ReprPyVTKObject_StringPyObject_GenericGetAttrPyObject_GenericSetAttrPyVTKObject_AsBufferPyVTKObject_TraversePyVTKObject_GetSetPyVTKObject_NewPyObject_GC_Del,A`xByCz{z| DJx}C~E~zF~G~|!Hnxz|I.xQaizv{}|Jx!:zGb*so|Kx*z7R*q_|Lxz'B*rO|Mx z2*t?|uNx&K?S@z*uz  |E O x   8 n z  z  | P. A s x      7 *p> zH z` *  | Q 1 c x     '*o.z8zP*q|Rx9Z*wevxCz{z|4Sx*} C~E#~,z=^Fc~qGv~|=C>==CaTxzU !3*A|xVx"az]zgz*| Wk~x/Aqzz*zC|X$x@ zz,*IQzl|YQxZyPzawz|[,Box Q y     p"z"z"z"*"#z!####|#\T$x$$Z$y$]$y$z%%7%@%|%^%x!&L&h&|&&&&&(zA)zO)z`)))z))z))z**z5*P*f*p*|*_*+J+xl++++,=,b,x,\-z2.z@.z[.*..z..z. /$/./|v/`//0000x000*1@1a11113z4zb4z4z4z44z585zW5555F6^6h6|6a7xN7^7bi7y}7c7y7d7y7e7y7y7f8y!818fd8y88z8*9?9J9|}9g9x:.:b>:yW:c_:yy:d:y:y:y:e:y;yA;fc;y;;f;y<z*<*A<w<<|<h =x1=K=p=z}={==|=i>x1>P>z]>i>r>|>j>x!?;?`?zm?{|??|?k?x!@@@zM@Y@b@|@l@xAAz*A*9A@A|qAmAxABzBUB"B1BCB*QB|v ;>O_##:/t6%6?@vC~&E+~9F>~LGQ~^6>W_x%BJn=#0X8@ )@  (8@ HX` hx     PA U  ap  (p@8 @ H?XX ` h>x  =  <  P9x  n6 ]@/`  L(*8@ :HP%X` $h#x   xP G  `!  (80"@H`XX#` hPx% @&  P( 2) ;* 4H\p  Dhp`PP   "4!=<Tx#@4P=D|B^fc`dm )D#P%*@Id@/m6DP9<= >8 ?\ p@x PA.symtab.strtab.shstrtab.rela.text.data.bss.text._ZN13vtkPolyhedron13GetEdgePointsEiRPi.text._ZN13vtkPolyhedron13GetFacePointsEiRPi.text._ZN13vtkPolyhedron11GetCellTypeEv.text._ZN13vtkPolyhedron22RequiresInitializationEv.text._ZN13vtkPolyhedron13IsPrimaryCellEv.text._ZN13vtkPolyhedron34RequiresExplicitFaceRepresentationEv.rela.text._ZN13vtkPolyhedron19GetParametricCenterEPd.rela.text._ZNK13vtkPolyhedron19NewInstanceInternalEv.rodata.str1.1.rodata._ZN13vtkPolyhedron3IsAEPKc.str1.1.rela.text._ZN13vtkPolyhedron3IsAEPKc.rodata.str1.8.rela.text.unlikely.gcc_except_table.rela.text.startup.rela.init_array.rela.data.rel.rela.data.rel.local.rodata.cst16.rela.data.rel.local.DW.ref.__gxx_personality_v0.comment.note.GNU-stack.note.gnu.property.rela.eh_frame.group@1oH1pP1qX1r`1sh1tp 1u| 1w 1} 1 UB@H+1 &B,B1C^C C 0C @C PC T`CO@P01C @12C2EEb@12(FX+.qN)@p1=rTsO@ 01!gtb@P1#x t s@h 1%u  @ 1'yy@1*0y,$z(z Hz @1/x2o X0